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Abstract
Breast cancer is among the most common cancers women got, which can be effectively cured providing that it is diag-
nosed at the early stages. In the current study, we attempted to classify breast cancer into two groups of malignant and 
benign by proposing a new ensemble learning method using Multi-Verse Optimizer (MVO) and Gradient Boosting Deci-
sion Tree (GBDT). Moreover, the prediction rate of GBDT has been shown to be desirable, its efficiency and classification 
accuracy are significantly dependent on feature selection and parameter setting. Based on the MVO, we attempted to 
propose an efficient approach to optimize feature selection and GBDT’s parameters at the same time. In other words, 
the MVO algorithm is able to play the role of a tuner to set the GBDT’s main parameters and optimize feature selection 
results. To implement and test the proposed approach, standard criteria (i.e. accuracy, sensitivity, specificity, etc.) was 
used for performance evaluation. Also, the datasets of Wisconsin Diagnostic Breast Cancer and Wisconsin Breast Cancer 
were considered for this purpose. Comparing the results of GBDT–MVO model with other proposed models demonstrated 
that this model is more precise and has considerably lower variance in the case of a breast cancer diagnosis.
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1  Introduction

As we all know, with a significant mortality rate, breast cancer 
has been among the most prevalent cancers in recent dec-
ades. Early detection of breast cancer greatly increases the 
likelihood of patient survival. So, this cancer needs a precise 
and reliable approach to be diagnosed on time. Fortunately, 
in the last decade, the outcomes of breast cancer have been 
improved because of the efficient diagnosis approaches and 
enhanced treatment methods. As mentioned, the most 
important objective is to diagnose this cancer earlier and 
more accurately. In this regard, many approaches (such as 
screening) have been proposed to detect different kinds of 
cancers before symptom appearance and predict treatment 
outcomes. However, there are many medical datasets that 

can be employed in the field of cancer studies. In this regard, 
the precise prediction of disease outcome has been very 
interesting and challenging. It is obvious that the decisions 
made by physicians based on data evaluation can be con-
sidered the most effective factor for diagnosis. Accordingly, 
ML methods can significantly help researchers in this field. In 
fact, the relationships and patterns within the datasets can 
be discovered by these methods to predict the outcomes 
of disease [1]. In addition, the classification methods pro-
posed based on rules and ML techniques are able to mini-
mize weak decisions made by inexperienced or exhausted 
experts and facilitate the accurate and prompt data analysis. 
In other words, the incorrect decisions made by physicians 
can be significantly reduced using ML models. These models 
employ the datasets collected using historical cases to find 
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the relationships and patterns among the various cases and 
forecast the related outcomes. However, as a supervised ML 
method, classification algorithms can learn how to classify 
new observations based on the given input data. Up to this 
moment, the world of machine learning has presented a lot 
of methods with specific advantages and disadvantages 
that have the potential to be used in a variety of applica-
tions. One of the sophisticated ensemble models used in 
different classification and regression problems is GBDT. It 
is a vivid fact that this famous machine learning algorithm 
leading to a great deal of successful achievement across 
many domains. In fact, this method increases the accuracy 
of prediction models by taking advantage of an ensemble of 
weak prediction models. Compared to other ensemble tech-
niques, the use of the GBDT provides significant advantages 
such as high speed and high accuracy. In other words, GBDT 
builds weak models with affordable computation costs and 
these weak models allow the algorithm to learn slowly to 
make adjustments in new areas where it does not perform 
well. However, it is undeniable that the weak models wit-
nessed a high error rate and the boosting methods aim to 
build a sequential model in order to reduce the errors. One 
of the important problems that all machine learning algo-
rithms encounter is parameter tuning which can be defined 
as the problem of choosing a set of optimal parameters to 
control the learning process. In addition, the performance of 
the learning model is significantly influenced by the values 
set for these parameters. Due to the fact that GBDT provides 
high predictive accuracy and great deals of flexibility regard-
ing using different loss functions, overfitting is able to occur 
in GBDT because the process of parameter tuning regarding 
many parameters that requires a large grid search during 
tuning in order to manage the performance of the GBDT. In 
general, GBDT needs two types of parameters to be tuned 
as a tree, based on boosting parameters. To solve the param-
eter setting problem, this study aims to solve two critical 
problems. The first is to optimize two boosting parameters 
namely the learning rate and the number of the sequential 
trees (estimators) [2]. The second is to optimize trees based 
on the following parameters; the maximum depth of a tree 
(max depth) and the minimum number of the samples of 
terminal nodes (min leaf nodes). When taking advantage of 
the GDBT algorithm to train a learning model, the correct 
parameter setting (which can be adjusted depending on 
a dataset) is significantly critical. Although GBDT is highly 
robust against the over-fit issue caused by increased num-
ber of estimators (trees), a high learning rate can lead the 
GBDT model to overfit. Also, it is worth noting that reduced 
learning rate and increased number of trees increase com-
putation complexity. However, the maximum admissible 
interaction level among variables is controlled by the num-
ber of terminal nodes which itself is limited by maximum 
depth [3]. In other words, the deeper tree, the more the 

splits and captured information. It is worth noting that large 
depth values may lead to over-fitting models that are able 
to predict all training data but not able to generalize results 
for new data. Another important challenge that all of the 
learning algorithms encounter is to select the best repre-
sentative subset of features among all possible representa-
tive subsets ( 2n ) that can be used in the training process. In 
the current study, an efficient learning method is proposed 
based on the MVO algorithm to optimize the feature selec-
tion process and the parameters of GBDT simultaneously. In 
other words, the MVO algorithm plays the role of a tuner to 
find the best values for GBDT’s parameters and the optimal 
set of features to maximize GBDT’s accuracy. In fact, in this 
study, we use MVO to optimize GBDT for the first time. The 
proposed approach is implemented and tested based on 
standard criteria (i.e. sensitivity, specificity, F-measure, etc.) 
to classify date available in two well-known cancer datasets 
called Wisconsin Breast Cancer and Wisconsin Diagnostic 
Breast Cancer.

