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Abstract
The fabrication of a freeform structural envelope is usually a highly complex task. The costliest aspect is often the connec-
tions between the constitutive parts. The Caravel heX-Mesh Pavilion is a prototype that demonstrates a new rationaliza-
tion strategy. Its structure, composed of a hexagonal grid of beams and cladding panels, is based on a geometry that 
rationalizes connections at two levels. Firstly, nodes are free of geometrical torsion and are repetitive: only two types of 
nodes are used. Secondly, panels can easily be connected to the support beams as they are orthogonal to each other. 
The mechanical behavior is validated by finite-element analysis. We generate these meshes by numerical optimization 
from a smooth target surface, with an initialization derived from the asymptotic case and surface theory. The pavilion 
shows an alternative way of rationalizing a gridshell beyond the popular planar-quad meshes and circular/conical meshes. 
It also demonstrates a way to generate hexagonal gridshells which are not necessarily synclastic, this limitation being 
typically imposed to achieve planarity of cladding panels.

Keywords Architectural geometry · Gridshell · Hexagonal mesh · Free-form surface · Rationalization · Pavilion · Node 
repetition

1 Introduction

Free-form architectural structural envelopes have become 
increasingly popular in the past decades. The cost of these 
projects is usually strongly impacted by the fabrication of 
the nodes, which often need to be all unique. The con-
nection between beams and panels is also problematic, 
as the kink angles between adjacent panels often vary 
significantly.

Two main geometrical strategies have been studied 
and used to simplify node fabrications in order to reduce 
their cost. The first one is to use a geometry that allows for 
torsion-free nodes. In such nodes, all the median planes 
of the incoming beams meet on a common axis. This 

property can be achieved by having all beams in a vertical 
plane or by using circular or conical meshes [1, 2]. Planar 
hexagonal meshes also have torsion-free nodes, but the 
hexagons are necessarily non-convex (shaped like a bow-
tie) in anti-clastic surfaces [3].

The second one is node repetition. As detailed by Eike 
Schling in [4], node repetition can be achieved by two 
means. The first one is to have the exact same geometry 
for each node, or for some groups of nodes. For example, 
this can be achieved with meshes of revolution, or with 
isogonal molding surfaces [5]. The second one is to use 
construction tolerances or adjustable nodes to allow one 
or more degrees of angle variation with a same physical 
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connector. This last option was for example used in the 
Neckarsulm swimming pool dome [6].

One could then name a third aspect that is very impor-
tant for the detailing of façade: the beam-panel connec-
tion. Indeed the variation of the kink angle between the 
panel and the top surface of the beams renders impos-
sible to make the connection structural, and thus to use 
the cladding system as a structural element. Furthermore, 
complex joining systems are needed if the king angle is 
too high and sealing becomes hard to achieve. The opti-
mization for a structural layout regarding the kink angle 
between beam and panel was hence at the starting point 
of the thought on Caravel meshes which were first pre-
sented in [7], extended in [8] and give birth to the Caravel 
Pavilion shown in Fig. 1.

In this article, we propose a new geometric configura-
tion, based on a hexagonal mesh, which solves the three 
issues. In Sect. 2, we detail this geometric structure, dis-
cuss its potential applications, and prove its existence. A 
generation method is then presented in Sect. 3. Finally, in 
Sect. 4, we present how this process has been applied to 
design and rationalize the Caravel pavilion.

2  A new torsion free geometrical 
configuration

2.1  Caravel meshes

The proposed geometrical configuration is a continuation 
of the work presented in [7], and is shown in Fig. 2. The 
configuration is based on a hexagonal mesh with non-
planar faces. Each of its nodes is assigned with an axis. 
The configuration satisfies the following properties:

(a) The axes of two adjacent nodes are coplanar and their 
common plane corresponds to the median plane of 
the beam;

(b) Every other node is flat: the incoming edges are 
coplanar. These nodes are referred to as 2D nodes, 
the other nodes are named 3D nodes;

(c) For 2D nodes, the axis is perpendicular to the plane 
of the node;

(d) For 3D nodes, the beam planes intersect at 120°.

This mesh can be used to design a hexagonal gridshell 
covered by tri-folded hexagonal panels. In that case, the 
properties that we just described can significantly simplify 
the fabrication, in particular with respect to the connec-
tions between the structural elements, as shown in Fig. 3. 
Firstly, the contact between panels and beams top surface 
is perfect and the angle between beam webs and pan-
els is 90°. Thanks to these properties, standard low-cost 
connections can be used to structurally connect beams 
to panels. Secondly each node is torsion-free: medial axes 
of beams meet on a common axis. As a result, structural 
depth can easily be given to the grid. Thirdly, one half of 
the nodes are planar, and for the other half, beam planes 
intersect at 120°, thus allowing a standardization of all 
beam connections.

