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Abstract
Chinese privet (Ligustrum sinense) is a common invasive shrub in hardwood forests of the southeastern US and has 
been shown to negatively affect native herbaceous and woody plants. The ability to map the distribution of L. sinense 
on a property could help land managers plan and budget for control operations. We evaluated whether freely available 
moderate resolution multispectral imageries (Landsat 8 and Sentinel 2) and open-source GIS software (QGIS with the 
Semi-Automatic Classification Plugin) could be effective tools for this application. These tools are widely used by remote 
sensing and mapping professionals; however their adoption by field-level land managers appears limited, and their utility 
for mapping L. sinense invasions is untested. We evaluated how satellite type, image acquisition date, classification algo-
rithm, and L. sinense cover affected detection accuracy. We found that Sentinel 2 imagery from March tended to produce 
good results, especially when analyzed using the maximum likelihood algorithm. Our best classifier obtained an overall 
accuracy of 92.3% for areas with ≥ 40% L. sinense cover. We recommend that land managers interested in applying this 
tool use an adaptive process for developing training polygons and test multiple images and classification algorithms 
in order to achieve optimal results.
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1 Introduction

Chinese privet (Ligustrum sinense) is an invasive shrub 
with a broad global range outside its native distribution 
[1]. It is particularly problematic in the southeastern US, 
where it and congeneric European privet (L. vulgare L.) 
were estimated in 2008 to cover over a million hectares 
[2, 3]. Ligustrum sinense can outcompete native plant spe-
cies, potentially degrading wildlife habitat and limiting 
forest regeneration. Control costs are estimated around 
$216–$1820 per ha [4, 5], necessitating careful planning 
and budgeting on behalf of land managers who are inter-
ested in forest restoration. The objective of this study is to 
evaluate whether free satellite imagery and simple to use 
open-source software could be an effective tool for land 

managers who need to map L. sinense invasions to help 
plan hardwood forest restoration projects.

Ligustrum sinense was introduced to the southeastern 
US for landscaping in 1852 and has since spread through-
out the region, primarily through endozoochory and 
hydrochory [6–8]. Individuals can have a single- or multi-
stemmed growth form and may reach 10 m tall [6, 7]. The 
phenology of the plant is variable depending on the local 
climate and can range from evergreen to deciduous [7]. 
Negative correlations between L. sinense abundance and 
native plant abundance and diversity have been docu-
mented by many studies [e.g., 9, 10], and some authors 
are concerned that the lack of woody regeneration under 
L. sinense canopies could lead to severe forest degrada-
tion over time [10–13]. The plant has broad environmental 
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tolerances and can be found in upland and bottomland 
sites [6, 14–16].

Public and private land managers interested in con-
trolling L. sinense would benefit from being able to esti-
mate the acreage requiring treatment on a particular 
property so that costs can be calculated and budgeted 
for. On large properties it would be time consuming and 
difficult to determine the invaded acreage based solely 
on field surveys. In situations where L. sinense is growing 
under a deciduous hardwood overstory, the phenological 
differences between L. sinense and the overstory can be 
exploited during the dormant season to map L. sinense 
coverage using satellite or aerial data. In a 2002 study, 
investigators took advantage of these phenological dif-
ferences to map L. sinense based on manual interpretation 
of 1-m resolution color infrared or black and white aerial 
photographs [17]. This method seemed to be relatively 
successful, although they did not conduct a formal accu-
racy assessment. However, there are some notable down-
sides to their approach. Manual photo interpretation is 
time consuming and accuracy is highly dependent on the 
skill of the interpreter. Additionally, high-resolution leaf-off 
imagery is not always freely available, possibly requiring 
data to be purchased.

A more data-intensive approach for mapping L. sinense 
presence has also been utilized. Investigators used 1-m 
resolution LiDAR (light detection and ranging) data and 
1-m resolution leaf-off color infrared IKONOS imagery 
(both resampled to 5 m) to create 80 model variables (43 
canopy and 23 topographic metrics derived from LiDAR 
and 14 spectral metrics derived from IKONOS imagery) 
[18]. These variables were used in logistic regression and 
random forest (RF) classification models. The best perform-
ing models were RF models based on LiDAR derived met-
rics, which took into consideration vegetation structure, 
topography, and spectral characteristics. The downside 
to this method is that LiDAR is not always freely available 
and can be expensive to acquire [19]. There is also a rela-
tively high level of technical expertise needed to process 
LiDAR data and run RF classifiers in a programming envi-
ronment such as interactive data language (IDL). The cost 
and expertise required to implement this technique may 
serve as a barrier to its implementation by land managers.