The main contributions of this work can be summarized 
as follows:

•	 This work aims to present novel effective diagnostic 
techniques based on a popular supervised learning 
method called GBDT.

•	 In order to improve the performance of the GBDT, this 
research focuses on two important factors (namely 
feature selection and parameter tuning) that are opti-
mized using the multi-verse optimizer.

•	 The main purpose of this study is to increase classifica-
tion accuracy and prevent overfitting issues; In order to 
achieve this goal, K-fold cross-validation is used during 
the optimization of the GBDT.

The rest of this paper is organized as follows. Section 2 
reviews and summarizes previous studies in the field of 
breast cancer detection and ensemble learning methods. 
GBDT and MVO algorithm are presented in Sect. 3. Also, 
Sect. 4 presents and discusses our proposed approach 
to optimize feature selection process and the values of 
GBDT’s parameters. Section 5 analyzes and discusses the 
experimental results. Finally, the paper comes to a conclu-
sion in Sect. 6.

2 � Related work

So far, many Machine learning and soft computing 
approaches have been applied to breast cancer diag-
nosis problems due to their cost-effectiveness and high 
accuracy. The most important approaches in this filed are 
as follows; support vector machines (SVMs) [4–6], Deci-
sion trees [7–9], Artificial neural network (ANN) [10–14], 
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Naive Bayes classifier [15], K-nearest neighbour [16], and 
ensemble methods [17–20]. It is undeniable that majority 
of the mentioned learning approaches have to deal with 
difficult challenges such as feature subset selection, along 
with the parameter tuning in their training procedure. 
Because the accuracy of their classification results depends 
largely on both. For this reason, metaheuristics are used 
in order to deal with mentioned drawbacks by the pro-
cess of searching optimal solutions. In fact, the process of 
searching is able to take multiple agents by using a com-
bination of rules or mathematical equations during several 
iterations. In addition, most of the rules or mathematical 
equations used by most of the metaheuristic methods 
have been inspired by the living and survival systems of 
insects, animals, and birds. Due to the noticeable success 
of metaheuristic algorithms in solving a lot of optimiza-
tion problems in a wide range of applications, there are 
various types of metaheuristic algorithms include Genetic 
algorithm [21, 22], Firefly Algorithm [23], Particle swarm 
optimization [24, 25], Ant Colony Optimization [26], Bat 
algorithm [27], Whale Optimization Algorithm [28], Arti-
ficial fish swarm [29], and Grey wolf optimizer [30] has 
been extensively reported in recent literature. To classify 
breast tumors into cancerous and non-cancerous ones, an 
ensemble learning method was proposed by Vinod Jagan-
nath Kadam et al. [17] based on SoftMax Regression and 
Sparse Autoencoders. The results of their study demon-
strated its efficiency for breast tumor classification. In fact, 
this ensemble approach outperformed many ML and soft 
computing classifiers including KNN, SVM, Decision Tree, 
etc. Nilashi et al. [31] presented a novel knowledge-based 
system for breast cancer classification using fuzzy logic 
method. The goal of this research was to diagnose breast 
cancer disease using clustering, noise removal, and clas-
sification techniques. In this approach, the data were clus-
tered in similar groups using the Expectation–Maximiza-
tion (EM) and fuzzy roles were produced using Regression 
Trees to classify breast cancer disease in the knowledge-
based fuzzy system. By taking advantage of Wisconsin 
Diagnostic Breast Cancer dataset, the authors demon-
strated that the proposed knowledge-based system is able 
to enhance the prediction accuracy considerably. In fact, 
one of the challenging objectives in most of the related 
studies is to set model’s parameters in an optimized way. 
In some studies, the meta-heuristic algorithms were com-
bined with ML models to better tune the model’s param-
eters. In this regard, a swarm intelligence technique was 
combined with an SVM classifier by Chen et al. [32] to diag-
nose breast cancer. The focus of this work was on feature 
selection and model selection based on the swarm optimi-
zation approach. The comparison between this model and 
the grid search method showed that this method is able 
to provide better model parameters, discriminative feature 

subset, and prediction accuracy using a smaller number of 
support vectors for training. Also, Chauhan et al. [33] took 
advantage of a differential evolution method to improve 
the wavelet neural network’s training process by finding 
the best values for parameters. They tested this network 
on three standard datasets (including WBC dataset) and 
three bank bankruptcy datasets. The results of this work 
demonstrated that the proposed model is able to rela-
tively high generalization. In another work, Jain et al. [34] 
integrated correlation-based feature selection with Binary 
Particle Swarm Optimization to propose a hybrid model 
to classify cancers. In this model, the biological samples 
of binary and multi-class cancers are classified using 
Naive–Bayes classifier by selecting a low-dimensional 
prognostic solution set. In this work, different datasets 
were used to evaluate the performance of the method. 
Accordingly, the results showed good classification accu-
racy. In a study conducted by Naveen et al. [35], the differ-
ential evolution method was combined with K-means to 
centralize data points and implement a radial basis func-
tion network that can be used as a supervised learning 
approach. By comparing their method with other exist-
ing ones (like threshold accepting trained wavelet neural 
network) on standard and bank bankruptcy datasets, they 
proved their method’s good accuracy. In summary, most 
recent studies have focused on parameter tuning and fea-
ture selection objectives because the performance of a 
learning algorithm can be significantly influenced by these 
two important factors. There are many hybrid models pro-
posed to configure these parameters systematically. How-
ever, it is worth noting that to prevent over-fitting issue, 
one should take into account suitable evaluation measures 
for parameter tuning process. It is obvious that most of the 
proposed models require accurate statistical analyses to 
obtain desirable results when facing real data. Evaluating 
learning models based on only a percentage of the data 
causes a high risk for vital applications such as cancer diag-
nosis. In this regard, K-fold Cross-Validation can be used 
to divide data into multiple folds so that every single fold 
should be employed as testing set at some point. In this 
study, the K-fold Cross-Validation was used to evaluate the 
proposed approach precisely with various measures like 
accuracy, specificity, sensitivity, etc.