The thus formed gridshell is a cladded honeycomb 
structure. We note that Jiang et al. [9] proposed a method 
to design this type of structure without torsion on an arbi-
trary target surface. However, they do not constrain the 
node axes to be normal to the surface. This is major differ-
ence with our configuration, which is therefore much more 
constrained geometrically.

The proposed properties (a) (b) and (c) form a new type 
of geometrical structure, based on a mesh in which face 
normals and vertex normals are coplanar. The proposed 
application is based on a hexagonal pattern, but many 
other types of patterns and structural applications are 
possible [7, 8]. For clarity, we propose to name this type 
of mesh a Caravel mesh, a name which invites to explore 
meshes with CoplanAR fAce and VErtex normaLs.

Fig. 1  Three quarter view of the pavilion built for the IASS sympo-
sium in Barcelona, 2019

Fig. 2  Geometrical configuration
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2.2  Asymptotic existence on any smooth surface

In [8], we prove by construction the existence of the geo-
metric structure described in the previous sections in the 
asymptotic case, i.e. in the case where a mesh approxi-
mates a surface with smaller and smaller face size. In this 
case, properties can then be described in the setting of 
smooth differential geometry. It can be shown that it is 
asymptotically possible to construct our geometry from a 
planar hexagonal mesh approximating a smooth surface 
S without umbilics and such that one family of hexagon 
edges is aligned with curvature directions.

Let us start by introducing a classical local approxima-
tion model of a surface. A surface S can be locally approxi-
mated at any point P at the second order by a paraboloid. 
This paraboloid is elliptic if the Gaussian curvature K is 
positive (i.e. the surface is synclastic), cylindrical if K = 0, 
and hyperbolic if K < 0 (i.e. the surface is anticlastic). The 
equation of this paraboloid is, in the tangent plane at P:

where k1 and k2 are the principal curvatures. The unit nor-
mal of the paraboloid at a point (x,y,z) neighboring P is 
given by:

The application (x, y) ↦ n⃗(x, y) is referred to as the sur-
face Gauss map. The value of the real factor n(x, y) will not 
be important here. Considering a neighborhood such that 
|x| ≪ 1∕k1 and |y| ≪ 1∕k2 , n⃗(x, y) belongs at the first order 
to a horizontal plane, and is then an orthotropic dilata-
tion in the directions x and y. The ratios of the dilatation 
in the x and y directions are k1 and k2, up to an homothety 
(the scaling of the Gauss map is not important in our 
construction).

z =
1

2

(
k1x

2 + k2y
2
)

n⃗(x, y) = n(x, y)
(
−k1x; − k2y; 1

)

After this preliminary considerations, we are now 
going to construct a mesh and its vertex normals satis-
fying the properties described in the previous sections. 
We will use a capital N to describe the mesh normals, as 
they often differ from the surface normals n.

Let us first consider a series of planar hexagonal 
meshes with decreasing faces sizes approximating S, and 
with one family of edges aligned with a principal curva-
ture direction. As mesh size tends towards zero, each 
hexagon tends to have central symmetry and to be 
inscribed in a homothetic copy of the Dupin indicatrix, 
as explained in [10] —the Dupin indicatrix being the 
conic resulting from the intersection between the parab-
oloid and the plane z = 1. As shown in Fig. 4 (left), the 
surface Gauss map of the Dupin indicatrix is also a conic, 
with equation x

2

k1
+

y2

k2
= 1 (up to a homothety).

Let us choose an hexagon ABCDEF in Dupin ellipse with 
AB and DE aligned with the principal direction (i.e. with the 
axes of Dupin ellipse) and pick three vertices to form a tri-
angle ACE. We build the Fermat center P of ACE, i.e. the 
point such that 

(
���⃗PA, ����⃗PC

)
=
(
����⃗PC , ���⃗PE

)
=
(
���⃗PE , ���⃗PA

)
= 120◦ . P 

will be a flat node of the mesh, and A, C and E will be 3D 
nodes. AP, CP, and EP will correspond to beams. Since adja-
cent hexagons are congruent in the limit case, the angles 
between beams at E is also 120°. Therefore this construc-
tion yields properties (b) and (d).

