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Abstract
Tuberculosis (TB) is a chronic lung infected airborne disease caused by Mycobacterium tuberculosis (MTB). The develop-
ment of resistance towards available antitubercular agents leads to the discovery of new drugs for treatment against 
these resistant bacteria. Decaprenyl phosphoryl-β-D-Ribose 20-epimerase (DprE1) is a vulnerable target for the design 
of antitubercular agents which are more acting against multidrug resistant bacterial pathogens. DprE1 is an oxidase 
involved in the synthesis of arabinogalactan. Inhibition of DprE1 leads to blocking off cell wall synthesis, causing the 
death of the bacteria. A series of 50 DprE1 inhibitors having activity were subjected to 2D, 3D QSAR, Pharmacophore 
Modeling, Molecular Docking and in silico ADME studies. Prediction of preliminary Pharmacokinetic and the Drug Likeli-
ness profile was performed for these compounds by in silico ADME study. 2D-QSAR and 3D- QSAR models developed 
by Partial Least Square associated with the Sphere Exclusion method (PLS-SE) and StepWise variable selection method 
(SW-kNN MFA) based on k- Nearest Neighbor technique are more significant which have cross-validated squared correla-
tion coefficient (q2), coefficient of determination (r2), Fisher ratio (F) values as 0.7499, 0.8917 and 85.04 and the internal 
(q2 = 0.8198), external (pred_r2 = 0.6109) model validation correctly predicts activity ~ 81% and ~ 61% for the training and 
test set, respectively. Pharmacophore model was developed with two aromatic regions (Aro), one aliphatic (Ala) and one 
hydrogen donor (HDr). Docking studies of the selected inhibitors with the active site of DprE1 enzyme showed hydrogen 
bond interaction with Gly-116, His-131, Arg-118, Thr-117 and Gln-299 residues present at the active site. The results of 
the present work provide more useful information and important structural insights for designing DprE1 inhibitors with 
much more enhanced potency.
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MIC  Minimum inhibitoryconcentration
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activity relationship

PLS  Partial least square
RMSD  Root mean square deviation
RMSE  Root mean square error
SD  Standard deviation
r2  Coefficient of determination
q2  Cross validated squared correlation 

coefficient
pred_r2  External predictivity
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k-NNM  K- Nearest neighbour method
F-test  The F test value is the degree of statistical 

confidence. In general, a QSAR model is more 
significant as a predictive tool when the 
higher value is obtained for its F-test

Z score  It can be defined as the absolute difference 
between the value of the model and the 
activity field, divided by the square root of the 
mean square error of the data set. Any com-
pound which shows a value of Z-score higher 
than 2.5, during the generation of a particular 
QSAR model is considered as outlier

Aro  Aromatic region
Ala  Aliphatic region
HDr  Hydrogen donor

1 Introduction

Tuberculosis (TB) is an airborne contagious disease caused by 
Mycobacterium tuberculosis and affects about one-third of the 
world’s population [1]. According to the World Health Organi-
zation (WHO) tuberculosis continues to cause considerable 
morbidity and mortality worldwide despite the availability 
of an effective and economical drug regimen [2–5]. With the 
emergence and spread of Multi-Drug Resistant Tuberculosis 
(MDR-TB) [6, 7], Extensively Drug Resistant Tuberculosis (XDR-
TB) and deadly complication of tuberculosis infection with 
Human Immunodeficiency Virus (HIV) demands discovery 
and development of new antitubercular agents with good 
efficacy, effectivity and safety, focused on new drug targets 
with innovative mechanisms of action [8–10].

There are usually three reasons for needing new antituber-
culosis drugs: (i) To improve current treatment by shorten-
ing the total duration of treatment and/or by providing more 
widely spaced intermittent treatment [11, 12], (ii) To improve 
the treatment of MDR-TB, and (3) To provide more effective 
treatment of Latent tuberculosis infection (LTBI) [13].

Computational approaches are made to design DprE1 
inhibitors which will target the recently identified enzyme 
Decaprenyl-phosphoribose 2′-oxidase (DprE1), catalyzes 
an essential step in mycobacterial cell wall metabolism [14, 
15]. The cell wall is a functional and protective interface 
between the external and internal environments for every 
living organism. Disruption or inhibition in its synthesis 
prevents the growth and multiplication of the organism. 
Mycobacterium tuberculosis (MTB) have a special cell wall 
arrangement, with layers of outer lipids, mycolic acid, poly-
saccharides (arabinogalactan), peptidoglycan, plasma 
membrane, lipoarabinomannan (LAM), and phosphatidyl 
inositol mannoside. The polysaccharides arabinogalactan 
are the basic precursor for bacterial cell wall synthesis. Deca-
prenyl Phosphoryl-β-D-ribose 20-Epimerase (DprE1) is an 

oxidase enzyme involved in the biosynthesis of Decapre-
nyl Phosphoryl-D-Arabinose (DPA) which acts as a donor of 
D-arabino furanosyl residues for the synthesis of Arabinoga-
lactan [16, 17]. DprE1 is a flavoprotein that along with Deca-
prenylphosphoryl-2-keto-ribose reductase (DprE2) catalyses 
epimerization of Decaprenylphosphoryl- D-ribose (DPR) to 
convert Decaprenylphosphoryl-D-arabinose (DPA) through 
an intermediate Decaprenylphosphoryl-2-Keto-ribose (DPX) 
(Fig. 1). This NADP dependent enzymatic reaction makes 
DprE1 an essential component for cell growth and survival 
of bacteria [18–20]. Hence DprE1 is evolved as an important 
drug target, inhibition of this enzyme block bacterial cell 
wall synthesis leads to the death of the bacteria [21].