3 � Methodology

In this section, the GBDT and MVO algorithms were 
explained in detail. Regarding the critical parameters of 
GBDT, the performance of each model was investigated 
using the MVO. This investigation aims to tune the param-
eters of the model and select vital features to improve the 
performance of the model. In addition, this investigation 
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was performed based on the related performance evalu-
ation methods like confusion matrix analysis.

3.1 � Gradient boosting decision tree (GBDT)

The GBDT model was first introduced by Friedman [36] 
as a robust ensemble model. In fact, this method turns 
weak basic classifiers into strong ones by combining them. 
Unlike other similar techniques, the GBDT model uses 
function space for optimization purposes. Also, compared 
to linear models (including logistic regression), this model 
is more flexible, scalable, and robust against the complexi-
ties of non-linear problems.

According to Fig. 1, because of the hierarchical structure 
of non-linear decision boundaries, they can be naturally 
modeled using GBDT. In fact, the learning procedure of 
GBDT builds the base learners that can be maximally corre-
lated with the loss function’s negative gradient. Although 
traditional boosting methods use weighted positive and 
negative samples, the GBDT model follows the negative 
gradient’s direction to converge globally. Totally, gradient 
boosting includes three parts; the loss function optimiza-
tion, weak learner predictions, and loss function minimi-
zation by adding weak learners (Additive model). The loss 
function is defined based on the type of problem. In fact, 
in regression and classification problems, Mean Squared 
Error (MSE) and logarithmic loss are employed for this pur-
pose. At each stage of boosting process, instead of start-
ing from square one, only the unexplained loss from prior 
iterations should be optimized. Also, decision trees are 
employed as a weak learner and tress are added in single 
file to build an additive model which add weak learners 

for loss function minimization. Indeed, the trees existing 
in the model do not change. The loss accumulated during 
adding trees can be minimized using the gradient descent 
procedure [37–39]. Moreover, the dataset was shown by 
{xi , yi}

n
i=1

 and loss function is SoftMax. The convergence 
of the model was guaranteed by taking advantage of the 
gradient descent algorithm. Also, in this model, M denotes 
the number of trees (the maximum number of iterations 
for training) and η denotes the learning rate defining the 
step size employed to combine the weights of individual 
trees in updates to intercept over-fitting issue. In addition, 
the minimum loss reduction needed for a further partition 
on a leaf node is shown by �m . The GBDT model functions 
as follows.

Step 1 The initial constant value of the model � is given

Step 2 determines the number of iterations; m = 1 to M

Step 2.1 based on Eq. (2), the minimum loss reduction 
and the step size used for combining the weights of 
individual trees can be calculated as follows:

where T denotes the number of leaves on the tree. It 
should be noted that the loss function L() determines 
the model fitness with training data and measures 
the model complexity using the term �b(xk,i ;�) . Fur-
thermore, the complexity of the model is penalized 
by the term �T +

1

2
� ∥ � ∥2.

Step 2.2 updates the model as follows:

Step 3 returns Fm(x) after using M additive functions to 
give the output.

As indicated in the following equation, given a sample 
X, GBDT uses M additive functions to give the output.

In fact, since a sequence of trees is computed in a GBDT 
model, the pseudo-residuals of the preceding trees are 
predicted by each successive tree, given an arbitrary dif-
ferentiable loss function. The arbitrary loss function and 

(1)f0(x) = argmin�

N∑
i=1

L(yi , �)

(2)

(
�m, �m

)
= argmin� ,�

N∑
i=1

L
(
yi , fm−1

(
xk,i

)
+ �b

(
xk,i ;�

))

+ �T +
1

2
� ∥ � ∥2

(3)Fm(x) = Fm−1(x) + �mb(xk,i ;�m)

(4)ŷGBDT =

M∑
i=1

𝜂mb(X ;𝛾m)

Fig. 1   The illustration of GBDT
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the function calculating the corresponding negative gra-
dient are defined by the user. Indeed, by aggregating the 
predictions, the loss function is minimized through train-
ing each added model. One of the most important factors 
to train a gradient boosting model is the number of trees 
because a too high number may cause overfitting and a 
too low number may cause underfitting.

3.2 � Multi‑verse optimizer (MVO)

The Multi-Verse optimizer is a metaheuristic algorithm 
that was first proposed in 2016 by Mirjalili et  al. [40]. 
Many recent studies have used this algorithm in order 
to solve various problems in different applications. Due 
to the wide range of applications and their needs, other 
variants of MVO such as Binary Multi-verse optimizer [41] 
and Multi-Objective Multi-Verse Optimizer (MOMVO) 
[42] have been presented. This metaheuristic algorithm 
inspired by famous theory called Multi-Verse theory. The 
Multi-Verse theory was introduced based on three cosmo-
logic concepts (black holes, white holes, and wormholes) 
and widely employed by physicists [43, 44]. Based on this 
theory, big bang occurred more than one time and each 
time a different universe was born with different physical 
laws. So, there are other universes in addition to the one 
we live in. According to the opinion of physicists, the pri-
mary part of the birth of a universe may be a white hole. 
However, black holes’ behavior differs from white holes’ 
so that everything even light beams can be attracted by 
their strong gravity. On the other hand, the different parts 
of a universe are connected together through wormholes. 
In fact, wormholes play the role of space travel tunnels 
in which objects can instantly travel within a universe. To 
model such a world, an inflation rate is assigned to each 
universe. Generally, the search space in population-based 
algorithms is divided into two phases namely, explora-
tion and exploitation. In Multi-Verse Optimizer (MVO) 
[40], white holes and black holes perform the explora-
tion phase. In addition, it is assumed that each solution 
is shown by a universe and each variable is an object in 
the universe. Also, the allocated inflation rate corresponds 
the fitness function value of the solution. As mentioned, 
each variable is an object in the universe that realizes the 
following rules.

1.	 If the inflation rate increases, the probability of hav-
ing black holes decreases but the probability of having 
white holes increases.

2.	 In a universe with a high inflation rate, objects are sent 
through white holes but in a universe with low infla-
tion rate the objects are received through black holes.

3.	 Regardless of the inflation rate, it is possible that 
wormholes move the objects randomly towards the 
best universe.