In order to fulfill property (b), the mesh normal at P, 
NP, must be the normal of triangle ABC. This normal is, in 
the space of normals, the center of the Gauss map of the 
Dupin indicatrix. As we want no torsion along PA, PE and 
PC (property (a)), the mesh normal at A, NA, must lie on a 
line lA parallel to (AP) passing through NP. In the general 
case, this line does not include the surface Gauss map at A, 
therefore NA ≠ na(this is a second order difference, as the 
normals are equal at the limit).

Fig. 3  Geometry of connec-
tions structural elements
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Now, considering adjacent hexagons Fig. 4 (middle), 
we observe that the lines previously built intersect at one 
point with the same lines from the neighboring hexagons 
if and only if edges AB and DE are aligned with a princi-
pal direction (i.e. parallel to an axis of the conic). These 
intersections points NQ1, NQ2… are the normals of the 3D 
nodes.

The hexagonal network (in red) along with the attached 
normals described by the hexagonal mesh on the Gauss 
map (also in red) verify all the geometrical properties 
described in the previous sections.

3  Generation method

We now give a method to generate the geometrical con-
figuration described in Sect. 2. In a first step, we compute 
an initial mesh close to this configuration. In a second 
step, we optimize node position and normals orientation 
such that properties (a) to (d) are satisfied within given 
tolerances.

3.1  Mesh initalization

The designer starts hence by defining a target geometry, 
in the present case a channel like smooth surface (see 
Fig. 5i). The surface is then meshed by its principal curva-
ture lines (see Fig. 5ii). One then chooses one of the two 

principal directions to build a two-colorable triangular 
mesh on the surface picking out one out of two nodes of 
the curvature network (see Fig. 5iii). The nodes of this tri-
angular mesh are the future 3D-nodes of the caravel mesh. 
After what, the Fermat points of one half of the triangular 
faces (the colored ones in Fig. 5iii) are constructed. Those 
nodes are planar and will be the future 2D-nodes of the 
caravel mesh. Connecting finally 2D-nodes and 3D-nodes, 
one gets a hexagonal mesh, aligned with principal curva-
ture directions where one out of two nodes is planar (see 
Fig. 5iv). One needs then to assign a normal to each node. 
By default one chooses the normal to the triangular faces 
for the 2D-nodes and the normal to the surface for the 
3D-nodes.

3.2  Geometrical optimization

Based on the asymptotic analysis, this mesh and its ori-
ented normals is close to a Caravel mesh, but it does not 
fulfill the properties (a) to (d) exactly yet. To meet those 
properties, an optimization is necessary.

A non-linear optimization is conducted within the 
framework of Rhinoceros©‘s plugin Kangaroo2. The under-
lying algorithm is made of multiple geometrical criteria 
which are expressed as a projection [11]. The first criterion 
forces every node of valence three to be torsion-free (prop-
erty (a)), by requiring the normals of the three neighboring 
nodes to be such that the median planes of the beams 

Fig. 4  Asymptotic construction
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coming to the node meet on a common line correspond-
ing to its normal. The second criterion makes the 2D nodes 
and their respective neighboring nodes coplanar (prop-
erty (b)). The third one constraints the normals of the 2D 
nodes to be respectively aligned with the normals of the 
planes defined by their three neighboring nodes (property 
(c)). Finally, the fourth one forces 3D nodes to be, when 
projected on the triangles defined by their three neighbor-
ing nodes, the Fermat points of these triangles (property 
(d)). Complementary criteria are also set for smoothing 
purposes, such as proximity to the target surface, and to 
treat the boundaries.

This optimization problem is highly non-linear and 
non-convex. Hence, there is no theoretical guarantee 
that the mesh obtained after iterations of the optimiza-
tion algorithm perfectly meets all the criteria or reach a 

global minimum of the problem. However, empirically, the 
resulting mesh tends to satisfy all the geometrical proper-
ties within very low tolerances as shown in Fig. 5v:

• less than 0.5° for torsion angle at nodes (a),
• less than 1 mm for planarity default at 2D-nodes (b), for 

member sizes around 500 mm in the Caravel Pavilion 
case,

• less than 1° distortion between panel normal and beam 
normals (c) and

• less than 0.5° tolerance on the 120° intersections 
between beam planes on 3D-nodes (d).

Thus, this two-step method (initialization-optimization) 
allows in practice to generate a geometrical configuration 
as described in Sect. 2 within acceptable tolerances.