Fortunately, there are free and easy-to-use data 
sources that could be used for mapping L. sinense. Mod-
erate resolution, multispectral satellite imagery is com-
monly used for land cover mapping [20–22], including 
invasive plant detection [e.g., 23]. These satellite sensors 
measure the reflectivity of the earth’s surface at multiple 
wavelengths, or bands, of the electromagnetic spectrum. 
This includes the visible spectrum (i.e., blue, green, and 
red), as well as the wavelengths outside the visible spec-
trum such as infrared. Different land cover types reflect 

sunlight with varying intensities across the electromag-
netic spectrum due to variation in pigmentation, texture, 
water content, and other factors [24, 25]. These differ-
ences in reflectivity, known as spectral signatures, can 
be used to distinguish among land cover types [24, 25]. 
Healthy vegetation is particularly easy to distinguish, 
versus non-vegetated areas or dormant vegetation, due 
to the near-infrared reflecting properties of leaf cell tis-
sues [24]. Moderate resolution multispectral imagery is 
provided free to the public through the United States’ 
Landsat and European Space Agency’s Sentinel 2 (S2) 
programs [26, 27]. Landsat 8 (L8), the most recent itera-
tion of the Landsat series, uses its onboard Operational 
Land Imager to collect 9 band imagery at 30-m spatial 
resolution (except for the 15-m panchromatic band; 
[27]). Sentinel 2 uses its Multispectral Instrument to col-
lect 13 band imagery at resolutions of 10-, 20-, and 60-m 
[26].

A recent study tested the effectiveness of mapping L. 
sinense in North Carolina using Landsat 5 imagery and 
a RF classifier implemented in the R statistical software 
[28]. They tested a range of models that included various 
combinations of Landsat bands, vegetation indices based 
on the Landsat bands, and topographic indices based on 
digital elevation models. They found that imagery from 
early- to mid-March captured the greatest phenological 
differences between L. sinense and uninvaded deciduous 
forest, and thus resulted in the most accurate detection 
models. This study effectively demonstrated that Land-
sat imagery can be used to map L. sinense coverage with 
accuracy that is sufficient for monitoring and management 
purposes.

The method employed by [28] utilized free data (Land-
sat 5), making it more accessible than previous methods 
[i.e., 17, 18]. However, its reliance on the R programming 
language and the incorporation of vegetation and topo-
graphic indices means that it requires a level of technical 
skill that may still be beyond the abilities of many pub-
lic and private land managers, due to a lack of relevant 
training. In order for a remote sensing technique to be 
accessible for land managers, software with a point-and-
click graphical user interface (GUI) and a straight-forward, 
well documented workflow would be best. Fortunately, 
such software exists in the form of the Semi-Automatic 
Classification Plugin (SCP; [29]) within QGIS [30]. This soft-
ware is open source (i.e., free), has a simple to use GUI, 
and there are excellent support materials and tutorials 
available online, all of which make this a seemingly ideal 
option for users who have limited geographic informa-
tion system (GIS) experience. QGIS is commonly used by 
mapping, remote sensing, and land management profes-
sionals; however its utility for mapping L. sinense cover in 
hardwood forests is untested.
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The primary objective of this study is to determine 
whether the SCP could be an effective tool for mapping 
L. sinense cover in a bottomland hardwood forest. If the 
SCP is determined to be an effective tool for this appli-
cation, then we plan on producing a step-by-step guide 
for land managers interested in implementing this tech-
nique themselves. Secondary objectives are to evaluate 
the influence of L. sinense cover, imagery type (S2 vs. L8), 
classification algorithm, and imagery acquisition date on 
classification accuracy.