So, it can be concluded that it is very likely to move objects 
from a universe with a high inflation rate to another one 
with a low inflation rate. Accordingly, the average inflation 
rate is improved over iterations. An MVO method functions 
as follows.

Step 1 Initialize the universe (U), the maximum number 
of iterations (Max-iteration), the variable interval ([lb, 
ub]), and the universe position.

Step 2 Set up a universe using the roulette wheel selec-
tion mechanism for selecting a white hole based on the 
universe inflation rate.
Step 3 Update the Travel Distance rate (TDR), and 
Wormhole Existence Probability (WEP) and check the 
boundaries. The probability of wormhole existence in 
the universe is determined using two above-mentioned 
coefficients. By increasing the linearity over iterations, 
exploitation is getting more emphasis as the optimiza-
tion progresses. Also, the distance rate (variation) can 
be also defined by TDR. This rate determines the dis-
tance that an object can teleport through a wormhole 
around the best universe at the moment. In fact, more 
accurate exploitation (local search) is realized around 
the best-obtained universe by having TDR to increase 
over iterations.

where Min and Max show the minimum and maximum 
WEPs respectively. Furthermore, I, L, and p denotes the 
current iteration, the maximum number of iterations, 
and the exploitation accuracy respectively. Totally, it can 
be declared that a low WEP with a high TDR support 
exploration whereas a high WEP with a low TDR support 
exploitation. To get desirable search results, it is very 
important to make a compromise between two oppos-
ing forces. Obviously, the fitness values, WEPs, and TDRs 
change in each iteration. In a simple word, in the uni-
verse with the best fitness value, TDR should increase 

(5)U =

⎡
⎢⎢⎣

x1
1
⋯ xd

1

⋮ ⋱ ⋮

x1
n
⋯ xd

n

⎤
⎥⎥⎦

(6)WEP = min + I ⋅
(
max −min

L

)

(7)TDR = 1 −
l1∕p

l1∕p
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and WEP should decrease. However, in other universes, 
TDR should decrease and WEP should increase. It is a 
vivid fact that WEP and TDR are the most important and 
influential parameters that play the role of exploration 
and exploitation during optimization. For this reason, 
after each iteration, the existence probability of worm-
holes smoothly increases (WEP values increase) in order 
to emphasize more on exploitation during the optimi-
zation process. However, at the same iteration time, the 
traveling distance of variables decreases (TDR values 
decrease).
Step 4 Calculate the current inflation rate of the uni-
verse. When the inflation rate of the universe outper-
forms its current inflation rate, the current one should 
be updated. Otherwise, one should maintain the cur-
rent one.
Step 5 Update the universe position according to the 
following equation.

where Xj denotes the jth parameter of the best universe 
found so far. Also, ubj and lbj define the upper and lower 
bounds of jth variable respectively. Also, xj

i
 denotes the 

jth parameter of ith universe. Finally, r2, r3, r4 denotes 
the random numbers taken from the interval of [0, 1].
Step 6 Terminate the algorithm. By realization of the 
termination criterion, the algorithm stops and intro-
duces the corresponding result as final output. Other-
wise, the number of iterations increases by 1 and the 
algorithm returns to Step 2.

Comparing with other metaheuristic algorithm algo-
rithms, MVO provides a strong ability in the optimization 
process with regard to fewer control parameters. In fact, 
the optimization process begins with initializing a set of 
universes with random numbers. During each iteration, 
variables in the universes with a high inflation rate move 
toward the universes with low inflation values by way of 
white or black holes. Every universe runs into random 
theoretical transfer in its variables through wormholes 
towards the best universe. This process is iterated until 
a pre-defined maximum number of iterations. Further-
more, the MVO algorithm preserves the best solution 
during optimization.

(8)

x
j

i
=

⎧
⎪⎨⎪⎩

Xj + TDR ×
��
ubj − lbj

�
× r4 + lbj

�
r3 < 0.5

Xj − TDR ×
��
ubj − lbj

�
× r4 + lbj

�
r3 ≥ 0.5

x
j

i

r2 < WEP

r2 ≥ WEP

4 � Proposed MVO‑GBDT algorithm

In the following, three significant points about the pro-
posed MVO are described to get a better feature selec-
tion and GBDT parameter optimization. Indeed, we 
explain the fitness function, system architectures, and 
encoding scheme employed for the representation of 
MVO universes in the following.

4.1 � Encrypted plan (structure of solution)

In this work, a vector of real numbers encodes the individ-
uals so that the number of features in the dataset plus four 
is equal to the number of elements in a vector. In fact, four 
elements are used to represent the parameters of GBDT 
namely, learning rate, a tree’s maximum depth, number of 
estimators, and minimum number of leaf nodes. Figure 2 
shows the encoding scheme implemented in this work. 
The numbers randomly generated in the interval [0, 1] are 
used as the elements of the vector. Then, the elements 
larger than or equal to 0.5 are rounded to 1 (so, the feature 
is selected); otherwise, they are rounded to zero and the 
feature is discarded. Because of different search spaces, we 
should map the parameters of GBDT into different scales.

For instance, we map the element corresponding to the 
number of estimators into the interval [1, 200] while the 
interval [1, 32] is taken into account for the element repre-
senting a tree’s maximum depth. The following equation 
is employed to transform the values of the parameters in 
a linear manner.

Fig. 2   Encoding scheme of solutions for GBDT parameter tuning 
and feature selection (α: learning rates, β: number of estimators, γ: 
max depths, δ: min samples leafs)
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4.2 � Objective function

With accuracy calculation for each selection, each solution 
can be evaluated by objective function. It should be noted 
that the confusion matrix (widely used for classification 
evaluation) is employed to calculate the accuracy. In fact, 
after splitting data into ten different folds, nine out of ten 
folds are trained and the first fold is tested by model and 
the accuracy of model is calculated by a confusion matrix 
representing the classification of 1/10 of the data. This 
process continues for the next test set (the second fold) 
to get another confusion matrix for another 1/10 of the 
data. Finally, this process stops when all folds are tested. 
Accordingly, the performance of the model is obtained by 
summing all the calculated confusion matrices. In fact, it is 
the skill of a model on new data that is estimated by k-fold 
cross-validation method. The advantages of this method 
are bias reduction and using all the data for model evalu-
ation. A confusion matrix is also known as an error matrix. 
In the field of ML (particularly, statistical classification 
problems), an error matrix is a specific table layout making 
algorithm performance visualization possible. A confusion 
matrix has shown in the following Table 1.