Computational approaches are made to develop the 
new active and minimum toxic drug moieties. Computa-
tional modelling of drugs is based on information about 
the ligand and the target receptor [22]. Based on published 
information about ligands and receptor, either Structure 
based or Ligand-based Molecular Design approaches are 
used to correlate the biological activity with the chemical 
structure of the ligands [23]. Computational studies are 
considered effective tools in medicinal chemistry and are 
useful in speeding up the drug design process [24].

Molecular modelling represents the molecular structure 
numerically and their activity as the equation of quan-
tum. An attempt is made in the present work to perform 
Quantitative Structure Activity Relationship (QSAR) study, 
Pharmacophore Modelling, Molecular Docking and insil-
ico ADME prediction on a series of DprE1 inhibitors. QSAR 
study includes development of two-dimensional (2D) and 
three dimensional (3D) models where the structure of the 
molecules taken in the most stable state which are using to 
calculate the descriptors [25]. Validations of the developed 
models are carried out using different statistical parameters 
[26]. The validated models developed in this study help to 
optimize the lead compounds and provide information 
about the correlation between structural properties and 
activity [27]. Pharmacophore Modelling and Molecular 
Docking study are performed to understand and to inter-
pret the binding interactions mechanism between the 
ligands and the receptor. Insilico ADMET prediction of drug 
molecules help to assess the Pharmacokinetic (PK) profile 
and drug likeliness of molecules [28]. The composition of 
Docking and Pharmacophore Modelling with QSAR stud-
ies can be applied to gain more precise information on the 
interactions between the ligand and the receptor [29–31].

Based on the developed models, rational design of 
novel active DprE1 inhibitors are made which are having 
greater selective, effective and safety, therapeutic activity. 
The got results of Pharmacophore and Docking study can 
improve the binding process of ligands with its receptor 
and provide insights into the structural features related to 
the activities of the new drug compounds.
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2  Materials and methods

2.1  Data set

To perform the present computational study, a set of 50 
compounds having reported  IC50 values were taken from 
the available literature [32, 33] excluding compounds hav-
ing not well defined biological activities. The selected com-
pounds for the study shared the same activity and assay 
procedure with significant variations in their structure 

and potency. Inhibitory potencies of the compounds in 
the data set have  IC50values ranges from 0.005 to 56.7 µm 
which were further converted to  pIC50 by using the follow-
ing mathematical formula given as Eq. 1;

The structure of all the compounds given in the data 
set is sketched using the molecular sketching facili-
ties provided in the MDS software of V-Life [34]. Energy 

(1)pIC50
= − log10

(

IC50
)

Fig. 1  NAD dependent Bio-
chemical reaction catalysed by 
DprE1 and DprE2 enzymes in 
Mycobacterium
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minimization of the compounds is done by using Merck 
molecular force field (MMFF) [35, 36] using MDS software 
of V-Life by fixing a dielectric constant at 1.0 and root 
mean square (RMS) gradient at 0.0001. Energy minimiza-
tion of the compounds is made for effective binding of the 
drug with its target receptor. The division of whole data 
set into training and test sets is based on Sphere Exclusion 
Algorithms, so that the activity of the selected test set are 
distributed throughout the activity column of the com-
pounds, the distribution curve for test and training com-
pounds is given in Fig. 2. The QSAR models are developed 
and validated by taking 36 and 14 molecules as training 
and test set compounds. The chemical structure and their 
 pIC50 values are given in Table 1.

2.2  QSAR study

QSAR study is performed to find the correlation between 
the activity and structural features (descriptors) of the data 
set molecules. In this method, we try to find structural 
parameters that relate to the inhibition activity through 
mathematical equations [37, 38].

2.2.1  Generation of 2D‑QSAR models

In, the present study 2D QSAR models are developed 
between activity and descriptors like Retention Index 
(chi),Atomic valence connectivity index (chiv), Path Count, 
Chi Chain, Path Count, Path Cluster, Element Count, Dipole 
Moment, topological, Estate Contributions, Information 
Theory Index, Extended Topochemical Atom (ETA) based 
descriptors, Polar Surface Area etc. consider as Physiologi-
cal descriptors, T_2_O_7, T_2_N_5, T_N_N_5, T_2_2_6, 
T_C_O_1, T_O_Cl_5 etc. as Alignment Independent (AI) 
and MMFF atom types descriptors. 3D descriptors such as 
Electro Static, Distance Based Topological Indices, Sem-
iEmpirical and Hydrophobicity base logP descriptors are 
excluded during the study. 415 molecular descriptors are 
calculated using V-Life MDS software before developing 
QSAR models. For alignment independent descriptors, we 
have used attributes (2, T, C, N, O, F, S, Cl) range from 0 to 
7 and structure descriptors as Topological in the software. 
After obtaining the values of descriptors for all the com-
pounds, descriptors that have a constant value for all the 
molecules are discarded. Four QSAR models are developed 
by using Multiple Regression (MR), Principal Component 
Regression (PCR), Partial Least Square Regression (PLSR) 
and Partial Least Square associated with the Sphere Exclu-
sion (PLS-SE) methods taking all the calculated descrip-
tors as independent variables and biological activity as the 
dependent variable.