2  Methods

2.1  Study site

We conducted our study on a 2300 ha private property 
located in the floodplain of the Black Warrior River in 
west-central Alabama, on the border between Hale and 
Tuscaloosa counties (Fig. 1). The property is dominated 
by bottomland hardwood forests, with some interspersed 
loblolly pine (Pinus taeda) stands, hay fields, wildlife food 

plots, swamps, and oxbow lakes. Bottomland hardwood 
forests on the property occupied a range of geomorphic 
and topographic positions, with forests at various succes-
sional stages. Common forest species include cherrybark 
oak (Quercus pagoda), sweetgum (Liquidambar styraciflua), 
swamp chestnut oak (Quercus michauxii), and bitternut 
hickory (Carya cordiformis). Bald cypress (Taxodium disti-
chum) and water tupelo (Nyssa aquatic) occur in forested 
swamps and along the edges of oxbow lakes. The bottom-
land hardwood forests on the property exhibit a range of 
L. sinense cover, including uninvaded areas and dense L. 
sinense monocultures. The proportion of invaded and 
uninvaded hardwood forests is relatively equal.

2.2  Imagery acquisition

We downloaded four S2 and four L8 scenes from earthex-
plorer.usgs.gov. For each satellite, we chose two early- to 
mid-March images and two January images (Table 1). Only 
images from 2017 or later were considered to limit poten-
tial changes in L. sinense cover that may have occurred 
between the image acquisition date and our field survey. 

Fig. 1  Map of our study site in 
the floodplain of the Black War-
rior River, in western Alabama 
(relative location shown by 
yellow square on inset map, 
not to scale). The background 
imagery is an infrared false 
color composite Sentinel 2 
image taken on 2017/03/09. 
The training polygons used to 
compute spectral signatures 
for each land cover class are 
shown in yellow, and the ran-
dom points used for accuracy 
assessment are shown in black
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Early- to mid-March is considered late dormant season and 
has been identified by previous researchers as the period 
of maximum phenological difference between L. sinense 
and deciduous hardwoods [28]. January is the middle of 
the dormant season and provided a useful comparison to 
the late dormant season March imagery. Landsat 8 scenes 
were downloaded as Collection 1, Level 1 products [27] 
and Sentinel 2 scenes were downloaded as Level 1C prod-
ucts [26]. Atmospheric correction to surface reflectance 
was unnecessary, because a separate set of training signa-
tures were calculated for each image, precluding the need 
for radiance values to be standardized [31]. The bands for 
each image were clipped to our study site and a separate 
band stack was created for each image. Band stacks for 
L8 images included bands 2–7, while band stacks for S2 
images included bands 2–8, 8A, and 11–12, based on pre-
set options in the SCP. Multiband stacks had a spatial reso-
lution of 10-m for S2 and 30-m for L8.

2.3  Supervised classification

We implemented a supervised classification approach 
using SCP (version 6.2.9) in QGIS (version 3.6.2). In a super-
vised classification the user creates a set of training areas 
that are representative of the land cover classes of interest. 
The software then calculates the spectral signatures of all 
pixels within those training areas. The spectral signature of 
a pixel is a representation of the intensity of the light being 
reflected within each of the bands of the electromagnetic 
spectrum sampled by the satellite sensor. Once the train-
ing signatures have been created, the software sorts all the 
pixels in the image into the appropriate land cover classes 
by comparing the spectral signature of each image pixel 
to the training signatures and choosing the best match. 
There are multiple algorithms available within the SCP that 
sort pixels based on different definitions of “best match.” 
We tested three of the available options: minimum dis-
tance (MD), maximum likelihood (ML), and spectral angle 
mapping (SA), with no minimum thresholds [29]. We clas-
sified each of our 8 images using all 3 classification algo-
rithms, producing a total of 24 classified maps. Classified 
maps are referred to in this study using the following nam-
ing convention: Satellite YYYYMMDD algorithm (e.g., S2 

20170309 ML for a Sentinel 2 image acquired on March 3, 
2017 classified using the maximum likelihood algorithm).

Although we were primarily interested in mapping L. 
sinense distribution, the classification algorithms require 
multiple land cover types in the analysis for comparison. 
We included the following land cover types: L. sinense 
invaded hardwoods, uninvaded hardwoods, swamp, open 
water, fields, and pine stands. We delineated 3 training 
polygons for each land cover type based on prior knowl-
edge of the study site, visual interpretation of the satellite 
imagery, and (in rare cases) ground surveys (Fig. 1). Train-
ing polygons for the L. sinense invaded category were pri-
marily in areas with significant L. sinense cover, although 
we did not measure cover or set specific thresholds for 
the training areas. We refined the training polygons by 
conducting a series of informal trial-and-error classifica-
tions (primarily using ML and MD algorithms) on a sub-
set of our L8 and S2 imagery. We adjusted the training 
polygons—and thus the training spectral signatures—as 
necessary until these initial classification attempts showed 
an adequate level of accuracy. This adaptive approach to 
creating and refining the training polygons is similar to 
what a land manager would use when applying this tech-
nique. Once we were satisfied with the training polygons, 
we calculated a separate set of training signatures for each 
L8 and S2 scene and ran the final classification algorithms.