Fig. 5  Shape generation method for the Caravel Pavilion, from smooth Surface to optimized mesh
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3.3  Comparison with other hexagonal meshing 
methods

There exist many other methods to generate hexagonal 
meshes with different geometrical properties. In archi-
tecture, the generation of hexagonal meshes with planar 
faces has raised a lot of attention [3, 10, 12, 13]. A major 
limitation of planar hexagon meshes is that they have non-
convex faces when curvature is negative [14], p 705, which 
is not the case with Caravel meshes. Planar hexagonal 
meshes are preferably aligned with curvature directions 
to avoid skewed faces [15]. The proposed method then 
yields the same distribution and size of faces, except that 
faces are always convex.

Other popular methods to generate meshes with 
mostly hexagonal faces include Voronoi meshes [16, 
17], methods based on duals of triangular meshes [12], 
and subdivision schemes [18]. However, they often yield 
unstructured meshes, and they offer a poor control of 
edge orientation, which is critical in the present approach. 
They also do not offer the Caravel properties.

4  The X‑Mesh pavilion

In order to demonstrate the innovation and the adaptabil-
ity of the workflow hereby presented, it was applied to 
the design and realization of a pavilion for the IASS 2019 
Pavilion contest.

4.1  Design

The shape of the pavilion is a doubly curved envelope, of 
which transversal sections are horseshoe arches. The shape 
has both synclastic and anticlastic portions, as shown in 
Fig. 6, and demonstrates the ability of our method to gen-
erate structures on a broad class of forms. The pavilion is 
high enough to walk under (see Fig. 6).

The starting point of the design is a horseshoe arch sur-
face, chosen for its aesthetic and its functionality relatively 
to the implantation site at the IASS exhibition. Such shape 
cannot be funicular. It therefore highlights the potential 
of the proposed constructive system to resist bending. 
Bending stiffness and resistance is allowed by the struc-
tural depth of the structure. Usually, structural depth in 
gridshells amplifies fabrication issues due to geometrical 
torsion at nodes. This is not the case with Caravel meshes 
thanks to their torsion-free nodes.

This surface was discretized by a hexagonal mesh 
aligned with curvature lines. There are two ways to align a 
hexagonal mesh with curvature directions. The alignment 
with the horizontal curvature lines is chosen in order to 
create the graphic impression of an ascending movement, 
as the triangular panels are pointing upwards diagonally.

The concept of this pavilion focuses on highlighting 
the geometrical properties through the architectural 
treatment of the elements, especially the connections. 
The conception of each type of node is entirely based on 
the geometrical rationalization that simplifies its fabrica-
tion, and takes advantage of each geometrical strategy to 
define its technology.

4.2  Surface optimization for mesh alignment 
with ground level

For aesthetic and fabrication reasons, it was desirable to 
align the mesh with the ground. Since the mesh follows 
curvature directions, we modified the target surface so 
that its bottom boundaries (verifying z = 0) are curva-
ture lines. By the Joachimsthal theorem, this property is 
achieved if the surface has a constant slope along the lines 
z = 0. As our target surface is a B-spline, the slope at the 
ground boundary is given by the bottom two rows of con-
trol points. We therefore optimized the position of these 
control points so that the slope of the surface is constant 
at the ground level (see Fig. 5ii).

Fig. 6  Shape and dimensions of the Caravel Pavilion
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4.3  Detailing

4.3.1  Beams

The torsion free nodes allowed us to conceive the main 
hexagonal grid as a beam structure. Indeed, since adja-
cent node axes are coplanar, their common plane defines 
the median planes of beams. This allowed to build all 
elements out of sheet materials. After structural analysis 
(see Sect. 4.4), it was hence decided to build the hexago-
nal grid 4 mm thick laser-cut aluminum plates and to 

paint them pink to differentiate them from the cladding 
(see Fig. 1).

4.3.2  Two standard connectors

We took advantage of the node repetition to design two 
standards types of connections, one for each type of geo-
metrical node (2D and 3D). These nodes are showed in 
Figs. 7 and 8. 2D nodes (Fig. 7) offered us the possibility 
to create a structural connection through the common 
plane of the three incoming beams. This connection was 

Fig. 7  Technological solution for the 2D nodes

Fig. 8  Technological solution for the 3D nodes
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realized by two 1 mm thick galvanized steel panels on the 
superior and inferior edge of the three beams. Structurally, 
the height of the beams can be adjusted to have sufficient 
vertical inertia. The horizontal inertia is guaranteed by the 
cladding panels. Panels are fixed to the edges of the three 
beams thanks to locking tabs in which the carved panels 
are pushed into. As beams are orthogonal to panels, all the 
cuts are orthogonal to the sheet planes, and can thus be 
realized by 2D laser cutting.