2.3  Generation of 3D‑QSAR models

3D QSAR models for the above data set are developed 
by using k-Nearest Neighbour Molecular Field Analysis 
(kNN- MFA) principle. The values of the 3D descriptors 
such as Electrostatic and Steric parameters are calculated 
by setting the dielectric constant as 1.0, charge type as 
Gasteiger-Marsili and a sp3 carbon probe atom with 
charge 1.0. The cut off energy of 10.0 kcal/mol and 30 kcal/
mol are set as the default for electrostatic and steric ener-
gies. A total of 2080 field descriptors (1040 for each elec-
trostatic and steric) are calculated using MDS software. 3D 
QSAR models are developed by setting a cross-correlation 
limit as 0.5, the number of variables in the equation as 4, 
term selection criteria as q2, F-test in and out value as 4 
and 3.99 respectively. Three models are developed by Step 
Wise variable Selection Method (SW-kNN MFA), Simulated 
Annealing Variable Selection Method (SA-kNN MFA) and 
Genetic Algorithm Variable Selection Method (GA-kNN 
MFA).

2.3.1  Model validation

For validation of the developed QSAR models, the data set 
is divided into two sets as training and test sets. This divi-
sion is based on the substitution groups and the inhibition 
of compounds. The training set is employed to produce 
the QSAR model, and the test set is used to validate the 
quality of the developed models. The statistical parameters 
of the developed models, internal and external validations 
are adopted for testing the fitness, stability and predictive 
ability of the QSAR models. Both the developed 2D and 
3D QSAR models are validated by considering many sta-
tistical parameters such as the number of compounds in 
regression (n), the number of variables (k), degree of free-
dom, squared correlation coefficient (r2), cross-validated 
correlation coefficient (q2), Fischer’s value (F test) and r2 
for external test set, (pred_r2) for external validation. For 

Fig. 2  Distribution curve of Test (Green Dot) and Training set (Red 
Dot) compounds
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Table 1  Chemical structure and  pIC50 values of the compounds having DprE1 inhibition activity

S. no Structure of compound QSAR set pIC50

1

NO2

O

N N

N

Test Set 0.231

2

O2N

O

N N

N

Test Set 0.381

3

O

N N

N

Cl

Test Set 0.545

4

O

N N

N

Cl

Training Set 0.381

5

O
N N

N

Br

Test Set 0.506

6

NO2

O
N N

N

Training Set 0.042

7

O2N

O
N N

N

Training Set 0.381
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Table 1  (continued)

S. no Structure of compound QSAR set pIC50

8

O
N N

N

Cl

Training Set 0.398

9

O
N N

N

Cl

Test Set 0.478

10

O
N N

N

Br

Training Set 0.893

11

NO2

O
N N

N

Cl Training Set 0.554

12

O2N

O
N N

N

Cl Training Set 0.415

13

O
N N

N

Cl

Cl

Training Set 0.155

14

O
N N

N

Cl

Cl

Test Set 0.463

15

O
N N

N

Cl

Br

Test Set 0.302
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Table 1  (continued)

S. no Structure of compound QSAR set pIC50

16

NO2

O2N O
N N

N

Training Set 1.748

17

O2N

O2N

O
N N

N

Training Set 0.920

18

O2N O
N N

N

Cl

Training Set 1.728

19

O2N O
N N

N

Cl

Test Set 1.425

20

O2N O
N N

N

Br

Training Set 1.636

21

NO2

O
N N

N

Cl Test Set 0.097

22

O2N

O
N N

N

Cl Test Set 0.343

23

O
N N

N

Cl

Cl

Training Set 0.699
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Table 1  (continued)

S. no Structure of compound QSAR set pIC50

24

O
N N

N

Cl

Br

Training Set 0.381

25

NO2

O
N N

N
Cl

Cl Cl Training Set 0.343

26

O2N

O
N N

N
Cl

Cl Cl Training Set 0.415

27

O
N N

N
Cl

Cl Cl

Cl

Training Set 0.097

28

O
N N

N
Cl

Cl Cl

Cl

Test Set 0.343

29

O
N N

N
Cl

Cl Cl

Br

Training Set 0.046

30 O2N

NO2

O
N N

N
I

I Training Set 0.415

31 O2N

O
N N

N
I

I

Br

Training Set 1.398
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Table 1  (continued)

S. no Structure of compound QSAR set pIC50

32

N
H

N
N

N
H

O

Test Set 0.080

33

N
H

N
N

N
H

O

Test Set 0.147

34

N
H

N
N

N
H

O

Training Set 0.448

35 CN

N
H

N
N

N
H

O

Training Set 0.415

36

N
H

N
N

N
H

O

F Training Set 0.302

37 CF3

N
H

N
N

N
H

O

Training Set 0.398

38 CF3

N
H

N
N

N
H

O

Test Set 0.222

39 CF3

N
H

N
N

N
H

O
N

Training Set 0.699

40 CF3

N
H

N
N

N
H

O

Training Set 1.754

41

CF3

N
H

N
N

N
H

O

Training Set 1.398
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Table 1  (continued)

S. no Structure of compound QSAR set pIC50

42

CF3

N
H

N
N

N
H

O

N

Training Set 1.302

43
CF3

N
H

N
N

N
H

O F

Training Set 1.155

44
CF3

N
H

N
N

N
H

O

F Training Set 2.302

45
CF3

N
H

N
N

N
H

O

N

Training Set 2

46
CF3

N
H

N
N

N
H

O

Training Set 2

47 CF3

N
H

N
N

N
H

O

Training Set 2.155

48
CF3

N
H

N
N

N
H

O

Training Set 2.097

49 CF3

N
H

N
N

N
H

O

Training Set 1.222

50 CF3

N
H

N
N

N

O

Training Set 0.793



Vol.:(0123456789)

SN Applied Sciences (2020) 2:922 | https://doi.org/10.1007/s42452-020-2638-y Research Article

the internal predictive ability of the model Leave One Out 
(LOO) method is used showed as the value of q2 (cross-
validated explained variance) [39].