2.4  Accuracy assessment

We conducted an accuracy assessment with reference data 
based on 250 random points surveyed during late winter/
spring 2019 (Fig. 1). For each random point we sampled 2 
plots, one corresponding to the nearest L8 pixel and one 
corresponding to the nearest S2 pixel (two S2 plots were 
excluded, because they fell outside the property bound-
ary). The L8 plots were 30 m in diameter and the S2 plots 
were 10 m in diameter, which allowed land cover to be 
assessed at the pixel scale for each satellite image type. 
We navigated to the center point of each plot via global 
positioning system (GPS) receiver and visualized the edges 
of the plot using a Nikon Forestry 550 laser range finder 
(Nikon Vision CO., Ltd, Tokyo, Japan). We used a Garmin 
64st recreational grade GPS receiver (Garmin Ltd., Olathe, 
Kansas, US) for the first 74 points; however concerns over 
potentially low positional accuracy led us to switch to a 
Trimble Geo7x GPS receiver for the final 176 points (Trim-
ble Inc., Sunnyvale, California, US). We used circular plots 
rather than square plots for the sake of convenience. At 
each plot we recorded the land cover type and visually 
estimated the percent L. sinense cover within the plot. An 
informal assessment of classification accuracy differences 
between plots surveyed using the two GPS receivers did 
not reveal a significant difference.

Table 1  Sentinel 2 and Landsat 
8 imagery used in this study

Dates follow the YYYY/MM/DD 
format

Landsat 8 Sentinel 2

2017/03/09 2017/01/28
2018/03/12 2017/03/09
2019/01/10 2018/03/14
2019/01/26 2019/01/28



Vol.:(0123456789)

SN Applied Sciences (2020) 2:789 | https://doi.org/10.1007/s42452-020-2596-4 Research Article

We were specifically interested in L. sinense classification 
accuracy, so we recoded the maps into a binary invaded/
uninvaded scheme. We assessed how L. sinense cover 
affected classification accuracy by using a range of thresh-
olds (1, 10, 20, 30, 40, 50, 60, 70, 80, and 90%) as the cut-offs 
for what would be classified as an invaded plot in the refer-
ence data. For the lowest threshold (1%) we classified a field 
plot as L. sinense invaded if it had any L. sinense plants, even 
a single individual. For higher thresholds (e.g., 40%) we only 
classified the plot as invaded in the reference data if it had 
L. sinense cover equal to or greater than the threshold. This 
helped determine how the classified maps should be inter-
preted (i.e., is this a map of all L. sinense on the property or 
a map of areas with greater than X% L. sinense cover?). We 
calculated overall accuracy, user’s accuracy, and producer’s 
accuracy for each map at each threshold, and the results 
were displayed using accuracy curves [32], color coded 
based on image month, satellite type, and classification 
algorithm. The purpose of these accuracy curves is to dem-
onstrate general trends related to these categories. Overall 
accuracy was calculated using Eq. 1:

 where TP = true positive (the map and the reference data 
agree that L. sinense is present), TN = true negative (the 
map and the reference data agree L. sinense is absent), 
and Total = the total number of plots [33, 34]. Producer’s 
accuracy was calculated using Eq. 2:

where FN = false negative (the map predicts L. sinense is 
absent but the reference data indicate it is present) [33, 
34]. User’s accuracy was calculated based on Eq. 3:

(1)
TP + TN

Total

(2)
TP

TP + FN

(3)
TP

TP + FP

where FP = false positive (the map says L. sinense is pre-
sent but the reference data indicate it is absent) [33, 34]. 
Estimates of the area invaded by L. sinense were extracted 
from each map based on pixel counts and compared.