The technological treatment of the 3D nodes (Fig. 8) is 
based on the existence of an axis assigned to each node 
and on the fact that beam planes always intersect at 
120°. For 3D nodes, a hinged connection is built from two 
pieces, cut out from 4 mm aluminum sheets and swaged 
in a stamping press. These formed parts are all identical 
and guarantee the 120° angle between each beam plane 
of the 3D node. They are maintained in place thanks to 
a single screw, materializing the direction of the normal 
axis of the node. A lug has been added on every member 
end as well as corresponding adjusted square holes in the 
stamped aluminum placket in order to lock the rotation of 
the beams in the nodes.

4.3.3  Edge details

The two types of junctions are adapted on the free edges 
of the pavilion; thus it is unnecessary to develop an 
entirely different solution for the nodes on the boundary 
(see Fig. 9). Only two beams are joined on 3D nodes on 
naked edges, so in order to keep the same technological 
solution, we added a short stub that closes the node. 2D 
nodes with only two beams can work the same way on 
naked edges than on interior edges, as long as the panel 
is designed accordingly. This degree of freedom offers the 
opportunity to adapt the general design of the edge.

4.3.4  Supports

The pavilion was designed to be autostable so that it does 
not require ground anchors. Practically, the ground sup-
ports are connected between them to form a rigid frame 
through a floor beam on each side with four ties triangu-
lating the whole, all made of 4 mm thick aluminum plates 
(see Fig. 6). The supports themselves which are modeled as 
hinges from a mechanical point of view, are made of two 
parallel plates slotted into the floor beams that maintain 
two plates fitting the beam plane and allowing rotation 
along the desired inclined axes (see Fig. 10). A set of lugs 
and stops are then designed in order to prevent lifting. 
This detail can accommodate wide angle variations in two 
directions, such that it could be used at each of the ten 
supports. Furthermore, it requires only one bolt to tighten, 
thus accelerating the assembly and disassembly of the 
pavilion. 

4.4  Structural check

To ensure the safety and structural behavior of the pavil-
ion, we implemented a finite element model of the struc-
ture and verified its behavior under dead load and acci-
dental load (0.2kN applied horizontally at 1 m from the 
ground). The structural check follows then the approach 
of Eurocode: no damage at ELU and reasonable displace-
ments at ELS (here < 4 cm under the lateral push). The 
whole pavilion (i.e. beams, panels, basement) is modeled 
considering hinged supports between structural members 
and ridge beams of the support (see Fig. 11a). Releases 
at 2D-nodes and 3D-nodes have then be model carefully: 

• At 2D node, the forces and moments are transferred 
from one beam to the other essentially by the panels. 

Fig. 9  Free edge treatment 3D node on the left, 2D node on the right
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Therefore, they have to go through the connectors. In 
the Caravel Pavilion, these connectors work by con-
tact, through the four L-shaped stops on both top 
and bottom edges of each beam that slide into cor-
responding rectangular holes in the panels until they 
hit one of their edges (see Fig. 7). Holes are accurately 
cut such that the stops are also laterally in contact 
with the panels within very low tolerances. For sim-
plicity reasons, the panels are thus represented by 
sets of galvanized steel strips on the top and bottom 
sides of the beams (1 mm thick and 20 mm wide) as 
can be seen in Fig. 11a. To connect the strips with 
the beams neutral axis, rigid links span between the 
ends of the hinged strips and the beams’ axis. Finally 
considering that the screw/washer system prevents 
the beams back sliding, relative translations at beams 
end have been blocked. To account for buckling of 
the strips, only tension forces are considered in the 
analyses of the strips.

• At 3D nodes, all forces and moments are transferred 
through the stamped aluminum plackets which are not 
perfectly stiff compared to the members. Therefore, a 
plate finite element model of the placket was used to 
estimate the stiffness of the connector in the six direc-
tions (see Table 1). These stiffness’s are then introduced 
in the global structural model following the local axes 
of the various members. It appeared that half of the 
structure displacement comes from the connectors 
stiffness.