External validation of the developed QSAR models is 
performed by measuring the predictive power of the cur-
rent models on the external test set by calculating the 
 pred_r2 value as given in Eq. 2, which gives the statistical 
correlation between predicted and actual activities of the 
test set compounds.

where  yi,
⌢

yi and ymean are the actual, predicted activity of 
the ith molecule in the test set and the average activity of 
all the molecules in the test set, respectively.

Internal validation of the developed QSAR models is 
performed by calculating the  q2 value as given in Eq. 3, 
which gives the statistical correlation between predicted 
and actual activities of the training set compounds.

where  yi,
⌢

yi and ymean are the actual, predicted activity of 
the ith molecule in the training set and the average activity 
of all the molecules in the training set, respectively.

2.4  Pharmacophore generation

The development of pharmacophore model is one of the 
important tasks in drug design and bioactivity prediction. 
A pharmacophore model has described a set of three-
dimensional features which are necessary for bioactive 
ligands [40, 41]. It shows about the nature of the functional 
groups like hydrogen bond donors, acceptors, hydropho-
bic areas, charge interactions, non-covalent bonding and 
interchange distances which affect the ligand- target inter-
actions. The MolSign module in VLifeMDS provides tools 
for aligning small organic molecules based on their three 
dimensional pharmacophore features. Pharmacophore 
modelling is performed by taking TCA-1 as the reference 
compound and all 50 compounds for alignment. The pri-
mary pharmacophore feature count, enter the value 4, 
shows the minimum number of pharmacophore features 
generated for an alignment. The tolerance field, enter the 
value 10 Å, shows the flexibility in percentage allowed 
while comparing two feature combinations across two 
molecules. The Max Distance allowed between the two 
features, set as 10.

(2)predr2 = 1 −

∑
�

yi − ŷi
�2

∑
�

yi − ymean

�2

(3)q2 = 1 −

∑
�

yi − ŷi
�2

∑
�

yi − ymean

�2

2.5  Molecular docking

Molecular docking study is a computational approach 
for searching a ligand that can fit both geometrically and 
energetically into the binding site of a target to show 
action. Docking study helps to predict drug/ ligand or 
receptor/ protein interactions by identifying the suitable 
active sites in the protein, getting the best geometry of 
ligand-receptor complex and calculating the energy of 
interaction for different ligands to design more effective 
ligands [42, 43]. In the present work, docking study is 
performed for all 50 compounds with the DprE1 enzyme. 
The whole study is carried out by the Biopredicta tool of 
V-Life MDS software version 4.6. X-ray diffraction crystal 
structure of M. Tuberculosis DprE1 is obtained from RCSB 
Protein data bank (PDB ID-4KW5) complex with inhibi-
tor TCA-1, having resolution 2.612  A0 is used for docking 
study. Initially, the enzyme is bound with a ligand (TCA-
1, dock score − 3.453), which is removed and the missing 
loops are added with the help of homology modeling 
modules of the software. During study bond orders of the 
ligands are assigned, hydrogen atoms are added and the 
water molecules which do not involve in the interaction 
are deleted. The TCA-1 bound cavity is considered carry-
ing out the docking study of the selected 50 compounds. 
Finally, the best-docked structures are selected using their 
dock score. The interacting amino acids are identified as 
Val-120, Thr-117, Arg-57, Pre-117, Gly-116, His-131, Ser-
122, Tyr-284 and Lys-330 present in the binding site of the 
target enzyme.

2.6  Drug likeliness and in silico ADME prediction

Earlier prediction of the ADMET properties of drug mol-
ecules helps a lot towards drug discovery. This information 
helps to assess the pharmacokinetic (PK) profile of mol-
ecules. The PK properties of the molecules depend on their 
chemical descriptors, which determine their ADMET. The 
PK parameters are calculated by ADMET lab a user-friendly 
freely available web interface [44–46]. Several mathemati-
cal predictive models for different PK parameters are avail-
able such as Aqueous Solubility, Apparent Caco-2, log Kp 
for skin permeability, Blood–brain barrier (BBB), Volume 
of Distribution (Vd),Plasma Protein Binding, Metabolism, 
Elimination {Half lifetime  (T1/2), Clearance rate (CL)}and 
Toxicity which are used to predict the ADMET properties 
of the drug molecules. The drug-likeness (DL) analysis 
module includes five commonly used drug- likeness rules 
(Lipinski, Ghose, Oprea, Veber and Varma) and param-
eters, such as molecular weight (MW) of ≤ 500 amu, a 
logP value of ≤ 5, hydrogen bond donor ≤ 5 and hydrogen 
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bond acceptor site (N and O atoms) ≤ 10, the number of 
rotatable bonds ≤ 10 and topological polar surface area 
(TPSA) ≤ 140 Å. The significant predicted pharmacokinetic 
and physicochemical descriptors accounts for druggablilty 
of a molecule [47, 48].

3  Result and discussion

3.1  Development and validation of 2D‑QSAR 
models

2D QSAR models were developed by considering all the 
two dimensional calculated descriptors as independent 
variables and biological activity as the dependent varia-
ble. For internal and external validation of the developed 
models, the data set of the compounds was divided into 
14 and 36 as the test and training sets, respectively. The 
correlation between actual and predicted activity for both 
training and test set compounds is shown in Table 2. Uni-
column statistic is performed for both training and test 
series to check the spread of data. The results of the uni-
column statistics study are presented in Table 3. From the 
result, it was clear that the test set is interpretive, i.e. the 
activity of the test set derived within the activity range 
of the training set. The mean and standard deviation of 
the training and test sets provides insight into the relative 
difference of mean and point density distribution of the 
two sets. As the average of the test set is higher than the 
training set shows the presence of relatively more active 
molecules as compared to the inactive ones.