3  Results and discussion

We found that the various combinations of satellite type, 
image date, and classification algorithm tended to high-
light the same general areas on the maps as invaded, 
although there were some variation among all maps and 
a few major exceptions. Classified map: S2 20170309 ML 
produced the highest overall accuracy of 92.3% at a L. sin-
ense cover threshold of 40% (Fig. 2). This is on par with 
the overall accuracy (89.2%) achieved by the best model 
reported elsewhere [28], although they did not take into 
account cover thresholds in their presence/absence refer-
ence data and doing so may have improved their results.

It is worth noting that the S2 20170309 image played an 
important role in our adaptive training site development 
phase, in part because it showed the greatest visual con-
trast between invaded and uninvaded areas in the infra-
red false color composite (Fig. 1). Thus, the finding that S2 
20170309 ML had the highest overall accuracy could be 
partially due to the fact that the training polygons were 
somewhat tailored to that image and classification algo-
rithm. The fact that there was a strong visual contrast in 
the infrared false color composite also shows that there 
was a high degree of spectral separation in this image, 
which almost certainly played a role in the high accuracy 
as well.

The average estimate of invaded area across all maps 
was 670.91  ha (± 134.99 SD), excluding 3 of the maps 
that failed to produce useful estimates (Fig. 3). The esti-
mate from the map with the highest overall accuracy (S2 
20170309 ML) was 554.40 ha; however the differences in 
the optimal threshold levels interpreted from the accuracy 
curves of the different maps complicates comparisons of 
invaded areas.

Fig. 2  Accuracy curves for 
the most accurate map in our 
study, a maximum likelihood 
classified Sentinel 2 image 
from 2017/03/09. The three 
curves demonstrate the trade-
off between Ligustrum sinense 
cover threshold and the three 
accuracy types. Using a 40% 
cover threshold, the map 
can be interpreted as having 
92.3% overall accuracy, 77.8% 
producer’s accuracy, and 79.5% 
user’s accuracy
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3.1  Ligustrum sinense cover

By analyzing the accuracy curves for all three accuracy 
measures on a single graph we can evaluate the best L. 
sinense cover threshold for interpreting a particular map. 
For example, Fig. 2 shows that overall accuracy peaked 
at the 40% cover threshold while user’s and producer’s 
accuracy cross at 40% for S2 20170309 ML. This trade-
off between user’s and producer’s accuracy occurred 
because changing the cover threshold affected the 
proportion of false positives and false negatives in the 
accuracy assessment. At low cover thresholds there were 
few false positives, because most of the plots where the 
map predicted L. sinense is present have at least some L. 
sinense, which is why user’s accuracy was high. However, 
there were more false negatives at low cover thresholds 
(hence the low producer’s accuracy), because at low L. 
sinense densities the spectral signature of the pixel is 
closer to that of an uninvaded site than that of a densely 
invaded site (which comprised most of the L. sinense 
invaded training polygons). As the cover threshold was 
increased, the number of false negatives dropped (and 
producer’s accuracy went up), because the software was 
more effective at detecting areas with higher L. sinense 
cover. However, false positives increased (and user’s 
accuracy went down) at higher thresholds, because 
the map predicted some areas as invaded that did not 
meet the L. sinense cover threshold and thus were clas-
sified as “uninvaded” in the reference data. Using Fig. 2, 
we can see that if we interpret S2 20170309 ML as a 
map of L. sinense presence/absence (based on a mini-
mum threshold of only 1% L. sinense cover) we can only 
assume 66.9% overall accuracy and 34.9% producer’s 
accuracy, but 100% user accuracy. If we interpret the 
same map as a map of areas with at least 40% L. sinense 
cover, then we can assume an overall accuracy of 92.3%, 
77.8% producer’s accuracy, and 79.5% user’s accuracy. 
This trade-off between the different accuracy metrics is 

different for each map, and we observed a wide range 
in the accuracy curves across our maps. For all maps, 
there was a significant increase in overall accuracy when 
moving from 1% to 10% cover threshold (Fig. 4), suggest-
ing that this technique is not effective at detecting very 
low-density, incipient invasions. If detecting low-density 
invasions was the goal then creating training sites spe-
cifically tailored to those spectral signatures may help, 
but ultimately it may be necessary to use imagery with 
higher spatial and spectral resolution. Imagery with high 
spatial- and spectral resolution can improve detection of 
low density and/or spectrally indistinct species; however 
it may be less efficient at mapping high density invasions 
and is less practical for land managers to utilize due to 
high costs and technical complexities [35, 36].