According to the confusion matrix, the accuracy rate of 
the classification can be calculated as follows.

where TP denotes the number of correct predictions and 
actual class is true. Also, TN denotes the number of correct 
predictions and actual class is false. Furthermore, FN and Fp 
denote the number of incorrect predictions with true and 
false actual classes respectively. Moreover, each specific 
solution corresponds a specific model with specific tuned 
parameters and features. Due to the fact that a solution 
with high classification accuracy and a small number of 
selected features is better than other solutions, all of these 
mentioned factors must be taken into account to design 

(9)

output =
input −mininput

maxinput −mininput

(
maxoutput −minoutput

)
+minoutput .

(10)Accuracy =
TP + TN

TP + FN + FP + TN
× 100%

the fitness function. The following multi-objective func-
tion is employed to calculate the fitness value.

where mean(Accuracy) is mean of classification accuracy 
of the ten outputs obtained from the tenfold cross-val-
idation, ||fs|| is the number of selected features, ||fT || is the 
number of total features and std(Accuracy) is the stand-
ard deviation of classification accuracy for all the ten out-
puts obtained from the tenfold cross-validation. In gen-
eral, the solution with higher fitness value introduces a 
more efficient model. Given that the smaller the number 
of features, the less data is computed and also the lower 
standard deviation of the accuracies of the ten outputs 
obtained from the tenfold cross-validation indicates more 
stable performance for the model, these two factors are 
considered in Eq. (11) as a penalty for the accuracy of the 
classification model.

4.3 � System architecture

This section is used to describe the proposed MVO-GBDT 
system architecture. Moreover, in this section, we use 
the MVO population-based algorithm to optimize the 
parameters of the GBDT. In the algorithm, a vector of real 
numbers is obtained by encoding individuals (universes). 
The number of the elements in each vector is equal to the 
number of the features in the dataset plus four elements 
representing GBDT parameters. The main parts of the pro-
posed system architecture are shown in Fig. 3 and also 
described in the following.

Step 1 Data normalization [45]. This step eliminates the 
effect of the different range values of features on the 
learning process. For this purpose, we map the values 
of all features on the same scale. Various normalization 
methods have been developed in researches for data 
re-scaling. Thus, equal weight is determined for all fea-
tures to normalize them in the interval [0, 1] as follows.

where MinA and MaxA show the minimum and maxi-
mum values of a given attribute respectively. Also, 
Xnew shows the mapped value of X  that takes a value 
between 0 and 1.
Step 2 divides the normalized data into training and 
testing sets. Then, the training part is split again into a 
number of smaller parts using k-fold cross-validation. 

(11)

Fitness = (� ×mean(Accuracy)) −

(
� ×

||fs||
||fT ||

)
− (� × std(Accuracy))

(12)Xnew =
X −MinA

MaxA −MinA

Table 1   Confusion matrix

Confusion matrix Predicted class

Positive Negative

Actual class
Positive T

P
F
N

Negative F
P

T
N
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So, by training SVM in k steps, the average evaluation 
is used again. The training data is used for model esti-
mation and validation data is employed for final model 
selection. Finally, the final model is employed to test 
and compare other models.
Step 3 initializes the considered parameters namely 
Max Iteration (the maximum number of iterations), the 
universe number, and the range of candidate values 
for each object of an individual solution. In fact, a set 
of GBDT parameters and features of data represent an 
individual solution.

Step 4 initializes the universe position. Each universe 
in the MVO algorithm represents a set of (learning 
rate, number of estimators, maximum depth of a tree, 
min leaf nodes,f1,…,fn ). This set is initialized based on 
the parameter range in the previous step.
Step 5 decodes the universes. The vectors (uni-
verses) obtained by MVO are divided into two parts. 
To describe precisely, the first four elements (corre-
sponding to the parameters of GBDT parameters) are 
converted using Eq. (9) and the rest (corresponding to 
the selected features) are rounded to make a binary 
vector.

Fig. 3   System architecture of 
the GBDT–MVO approach
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Step 6 selects the feature subset. After obtaining the 
binary vector in the previous step, the corresponding 
features are selected from the training dataset.
Step 7 evaluates the fitness values. Every solution gener-
ated by MVO can be evaluated by taking advantage of 
the described fitness function. Using a confusion matrix 
for a binary classifier, the accuracy of trained model is 
evaluated based on the generated parameters. After 
calculating the accuracy of a trained model and sorting 
the universes, a white hole is selected by roulette mech-
anism. It should be noted that the evaluation criterion 
employed in the current study aims to identify the 
GBDT model’s suitable parameters. In fact, the higher 
the accuracy of a model, the better is its performance.
Step 8 updates the WEP and TDR based on the Eqs. (6) 
and (7).
Step 9 update current fitness. If the fitness of the uni-
verse is better than the current fitness, the algorithm 
will update the current fitness of the universe. Other-
wise, no action is needed.
Step 10 updates the universes’ positions and finds the 
optimal individual in the optimal universe.
Step 11 terminates the algorithm. By realization of the 
termination criterion, the algorithm stops and intro-
duces the corresponding result as final output. Other-
wise, the number of iterations increases by 1 and the 
algorithm returns to Step 2.

The computational complexity of the GBDT–MVO reliant 
on the computational complexity of MVO and GBDT. The 
GBDT has computational complexity of O ( n × p × ntrees ). 
While  n is the number of training sample,  p  the number 
of features,  ntrees is the number of trees. The computational 
complexity of the MVO algorithms relay on the maximum 
number of iterations ( l  ), number of universes ( m ), the 
number of objects ( d ), roulette wheel mechanism, and 
universe sorting algorithm (quicksort algorithm). Since the 
roulette wheel selection is used for every object in every 
universe over the iterations, roulette wheel mechanism 
has the complexity of O(m) . In addition, quicksort algo-
rithm has the complexity of O(m × logm) and O(m2) in 
the best and worst case, respectively. Therefore, the overall 
computational complexity is as follows:

Figure 3 shows the workflow of the GBDT–MVO approach 
and the relationships among the main system parts.