2D QSAR models are developed by using 4 methods 
multiple regression (MR), principal component regression 
(PCR), partial least square regression (PLSR) and partial 
least square associated with the sphere exclusion (PLS-SE), 
the correlation equations between activity (pIC50) and the 
selected parameters are given as Eqs. 4, 5, 6 and 7 respec-
tively. Followed by the validation of the developed QSAR 
models to check both internal and external predictive 
power, which implies a quantitative assessment of model 
robustness. Validation of the four developed QSAR models 
is confirmed based on values for various studied statistical 
parameters; the result of the study is given in Table 4.

(4)

pIC50 = 0.5850(±0.0742)T_O_O_5

− 0.0524(±0.0143) T_2_2_4 + 0.9615

(5)pIC50 = 0.0000(±0.0000) Ipc + 0.4412

(6)
pIC50 = 1.1867T_N_O_4 − 0.0174SdOE − index − 1.9355

From the data given in above table it is clear that the 
QSAR model developed by Partial Least Square associ-
ated with the Sphere Exclusion method (PLS-SE) is sta-
tistically more significant than others because the calcu-
lating r2 and r2_se for training and the same coefficient 
for external test set (pred_r2) are having values 0.8917, 
0.2407 and 0.5935 with the low standard error of estima-
tion shows overall internal statistical significance level 
better than 99.9% as the F-test having value 85.0374. This 
model accounts for 89% variance in the inhibitory activ-
ity. The value of the cross-validated Square Correlation 
Coefficient (q2) is 0.7499 suggesting the good predictive 
ability of the model. This model shows the interrelation-
ship between the activity and the parameters such as 
SssssCE-index, T_N_O_4, Most-vePotential, SsssNE-index, 
SAHydrophilicArea, T_T_Cl_4 and SaaCHcount, contribu-
tion plot of these parameters towards activity is presented 
in Fig. 3. The positive coefficient of T_N_O_4 and Most-
vePotential shows that antitubercular activity will increase 
with the increase in the number of Nitrogen atoms sepa-
rated from Oxygen atom by 4 bonds and increase the -ve 
potential in the Vander Waals surface area of the mole-
cule. Whereas the negative coefficient for the parameters 
SssssCE-index, SsssNE-index, SAHydrophilic Area, T_T_Cl_4 
and SaaCH count shows the activity will increase with the 
decrease in eletrotopological state indices for the number 
of carbon atom and –NH group connected with 4 and 3 
single bonds respectively, vdW surface descriptors show-
ing hydrophilic surface area, the number of chlorine atom 
separated by 4 bonds and total number of carbon atoms 
connected with a hydrogen along with 2 aromatic bonds.

The fitness plot between actual and predicted activity 
for training and test set compounds given in Fig. 4 pro-
vides an idea about how well this model is trained and 
how well it predicts the activity of the external test set. 
Further, the distribution curve of actual and predicted 
activity for training and test sets compounds for the well-
developed model are represented in Fig. 5a, b, depicting 
closeness between the actual and predicted activity of the 
compounds for training and test set.

3.2  Development and validation of 3D‑QSAR 
models

By using k-Nearest Neighbour Molecular Field Analysis 
(kNN- MFA) principle 3D- QSAR models for the above data 
set are developed. Three models are developed by Step 

(7)

pIC50 = −0.2473SssssCE index + 1.0914T_N_O_4

+ 11.5647Most − vePotential − 0.6078SsssNE index

− 0.0162SAHydrophilicArea − 0.0588T_T_Cl_4

− 0.1418SaaCHcount + 2.094
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Table 2  Observed and 
predicted activities (pIC50) 
for the Training and Test set 
compounds

Com-
pound 
no.

2D- QSAR model (PLS-SE) 3D- QSAR model (SW-kNN MFA)