3.2  Satellite type

The accuracy curves in Fig. 4 are color coded to repre-
sent the maps based on S2 and L8 imagery. We generally 
observed higher overall accuracy and producer’s accu-
racy in the S2 maps, although there were a few excep-
tions (Fig. 4) and the relationship for user’s accuracy was 
less clear. Both the higher spatial and spectral resolu-
tions of the S2 imagery likely played a role in improving 
accuracy. Higher spatial resolution (i.e., smaller pixels) 
reduces the prevalence of mixed pixels, or pixels that 
represent more than one cover type on the ground. 
Mixed pixels may be more likely to be misclassified 
both by the mapping software and the ground surveyor. 
The increase in spectral resolution (i.e., more bands) 
increases the amount of information in each spectral 
signature, allowing better differentiation of similar land 
cover types. The finding that S2 performed better than 
L8 is similar to that of previous studies that used other 
classification algorithms to detect a variety of land cover 
types [37–40].

Fig. 3  Estimates of hectares 
invaded by Ligustrum sinense 
based on each of the classi-
fied maps. The dotted lines 
separate classified maps based 
on the same imagery. The aver-
age estimate was 670.91 ha 
(± 134.99 SD), excluding three 
maps based on maximum like-
lihood classification of Landsat 
8 images that failed to produce 
useful results
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3.3  Classification algorithm

The accuracy curves in Fig. 5 are the same as Fig. 4, but are 
color coded to represent the classification algorithm used 
to create each map. The ML algorithm generally performed 
well, with a few notable exceptions. The SA and MD algo-
rithms did not show a clear pattern of difference. Three out 
of the four ML based L8 maps failed to produce useable 
results (e.g., they predicted nearly complete coverage of 

water or fields) and were omitted from Figs. 4, 5, and 6. So 
while ML appeared to be the best option for analyzing the 
S2 imagery, it was not a great option for the L8 imagery. 
This may be because the ML algorithm requires adequate 
training sample sizes to calculate a covariance matrix [29], 
and since the L8 imagery has a coarser spatial resolution 
there are fewer pixels per training site and thus fewer train-
ing pixels in the training sample. However, past experience 

Fig. 4  Accuracy curves for all classified maps (minus the three 
Landsat 8 maps that failed to produce useful results), color coded 
based on satellite imagery type. Sentinel 2 appears to perform bet-
ter than Landsat 8 based on overall and producer’s accuracies

Fig. 5  Accuracy curves for all classified maps (minus the three 
Landsat 8 maps that failed to produce useful results), color coded 
based on classification algorithm. The maximum likelihood algo-
rithm appears to perform slightly better for all three accuracy 
measures
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has shown that the SCP provides an explicit warning when 
the training sample is too small for the covariance matrix 
to be calculated and such a warning was not given during 
these classifications. Other researchers have also found 
the ML method to be robust to small training samples 
[41]. Thus, the reason for the poor ML performance on L8 
imagery in our study is unknown.

Moderate density pine mixed with hardwoods was 
sometimes confused as L. sinense invaded hardwoods on 

several of the maps. The ML algorithm was less prone to 
making this mistake, as demonstrated in Fig. 7, although 
satellite type and month also appeared to play a role. 
Patches of native evergreen hardwoods such as American 
holly (Ilex opaca) were also confused as L. sinense on many 
of the maps; however there was not as clear of a relation-
ship with classification algorithm as there was with the 
moderate density pine associated errors.

3.4  Imagery acquisition date

Imagery collected in March generally had higher overall 
and user’s accuracy, with some exceptions, and there was 
not a clear pattern with producer’s accuracy (Fig. 6). These 
findings tend to confirm those of others that found early- 
to mid-March imagery generally performed best due to 
greater phenological differences between the L. sinense 
and deciduous overstory [28]. At our site, we observed that 
much of the L. sinense had a brief leaf drop in late January 
and early February that was followed by a flush of fresh 
growth by late February and early March, during which 
time most of the hardwood canopy was still dormant or 
just beginning bud break. The exact timing of the optimal 
phenological differences between L. sinense and the over-
story is dependent on local climate and annual weather 
patterns. Sentinel 2 imagery has a higher temporal resolu-
tion (i.e., shorter revisit time), meaning that it is more likely 
that cloud-free imagery will be available during the period 
of greatest phenological difference. The revisit time for the 
pair of S2 satellites is about 5 days, while L8 has a 16-day 
revisit time [26, 27].