(13)

O(GBDT −MVO) = l × (O
(
m2

)
+m × d

× O(m) +m × O(n × p × ntrees))

5 � Experimental results and analysis

5.1 � Data description

In this work, two standard datasets (from the University 
of Wisconsin Hospitals, Madison) [46–49] are employed 
to evaluate the proposed GBDT–MVO approach for breast 
cancer diagnosis. In the following, we describe these data-
sets briefly.

5.1.1 � Wisconsin Original Breast Cancer (WBC) Dataset

In this dataset, all features are obtained from a digitized 
image of a breast mass’s fine needle aspirate (FNA). In fact, 
these features describe the characteristics of the cell nuclei 
existing in the image. The target feature records the prog-
nosis (cancerous or non-cancerous). Also, all samples are 
periodically updated by the reports of Dr. Walberg’s clinical 
cases. In addition, this data set consists of 10 features and 
699 instances, including a patient ID and other features indi-
cated in Fig. 4. This figure shows the correlation matrix of 
the dataset features, determining the correlation coefficients 
between variables.

In Fig. 4, each cell in the table represents the correlation 
between the two variables. The correlation coefficient is 
a statistical relationship between two variables. The val-
ues range between +1 (perfect direct relationship) and 
− 1 (perfect inverse relationship). Also, a correlation of 0 
shows no relationship between the movement of the two 
variables. Moreover, Table 2 lists a summary of each attrib-
ute’s range.

5.1.2 � Wisconsin diagnostic breast cancer (WDBC) dataset

In this dataset, all features are computed based on a digi-
tized image of a breast mass’s FNA. Relevant features were 
selected by searching the feature space thoroughly and 
separating planes. It should be noted that this dataset 
consists of 32 features and 569 instances (62.74% cancer-
ous and 37.26% non-cancerous), including a patient ID, 
30 tumor features, and one class indicator in the WDBC 
dataset. The correlation matrix of this dataset is shown in 
the following Fig. 5.

The aspects considered in tumor feature collection are 
texture, radius, perimeter, area, compactness, smoothness, 
concavity, symmetry, concave points, and fractal dimen-
sion. Table 3 lists a summary of each attribute’s range.

5.2 � Performance evaluation methods

The performance evaluation approaches employed to 
assess the proposed GBDT–MVO method are presented 
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in the following. In this regard, the confusion matrix was 
employed to evaluate the performance of the classifiers 
for breast cancer detection. The other criteria employed 
for evaluation are specificity, sensitivity, Matthews corre-
lation coefficient (MCC), F-measure, and the area under 
the Receiver Operating Characteristic curve (AUC) [50–52]. 

Furthermore, the performance indices used for evaluation 
and comparison are as follows.

(14)Sensitivity =
TP

TP + FN
× 100%

(15)Specificity =
TN

FP + TN
× 100%

(16)Precision(P) =
TP

TP + FP

(17)Recall(R) =
TP

TP + FN

(18)F−measure =
2 × P × R

P + R

Fig. 4   Feature correlation of WBC dataset

Table 2   summary of WBC dataset attribute’s range

Attributes Domain Mean SD

Clump thickness 1–10 4.44 2.82
Uniformity of cell size 1–10 3.15 3.07
Uniformity of cell shape 1–10 3.22 2.99
Marginal adhesion 1–10 2.83 2.86
Single epithelial cell size 1–10 3.23 2.22
Bare nuclei 1–10 3.54 3.64
Bland chromatin 1–10 3.45 2.45
Normal nucleoli 1–10 2.87 3.05
Mitoses 1–10 1.60 1.73
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According to above Equations, basic performance meas-
ures were derived from the confusion matrix. Accordingly, 
four outcomes were obtained by a binary classifier. In this 
regard, the FP , TP,FN , and TN measures can collectively build 
a plot called Receiver Operating Characteristic (ROC) curve. 
This curve represents the trade-off between FN and FP rates 
and model classification errors. As seen in this figure, in ROC 
curves, FP rate is typically plotted versus TP rate. Also, AUC 
can be obtained according to the ROC curve. In other words, 
ROC, as a probability curve, results in AUC representing the 
measure or degree of separability. In fact, the higher the AUC 
the higher the model’s classifying ability. An AUC near to one 

(19)MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Fig. 5   Feature correlation of WDBC dataset

Table 3   summary of WDBC dataset attribute’s range

Attributes Range

Mean Standard error Largest value

Radius 6.98–28.11 0.11–2.87 7.93–36.04
Texture 9.71–39.28 0.36–4.89 12.02–49.54
Perimeter 43.79–188.50 0.76–21.98 50.41–251.20
Area 143.50–2501.00 6.80–542.20 185.20–4254.00
Smoothness 0.05–0.16 0.00–0.03 0.07–0.22
Compactness 0.02–0.35 0.00–0.14 0.03–1.06
Concavity 0.00–0.43 0.00–0.40 0.00–1.25
Concave points 0.00–0.20 0.00–0.05 0.00–0.29
Symmetry 0.11–0.30 0.01–0.08 0.16–0.66
Fractal dimen-

sion
0.05–0.10 0.00–0.03 0.06–0.21
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shows a supreme model with great separability measure. On 
the contrary, an AUC near to zero implies a very bad separa-
bility measure. Supposing that sensitivity and (1-specificity) 
are the probabilities of TP , and FP respectively, AUC can be 
estimated as follows.

Where Δ(1−Specificity) = (1 − Specificity)i − (1 − Specificity)i−1 and 
ΔSensitivity = Sensitivityi − Sensitivityi−1. Here i  is used 
as an index. The experimental results are presented and 
discussed in the next section. It should be noted that the 
described performance evaluation methods described 
methods were used to assess the ability of the proposed 
method in breast cancer diagnosis.