Experi-
mental 
 pIC50

Predicted  pIC50 Residual activity Experi-
mental 
 pIC50

Predicted  pIC50 Residual activity

1 0.231 0.265  − 0.034 0.231 0.256  − 0.025
2 0.381 0.514  − 0.133 0.381 0.432  − 0.051
3 0.545 0.541 0.004 0.545 0.586  − 0.041
4 0.381 0.415  − 0.034 0.381 0.421  − 0.040
5 0.506 0.601  − 0.095 0.506 0.595  − 0.089
6 0.042 0.087  − 0.045 0.042 0.067  − 0.025
7 0.381 0.451  − 0.070 0.381 0.376 0.005
8 0.398 0.385 0.013 0.398 0.336 0.062
9 0.478 0.485  − 0.007 0.478 0.468 0.010
10 0.893 0.763 0.130 0.893 0.723 0.170
11 0.554 0.493 0.061 0.554 0.598  − 0.044
12 0.415 0.423  − 0.008 0.415 0.534  − 0.119
13 0.155 0.174  − 0.019 0.155 0.203  − 0.048
14 0.463 0.486  − 0.023 0.463 0.627  − 0.164
15 0.302 0.395  − 0.093 0.302 0.376  − 0.074
16 1.748 1.652 0.096 1.748 1.564 0.184
17 0.920 0.894 0.026 0.920 1.045  − 0.125
18 1.728 1.685 0.043 1.728 1.612 0.116
19 1.425 1.365 0.060 1.425 1.336 0.089
20 1.636 1.607 0.029 1.636 1.538 0.098
21 0.097 0.159  − 0.062 0.097 0.148  − 0.051
22 0.343 0.388  − 0.045 0.343 0.395  − 0.052
23 0.699 0.654 0.045 0.699 0.610 0.089
24 0.381 0.471  − 0.090 0.381 0.487  − 0.106
25 0.343 0.452  − 0.109 0.343 0.443  − 0.100
26 0.415 0.512  − 0.097 0.415 0.567  − 0.1520
27 0.097 0.174  − 0.077 0.097 0.132  − 0.035
28 0.343 0.396  − 0.053 0.343 0.468  − 0.125
29 0.046 0.125  − 0.079 0.046 0.145  − 0.099
30 0.415 0.507  − 0.092 0.415 0.556  − 0.141
31 1.398 1.263 0.135 1.398 1.211 0.187
32 0.080 0.174  − 0.094 0.080 0.155  − 0.075
33 0.147 0.197  − 0.050 0.147 0.213  − 0.066
34 0.448 0.528  − 0.080 0.448 0.598  − 0.150
35 0.415 0.593  − 0.178 0.415 0.574  − 0.159
36 0.302 0.417  − 0.115 0.302 0.454  − 0.152
37 0.398 0.317 0.081 0.398 0.287 0.111
38 0.222 0.238  − 0.016 0.222 0.365  − 0.143
39 0.699 0.596 0.103 0.699 0.625 0.074
40 1.754 1.535 0.219 1.754 1.606 0.148
41 1.398 1.285 0.113 1.398 1.176 0.222
42 1.302 1.258 0.044 1.302 1.236 0.066
43 1.155 1.214  − 0.059 1.155 1.245  − 0.090
44 2.302 1.958 0.344 2.302 2.176 0.176
45 2 1.977 0.023 2 1.887 0.113
46 2 1.839 0.161 2 1.764 0.236
47 2.155 1.857 0.298 2.155 2.378  − 0.223
48 2.097 2.011 0.086 2.097 1.987 0.110
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Wise variable Selection Method (SW-kNN MFA), Simulated 
Annealing variable Selection Method (SA-kNN MFA) and 
Genetic Algorithm variable Selection Method (GA-kNN 
MFA) by considering 3D descriptors such as Electrostatic 
and Steric parameters. The QSAR models for all three 
methods are given in Eqs. 8, 9 and 10, respectively. To 
check the predictivity of the developed models, the data 
set is divided into training and the test set with 34 and 16 
compounds. The correlation between actual and predicted 
activity for both training and test set compounds is shown 
in Table 2.

(8)

pIC50 = E_698(−6.1424 − 5.7807)

+ E_225(6.7907 − 7.1363)

+ S_532(−0.4929 − 0.4784)

(9)

pIC50 = S_412(−0.6886 − 0.3326) + E_276(−2.2760 − 0.7668)

+ E_165(1.8097 − 2.9967) + E_585(−8.0366 − 0.8839)

Unicolumn statistic study is performed on training and 
test sets, the result is in Table 5, which signifies that test set 
contains more active molecules and is uniformly distrib-
uted within the min–max range of the training set.

Validation of the three developed models is performed 
to determine the best model that correlates the activity 
with the descriptors. The result of the validation study is 
given in Table 6.

The validation study result of the developed 3D- QSAR 
models suggests that the model developed by SW-kNN 
MFA method given in Eq. 8 is statistically more signifi-
cant and better than other two regarding the internal 
(q2 = 0.8198) and the external (pred_r2 = 0.6109) pre-
dictive, shows predict ability of ~ 82% and ~ 61% for the 
training and test set, respectively. This model shows that 
the contributing descriptors are E_698, E_225 and S_532 
spread along as field points, the correlation plot is shown 
in Fig. 6. Electrostatic fields at E_698 (− 6.1424 − 5.7807) 
and E_225 (6.7907 − 7.1363) are in the negative and posi-
tive range near to ring towards activity showing substitu-
tion of electronegative and electropositive groups in these 
sites enhances the activity. Further negative coefficient of 
the steric factor at S_532 (− 0.4929 − 0.4784) shows the 
substitution of a less bulky group in this region is prefera-
ble for the increase of activity. The fitness plot between the 

(10)

pIC50 = E_207(−9.0489 − 6.7334) + S_448 (30.0000)

+ E_682(−1.0329 − 0.8132)

Table 2  (continued) Com-
pound 
no.

2D- QSAR model (PLS-SE) 3D- QSAR model (SW-kNN MFA)

Experi-
mental 
 pIC50

Predicted  pIC50 Residual activity Experi-
mental 
 pIC50

Predicted  pIC50 Residual activity

49 1.222 1.198 0.024 1.222 1.269  − 0.047
50 0.793 0.758 0.035 0.793 0.657 0.136

Table 3  Unicolumn statistics of activity (pIC50) for Training and Test 
set compounds for 2D-QSAR

Compounds Average Maximum Minimum Std. Dev Sum

Training set 0.8897 2.3010 0.0414 0.7137 32.0306
Test set 0.9699 1.4249 0.0969 0.3720 6.9979

Table 4  Statistical validation 
results of the developed 
2D-QSAR models

Method Degree of 
freedom

r2 q2 F_test r2_se q2_se pred_r2 pred_r2se

MR 32 0.8165 0.7556 47.4689 0.2438 0.2813 0.4853 0.6871
PCR 34 0.4845 0.4439 31.9547 0.3964 0.4117 0.2965 0.8034
PLSR 33 0.8158 0.7184 73.0779 0.2405 0.2974 0.3819 0.7530
PLS-SE 31 0.8917 0.7499 85.0374 0.2407 0.3657 0.5935 0.4483
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actual and predicted activity of the developed model for 
training and test set compounds is shown in Fig. 7 which 
provides an idea about its good predictivity. The distribu-
tion curve of actual and predicted activity for training and 
test set compounds is given in Fig. 8a and b.