3.5  Comparisons to previous studies

From an ease of use perspective, supervised classification 
of moderate resolution imagery within QGIS appears to 
be preferable over the previous methods developed for 
mapping L. sinense invasions [i.e., 17, 18, 28]. This method 
does not require potentially expensive high-resolution 
imagery or tedious manual interpretation across an entire 
study area. The point-and-click user interface of QGIS is 
also simpler than the programming-based technique 
implemented by other methods [18, 28]. Moderate resolu-
tion multispectral imagery such as S2 and L8 are typically 
cheaper and easier to use than the LiDAR data used by 
others [18].

Comparing accuracy among studies is more difficult. 
Comparisons to [17] are not possible, because that study 
did not include a formal accuracy assessment. The top 
models from other comparable studies [18, 28] had overall 
accuracies of 88.89% and 89.2%, respectively. These overall 
accuracies are similar to that of our top performing clas-
sifier (92.3% at a cover threshold of 40% for S2 20170309 

Fig. 6  Accuracy curves for all classified maps (minus the three 
Landsat 8 maps that failed to produce useful results), color coded 
based on imagery month. March imagery tends to outperform Jan-
uary imagery for overall and user’s accuracies
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ML); however it is important to consider that while these 
other studies [18, 28] collected data on L. sinense cover 
within field plots, it does not appear that they set a cover 
threshold when computing their accuracy statistics. This 
means that a more equitable comparison may be to use 
the 66.9% overall accuracy of S2 20170309 ML at a cover 
threshold of 1%. While this does not compare favorably to 
the accuracies from the other studies [18, 28], differences 
in training datasets may be partly responsible. Our train-
ing areas were mostly in areas with moderate to heavy L. 
sinense cover, so it is no surprise that our classifiers were 
more accurate at identifying areas with similar levels of 
infestation. If the goal were to identify areas with low L. sin-
ense cover then including representative training sites may 
be helpful, although the moderate resolution of both S2 
and L8 imagery will be a limiting factor for identifying very 
low-density invasions. Despite the limitations for identi-
fying low-density invasions, the high accuracy achieved 
at moderate to high densities show that this is a useful 
method for land managers planning control measures in 
such conditions.

4  Conclusions

Our results show that free and simple remote sensing 
tools can be used to effectively map relatively dense L. 
sinense stands in deciduous hardwood forests, although 
the method is likely inadequate for low-density incipi-
ent invasions. We also discovered that there can be sig-
nificant variation in accuracy results based on the type 

of satellite imagery, the date of the image acquisition, 
and the classification algorithm, even when the same 
training sites are used. Choosing appropriate training 
sites also has a large impact on accuracy, although that 
was not formally assessed in this study. We tended to 
find that S2 imagery acquired in March and processed 
using the ML algorithm performed well, although these 
patterns may not hold true for all situations. We recom-
mend that land managers interested in deploying this 
method use an adaptive process for map development 
that includes testing at least a few variations of train-
ing sites, images, and classification algorithms to find 
what works best on a particular site, using our results 
as a guide. A “multiple classifier system” approach that 
combines the results of multiple classifications could be 
a useful way to handle uncertainty in choosing the best 
map [42], but further evaluation is needed to determine 
whether such a technique could be easily implemented 
in QGIS. The results of our study have more general 
implications for land management and remote sens-
ing as well, in that they show that sometimes simple, 
open-source methods can be used in place of more 
complicated or expensive methods, which opens the 
door for land managers with limited budgets or remote 
sensing experience to increase their use of remote sens-
ing for informing management decisions. Following 
this research, we worked with the Alabama Cooperative 
Extension System to publish a step-by-step introduction 
to remote sensing that is targeted toward land managers 
and uses L. sinense mapping as a primary example [43].

Fig. 7  Comparison of different classification algorithms applied to 
a Sentinel 2 image collected on 2017/03/09. The circle on the east 
side of the maps shows an area of moderate density pine forest 

that was partially confused as Ligustrum sinense invaded forest by 
the minimum distance and spectral angle algorithms, but not the 
maximum likelihood algorithm
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