5.3 � Experiments setup

In this study, the above-mentioned breast cancer datasets 
were used to evaluate algorithms. Each instance in these 
datasets includes the class attribute which has four values 
(such as Malignant and Benign). Also, the classifiers were 
analyzed using tenfold cross-validation and compared by 
taking advantage of Scikit-Learn libraries in the Python 
programming language. The device employed to run 
experiments was a PC with an Intel Core i5-2.20 GHz CPU 
and 16 GB RAM.

5.4 � Results and discussion

To evaluate the performance of our proposed method, we 
considered the effectiveness and reliability improvements 
compared to previous methods.

During all experiments, the generalization errors of 
obtained models were estimated using K-fold cross-vali-
dation [53]. In fact, all models were trained based on K − 1 
partitions and tested using the Kth partition to obtain the 
testing performance Pk . According to the following equa-
tion, the overall performance is the average of the perfor-
mances resulted from K iterations.

where Pk is a performance measure to evaluate the diag-
nostic accuracy in a different way and was used to test 
the performance of the proposed model (i.e. the accuracy, 
sensitivity, specificity, F-measure, and AUC) [54].

Table 4 lists the initial parameters employed in MVO, 
PSO, GA, and BAT algorithms. As seen, the swarm size and 

(20)

AUC =
∑
i

{[
Sensitivityi ⋅ Δ(1−Specificity)

]

+
1

2

[
ΔSensitivity ⋅ Δ(1−Specificity)

]}

(21)P̄ =
1

K

K∑
k=1

Pk

the number of universes and individuals are similar (50) in 
all the mentioned algorithms. In addition, the same num-
ber of iterations (15) is set for each of algorithms in order 
to fairly compare all the metaheuristic methods.

Table 4 presents the initialize setting of various param-
eters in the compared and the proposed approach which 
leads to a direct effect on the algorithm performance. It is 
very important to take into account some considerations 
when determining the maximum number of algorithm 
iterations. In fact, the small number of iterations helps to 
prevent the over-fitting issue and high computing costs. 
Also, it mitigates the time required by metaheuristic algo-
rithms for computing and boosts their convergence.

In this part of the experiments, MVO was evaluated 
and compared to GA, PSO, and BAT algorithms in terms 
of feature selection and GBDT’s parameters optimization. 
Moreover, all four population-based approaches worked 
based on our proposed system architecture and also these 
approaches were implemented and evaluated using the 
two datasets described earlier. Tables 5 and 6 presents the 
average accuracy rate and the average number of selected 
features respectively.

In Table 5, the results of BCW dataset indicate that MVO 
has achieved the highest average accuracy rates compared 
to other algorithms. This Table shows that BAT and PSO 
have achieved a 96.7% accuracy rate which is not really 
close to MVO with an accuracy of 97.13%. Also, one can 

Table 4   Initial parameters of the MVO, GA, PSO and BAT

Algorithm Parameter Value

MVO Min wormhole existence rate 0.2
Max wormhole existence rate 1
Iterations 15
Universes 50

BAT Loudness 0.5
Pulse rate 0.5
Number of artificial bats 50
Iterations 15
Frequency minimum 0
Frequency maximum 1

GA Crossover rate 0.8
Mutation rate 0.1
elitist ratio 0.1
Selection mechanism Roulette wheel
Population size 50
Generations 15

PSO Acceleration constants [1.5, 1.7]
Inertia weight 1
Generations 50
Number of particles 15
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realize that the numbers of the selected features in three 
optimizers do not differ significantly.

The results on WDBC dataset presented in Table 6 
show that BAT and PSO have achieved approximately 
same accuracy rate (98.59% and 98.06% respectively). 
Moreover, this Table shows that MVO has achieved the 
highest average accuracy rates compared to GA, PSO, 
and BAT. As seen, the three optimizers have had signifi-
cant results in terms of the number of selected features. 
In another experiment, our proposed MVO was com-
pared with the gird search in terms of GBDT’s parameters 
optimization. Considering the fact that the grid search is 
not able to perform feature selection, MVO was applied 
just for parameter optimization to compare them fairly. 
Tenfolds cross-validation was used for both approaches. 
The comparison results are presented in Table 7. Accord-
ing to the results, MVO obviously outperforms the grid 
search in both datasets. As can be seen, in the case of the 
BCW dataset, MVO is slightly better. However, in the case 
of the WDBC dataset, MVO considerably outperforms the 
grid search in terms of obtained accuracy rates.

It is undeniable that model reliability is very impor-
tant and effective in disease diagnosis. In fact, reliable 
model provides high diagnostic accuracy with durable 
stability. To determine the reliability improvement of the 
ensemble technique, we used the performance variance. 

It is worth noting that since we want to compare the 
reliability of the ensemble models, the variance should 
be measured based on standard deviation (σ) as follows.

where L and denotes the number of replications and P is a 
performance measure like accuracy or AUC [54].

Figures 6, 7 and 8 indicate the variance of accuracy and 
AUC using box plots and ROC curves (for both datasets) 
respectively.

The ROCs of all optimizers are shown in Fig. 6 based on 
the AUC rates. As seen in this figure, MVO has the high-
est rate. The average and standard deviations of AUC are 
shown by avg and std respectively.

In the following experiment, we used the variance of 
accuracies (shown by box plots in Fig. 8) to study the 
reliability improvement of the ensemble technique. Fig-
ure 8 indicates variability outside the upper and lower 
quartiles concerning K-fold cross-validation results. 
In other words, Box plots illustrate the variation in the 
accuracy of tenfold cross-validation results. In Fig. 8a, 
GBDT–MVO accuracy ranged from 0.95 to 1, GBDT-PSO 
ranged from 0.91 to 1, and GBDT (Grid Search) ranged 
from 0.91 to 0.98. Moreover, Fig. 8b, GBDT–MVO reach 

(22)𝜎(P) =
1

L − 1

L∑
l=1

(P̄l − P̄)

Table 5   Results of presented 
system architecture (Wisconsin 
original breast cancer dataset)