3.3  Pharmacophore modelling

In the present work, Pharmacophore modelling for all the 
compounds present in the series is carried out by taking 
TCA-1 as a reference compound. Pharmacophore model-
ling provides useful information to design and synthesise 
novel potent DprE1 inhibitors. Pharmacophore model 
is developed by taking four necessary features for the 
activity of ligand, the results are shown in Fig. 9a, b and 
Table 7.The obtained Pharmacophore model contains two 

aromatic (Aro) centre (Yellow sphere), one aliphatic (Ala) 
carbon centre (Orange sphere) and one hydrogen bond 
donor (Hdr) centre (Green sphere) reveals that these fea-
tures are necessary for showing DprE1 inhibiting activity.

3.4  Molecular docking studies

Molecular Docking study is carried out for all 50 com-
pounds with the binding site of the target DprE1 enzyme. 
The grid docking score values of all compounds are given 
in Table. 8. Based on the grid dock score, five compounds 
of number 8,15,16,27 and 35 are selected for the study 
showing good binding efficiency with the target enzyme. 
The binding modes of these compounds are given in 
Fig. 10a–e respectively. Docking study reveals that these 
molecules are interacting with amino acid residues like 

Fig. 3  Contribution plot of parameters towards activity
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Gly-116, His-131, Arg-118, Thr-117 and Gln-299 present at 
the active site of the target enzyme by forming H-bond 
with them. The two dimensional binding representation 
of these compounds with the target enzyme are given 
in Fig. 11a–e respectively shows the interaction of these 
compounds with active site amino acids. Two-dimensional 
ligand interaction plot of these compounds are shown non 
polar interaction because of the formation of hydrogen 
bonds (H-bond) between amino acids and atoms (O and 
N) present in the chemical structure of these compounds, 
the interaction result is given in Table 9. Docking study of 
these molecules with the target site contribute that sub-
stitution of electron donating groups on these particular 
sites increases the binding efficacy by forming H-bond 

with the target site and potentiate the DprE1 inhibiting 
action, hence it help towards the design and develop-
ment of potent and selective lead molecules having DprE1 
inhibiting antitubercular action.

3.5  Drug likeliness, in silico ADME and toxicity 
study

Knowing ADME features about a compound in advance is 
important for drug discovery, and poor pharmacokinetics 
(PK) is the major concern for the failure of drug candidates 
in clinical trials. Therefore, knowing of ideal ADME prop-
erties at earlier stages helps to generate good potential 
candidates that can avoid the latter stage of elimination 

Fig. 4  Fitness Plot for 2D QSAR 
model developed by PLS-SE 
method
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and can easily pass from clinical trial studies. With this aim 
in the present study, all the 50 compounds present in the 
series are used for prediction of their Pharmacokinetic 
(ADME) parameters, drug toxicity, and drug likeliness fea-
tures by using ADMET lab web interface. The predicted 
results of Pharmacokinetics, Toxicity and Drug likeliness 
are presented in Tables 10 and 11, respectively.

The predicted result showed that all the compounds 
satisfy the Lipinski’s rule of five for drug likeliness and 
oral bioavailability. Values for the distribution coefficient 
D (LogD) and distribution coefficient P (LogP) are within 
the optimal range for all the compounds suggest the ide-
alness of these compounds. The Solubility (LogS) values 
are in optimum range, suggesting good dissolution and 
absorption of drugs. The optimum values of other descrip-
tors related to absorption suggest good intestinal absorp-
tion and skin permeability of these compounds. Optimum 
values of Topological polar surface area (< 140 Å2) and 
rotatable bonds (0–15) holds a great effect towards oral 
bioavailability of these compounds. The predicted result 
shows good plasma protein binding, Blood-Brain Barrier 

Table 5  Unicolumn statistics of activity (pIC50) for Training and Test 
set compounds for 3D QSAR

Compounds Average Maximum Minimum Std. Dev Sum

Training set 0.8908 2.3010 0.0458 0.7216 30.2885
Test set 0.5463 1.6355 0.0414 0.4230 8.7400

Table 6  Statistical Validation 
results of the developed 
3D-QSAR models

Method n Degree of 
freedom

q2 q2_se pred_r2 pred_r2se

SW-kNN MFA 34 30 0.8198 0.3063 0.6109 0.3448
SA-kNN MFA 34 29 0.7939 0.3276 0.5295 0.3792
GA-kNN MFA 34 30 0.1755 0.6552 0.4960 0.3925

Fig. 5  a and b Actual Vs Predicted activity of Training and Test set 
for 2D QSAR developed by PLS-SE method

Fig. 6  Field points exhibiting contributing descriptors for 3D-QSAR 
model by SW-kNN MFA method
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penetration (BBB) ability, low half-life (T1/2) and rate of 
clearance (CL) of all compounds.