Linear static analyses have then been conducted under 
gravity load and horizontal push. With the chosen cross 
sections for the aluminum beams (100 mm height and 
4 mm width), the pavilion was found very safe: the maxi-
mum stress equals 80% of limit stress, the maximum dis-
placement equals 3.9 cm (2.1 cm vertically) and the eigen-
frequency equals 1.7 Hz.

The analysis of displacements (shown in Fig.  11b) 
reveals that the structure works as an arch defined by a 
cut along the longitudinal plane YZ. Indeed the displace-
ments are almost equals for all the points on a transversal 
cut along any plane XZ (except close to the support on 
the ground where the chosen narrowing is a handicap). 
The double curvature of the structure ensures thus a cer-
tain stiffness in the transversal direction and the transfer 
of forces from the free edges toward the supports.

This arch behavior is confirmed by the analysis of mem-
ber forces. When seen from aside the prototype forms a 
horseshoe arch, which resists forces through a mix of 
strong axis bending moment Mz (Fig. 11d) and normal 
force Nx (Fig. 11c). The structure is clearly not a funicu-
lar shell dominated by membrane forces but still it can 
described as a gridshell because all the nodes transfer 
bending moments along the strong axis giving out-of 
plane bending stiffness to the structure while the bracing 
by the panels at the planar nodes gives membrane shear 
stiffness.

It is worth also remarking that the six directions were 
solicited. Indeed, due to the hexagonal arrangement of 
the grid and to the curvature of the global shape, normal 
forces are transformed into normal forces and shear forces, 
and bending moments in the strong direction are trans-
formed as well into bending moment in both directions 
and torsion (see Fig. 11e, f ). Despite the low values of these 
moments, their contribution to the overall compliance of 
the structure is high. Indeed, the bending stiffness of the 
strong axis is 500 times higher than the weak axis stiffness 
and 160 times higher than the torsion stiffness.

It seems hence that for further developments of the 
Caravel meshes, it will be necessary to investigate the 
connection between beams and panels so that it can 
transfer shear and that the system works as an I-beam 
and change the order of magnitude of the torsional stiff-
ness and weak axis bending stiffness. This could not be 

Fig. 10  Detail of the hinged supports and principle of assembly
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done for the presented pavilion which gave priority to 
assembly methods which were driven here by the fact 
that the pavilion had to be assembled and disassembled 
in one day. Besides, it is noticed here that the pavilion 
was then rebuilt for a three days’ exhibition on Febru-
ary 2020 in the main building of the Ecole d’Architecture 
Paris Malaquais.

5  Conclusions

In this article, a new family of meshes combining sev-
eral rationalization properties was introduced: Caravel 
meshes. Their potential for structural applications was 
demonstrated by designing a full scale pavilion which 

Fig. 11  Structural analysis of the pavilion

Table 1  Identified 
characteristics of the 
3D-connectors in the member 
local axes

Force Normal X Shear Y Shear Z Torsion X Moment Y Moment Z

Stiffness 21 MN/m 10 MN/m 21 MN/m 25 kNm/rad 25 kNm/rad ∞
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was exhibited at the 60th IASS Symposium in October 
2019, rebuilt for a temporary exhibition in Paris-Mala-
quais and will be reassembled a third times for the 
pavilion exhibition of the “Advances in Architectural 
Geometry 2020” conference. It was a unique experi-
ence of collaboration between mathematics, structural 
engineering and architecture students and researchers 
working together on the design of a prototype from dif-
ferential geometry theory to fabrication. The main issues 
of the design process of caravel meshes have been tack-
led: geometric characteristics of caravel meshes, proof 
of existence on any smooth surface, generation method, 
structural analysis and detailing. The proposed approach 
for surface rationalization which only uses two types of 
nodes (here only two types: 2D flat-node and a 3D 120°-
node) seems very promising and opens up a lot of per-
spectives for innovative design of gridshell structures.

The geometrical and structural principles developed 
here were meant to be scalable at other structural scale. 
Indeed from a geometrical point of view, nodal axes of 
the prototype are clearly identifiable through the bolt 
axes: the height of the members is a parameter that can 
be freely adjusted by the designer who can therefore 
adjust it to the scale and required structural depth. From 
a technological point of view, the details shown here are 
adapted to the scale of the prototype and to the fact 
that it should be dismountable. Should it be built in 
another context or at another scale, the details should 
be changed but thanks to the geometrical properties 
of the structure, those changes are relatively simple 
or remain in the framework of standard detailing. Two 
variants of this prototype have indeed been built by the 
authors: one 8 m span wooden structure and its 1/10 
MDF mockup shown in Fig. 12.
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