Model No. of selected 
features

Accuracy Specificity Sensitivity F-measure MCC

MVO + GBDT 4 0.9713 0.9716 0.9709 0.9590 0.9372
GA + GBDT 6 0.9513 0.9585 0.9377 0.9300 0.8928
PSO + GBDT 5 0.9670 0.9694 0.9626 0.9527 0.9276
BAT + GBDT 5 0.9670 0.9716 0.9585 0.9525 0.9274

Table 6   Results of presented 
system architecture (Wisconsin 
diagnostic breast cancer 
dataset)

Model No. of selected 
features

Accuracy Specificity Sensitivity F-measure MCC

MVO + GBDT 6 0.9876 0.9764 0.9943 0.9902 0.9736
GA + GBDT 9 0.9841 0.9716 0.9915 0.9874 0.9661
PSO + GBDT 6 0.9806 0.9622 0.9915 0.9847 0.9586
BAT + GBDT 7 0.9859 0.9716 0.9943 0.9888 0.9699

Table 7   Best obtained results 
without feature selection

Dataset Model Accuracy Specificity Sensitivity F-measure MCC

Breast cancer wisconsin (BCW) MVO 0.9699 0.9737 0.9626 0.9567 0.9337
Grid search 0.9628 0.9694 0.9502 0.9462 0.9178

Wisconsin diagnostic breast 
cancer (WDBC)

MVO 0.9771 0.9575 0.9887 0.9819 0.9510

Grid search 0.9367 0.9245 0.9439 0.9492 0.8652
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a narrow accuracy range with a higher median regard-
ing other methods which indicate performance robust-
ness of the presented method. The comparison results 
demonstrated that our proposed approach is able to 
provide high accuracies with small diagnosis variance. 

Also, these results proved that our initial objective was 
realized—improved diagnosis accuracy with reduced 
diagnosis variance. As illustrated in Fig. 8, GBDT–MVO 
boxplot follows a normal distribution (symmetric) which 
shows that the distribution of accuracies obtained from 

Fig. 6   Comparison of ROC with different models (BCW dataset)
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K-fold cross-validation is not skewed. In fact, the whisk-
ers of other boxplot visualize outliers in a clear way. In 
fact, this Figure shows the performance robustness of 
the proposed method.

According to the above-mentioned discussions, it 
can be concluded that when new data are added to the 
model, MVO considerably outperforms the grid search 

and other population-based approaches in terms of GBDT 
optimization.

Moreover, Fig. 9 illustrates a comparison with other 
studies available in the literatures (ACO-SVM [55], GA-
SVM [55], PSO-SVM [55], Naive Bayes(NB) [56], Multi-
Layer Perception [56], Decision tree (J48) [56], Hybrid of 
K-means and SVM [57], BP neural network [58], WAUCE 
model [4]) based on WDBC dataset. In this comparison, 

Fig. 7   Comparison of ROC with different models (WDBC dataset)
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tenfold cross-validation was adopted as a standard eval-
uation criterion.

One of the significant challenges that learning models 
have to deal with is high dimensional and features of data. 
In addition, the majority of data from real-world applica-
tions associated with extremely redundant data. For this 
reason, GBDT–MVO aims to reduce the problem of high 
dimensionality regarding redundant data and eliminating 
the features with a low correlation. According to the results 
presented in the previous section, since our proposed 
MVO algorithm has high exploitation ability, it was suc-
cessful and improved the performance of GBDT by tuning 
the related parameters precisely. Also, since wormholes 
had a significant role in obtaining best individual, the MVO 
algorithm was very effective in quality improvement of 
solutions. In addition, the high exploration ability of MVO 
avoided local optima traps and improved the MVO-based 
GBDT’s reliability and robustness. It should be noted that 

the role of white holes and black holes was very bold in 
making sudden changes in the solutions and avoiding 
local optima traps. Furthermore, by taking advantage of 
TDR and WEP parameters, MVO was able to first explore 
the search space thoroughly and then exploit the high-
potential regions precisely over the iterations. This perfect 
trade-off between exploration and exploitation led the 
MVO algorithm to outperform other algorithms.

To sum up, the results and findings of this section 
indicate that using the presented fitness function with 
regard to the MVO algorithm is able to improve the per-
formance of GBDT. Since the GBDT performance reliant 
on the parameters that must be tuned accurately, MVO is 
able to do the tuning process very efficiently. GBDT–MVO 
reached the highest accuracy overall considered data 
sets. In fact, the combination of GBDT with MVO provides 
more accurate results. The results indicate the stability 
which came from the MVO robustness in the convergence 

Fig. 8   Results of experiment without feature selection (diagnosis variance illustration)

Fig. 9   Comparison of 
GBDT + MVO with other studies 
in terms of accuracy
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rate in complicated search spaces. However, one of the 
most important factors affecting the use of the proposed 
method in other datasets is determining the appropriate 
values for the MVO parameters. Because the speed and 
accuracy of optimization process (the feature selection 
and parameter tuning of GBDT) depends on the number 
of universes and the number of iterations. Besides, most 
of the metaheuristic has close time complexity (linear 
complexity), the run time complexity is approximately the 
same as other compared methods. The runtime analysis 
of current data sets indicates that the runtime for each 
considered method is in the range of 0.46–0.92 s which 
is insignificant because of the small number of instances.

6 � Conclusions

In the field of breast cancer diagnosis, the ML-based and 
soft-computing-based medical decision support systems 
have been very efficient and effective. In this study, by tak-
ing advantage of ensemble learning, we combined the 
GBDT and MVO to propose a robust classifier for optimal 
classification of datasets. Here, WDBC and BCW datasets 
were employed as standard breast cancer datasets to 
show the high reliability and effectiveness of the proposed 
model. As mentioned earlier, this study’s main objective 
was to improve the breast cancer classification accuracy. 
The obtained results demonstrated that cancer diagno-
sis performance can be significantly enhanced using the 
proposed model. Also, we compared the performance vari-
ances to show that how important is the model reliability 
to diagnose diseases. In fact, the proposed model was able 
to decrease the diagnosis accuracy variance while increas-
ing accuracy. In total, the experimental results and sub-
sequent discussions proved that the proposed ensemble 
method outperforms other existing methods in this field 
and the breast cancer classification performance can be 
noticeably improved using the proposed classifier.
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