The toxicity risk calculator locates fragments within the 
structure of the molecule that shows a potential toxicity 
risk. Toxicity risk parameters such as hERG K+-channel 
blocker, Human Hepatotoxicity (H-HT), Ames Mutagenicity 
(AMES), Skin sensitization and Drug-Induced Liver Injury 
(DILI) are computed for all the compounds. then the com-
pounds having number 3,4,5,13,14,15,27,28, and 29 shows 
low hERG K+-channel blocking activity, all compound 
except 27 and 28 shows mild hepatotoxicity in high dose. 
Ames mutagenicity prediction result shows that except 

compound number 23,24,27,28,29 and 32–50 showing 
mutagenicity and induces revertant colony growth. Skin 
sensitization prediction shows compounds other than 
12,13,18,19,20,25,26 and 31 are skin nonsensitizer. Overall 
compounds are predicted to have mild toxicity risk levels. 
LD50 of acute toxicity predicted results for all compounds 
except compound number 23,41,42,43,45,46,47,48 and 50 
are within the permissible limits (> 500 mg/kg) showing 
lower toxicity whereas above mentioned 9 compounds 
having LD50 value in between 51 and 500 mg/kg comes 
under toxicity level. The predicted drug likeliness and opti-
mum synthetic accessibility score for all the compounds 

Fig. 7  Fitness curve for 
3D-QSAR model by SW-kNN 
MFA method
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Table 7  Result of pharmacophore identification study

S. no Pharmacophore features Distance  (A0)

1 AroC2- AroC3 5.880
2 AroC3- AlaC4 2.258
3 AlaC4-Hdr1 4.871
4 Hdr1- AroC2 6.191
5 Hdr1- AroC3 4.447
6 AroC2- AlaC4 7.835

Fig. 8  a and b Actual Vs Predicted activity of Training and Test set-
for 3D-QSAR developed by SW-kNN MFA method

Fig. 9  a Pharmacophore hypothesis. b Distance based Pharmaco-
phore identification
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suggest good druggability and easier synthesis of these 
compounds.

4  Conclusion

The combined computational approach is applied to give 
insight into the structural basis and inhibition mechanism 
for the series of compounds as DprE1 inhibitors antitu-
bercular agents. Statistically significant QSAR models for 
both 2D and 3D QSAR provide a structural framework for 
understanding the relationship of chemical structure with 

the activity and exhibited a good correlation, predictive 
ability and satisfactory agreement between experimental 
and predicted activity of the training and test set mol-
ecules. The validated 2D-QSAR model was used to opti-
mize the estate contribution, hydrophobicity, electrostatic 
and alignment independent requirements around the 
moiety to increase activity whereas 3D-QSAR model sug-
gest that substitution of electronegative, electropositive 
and less bulky groups in particular site is preferable for 
antitubercular activity. Presence of two aromatic rings, 
one aliphatic and one hydrogen bond donor groups are 
the key pharmacophoric features for inhibition of DprE1 

Table 8  Docking score of compounds

Compound no. Grid dock score Compound no Grid dock score

1  − 0.133192 26  − 0.256474
2 0.469027 27  − 3.138981
3  − 0.568537 28  − 2.005189
4  − 0.680504 29 0.345981
5  − 0.67013 30 1.16189
6  − 0.941941 31  − 0.410788
7 1.368081 32 1.255918
8  − 2.922597 33  − 1.077476
9 0.784597 34 1.58963
10 0.50095 35  − 3.117195
11 0.647408 36  − 0.460386
12  − 1.185639 37 1.407166
13  − 0.943537 38 1.907541
14  − 0.90536 39 1.907541
15  − 2.922597 40  − 1.934221
16  − 2.922597 41 2.009
17 0.353767 42 1.098156
18  − 0.024999 43 1.6857
19 0.27378 44 2.540092
20 1.398964 45 2.398386
21  − 0.975471 46 2.158539
22  − 0.873857 47 1.006403
23  − 1.334372 48  − 1.281511
24  − 0.000732 49 0.595667
25  − 1.442838 50  − 1.677993



Vol.:(0123456789)

SN Applied Sciences (2020) 2:922 | https://doi.org/10.1007/s42452-020-2638-y Research Article

Fig. 10  a–e Binding model of 
compounds 8,15,16,27 and 35 
with DprE1 target cavity

enzyme. Molecular docking study result shows five com-
pounds of number 8,15,16,27 and 35 have significant 
interaction with the amino acid residues like Gly-116, His-
131, Arg-118, Thr-117 and Gln-299 present at the active 
site of the target enzyme by forming non polar interac-
tion (H-bond) suggest presence of H-bond forming atoms 

required for interactions between the ligands and the 
peptide residue. In silico prediction of drug likeliness and 
ADME-T risk profiling were within their acceptable limit 
confirm good druggability of these compounds and show-
ing mild toxicity risk in high dose. The present computa-
tion approach will help to design new DprE1 inhibitors 



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:922 | https://doi.org/10.1007/s42452-020-2638-y

Fig. 11  a–e 2- Dimensional ligand interaction plot represents interaction of ligands (8,15,16,27 and 35) with different amino acid residues 
present on active site of DprE1 enzyme

Table 9  Ligand- target interaction result

Compound no Residue atom Ligand atom Interaction type Distance  (A0)

8 HIS131A 10-N H-bond 2.373640
15 HIS131A 10-N H-bond 2.555498

HIS131A 11-N H-bond 2.552875
16 THR117A 26-O H-bond 2.318133

ARG118A 26-O H-bond 2.291650
ARG118A 25-O H-bond 2.533988
GLN299A 22-O H-bond 2.161704

27 GLY116A 11-N H-bond 2.240558
GLY116A 12-N H-bond 2.030128

35 GLY116A 3-N H-bond 1.278127
GLY116A 14-O H-bond 2.166816
THR117A 11-N H-bond 1.631831
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based on the results of QSAR studies. Thus, these com-
pounds have rationalized the possible structural require-
ment for better binding interactions with target site and 
need further lead optimization for designing of more 
potent DprE1 inhibitors.
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