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Abstract
A new set of hybrid poly(ether-arylidene-ether-sulphone)s containing diarylidenecycloalkanone moieties in the polymers 
main chains has been synthesized in good yields by solution poly-condensation well known polymerization method. The 
chemical structures of all precursors, monomers and model compound were confirmed by both elemental and spectral 
data. More particularly, a modified electrode of  Co+2 cationic sensor was prepared by the coating of a glassy carbon 
electrode with synthesized copolymer 8e as a thin layer. The fabricated cationic sensor was displayed long-term stabil-
ity, enhanced electrochemical activity, good sensitivity, shorter response time, broad linear dynamic range and lower 
detection limit. A calibration curve is plotted as current versus concentration of  Co+2 ions. The cationic sensor sensitivity 
is calculated from the slope of calibration curve as 12.8165 µA nM−1 cm−2. The detection limit (0.74 ± 0.04 nM) is also 
estimated from the signal to noise ratio of 3. Therefore, the development of  Co+2 cationic sensor might be a novel effort 
with hybrid sulphone polymers by electrochemical method to ensure the sustainability in health care sector.
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and copolymers have been reported in the past few dec-
ades [1–12]. More particularly, hybrid polymers are treated 
as one of the most widespread types of synthetic mac-
romolecular structures in recent years [13–16]. Arylidene 
polymers and copolymers are synthetic polymers that can 
be produced through the formation of arylidene linkage 
using solution polycondensation technique. Arylidene 
polymers and copolymers have remarkable properties that 
can be applied in a variety of industrial applications. Ade-
quate number of polyarylidenes and copolyarylidenes are 
reported in the literature with excellent conducting ability, 
surface selectivity, metal uptake ability, thermal stabilities, 
inhibitive corrosion protection, liquid crystal properties, 
attractive morphology and biological screening proper-
ties [10–12, 17–22]. Similarly, aromatic polyether’s are very 
popular high performance series of synthetic polymers 
which can be easily prepared through the formation of aryl 

1 Introduction

Hybrid polymers, are a special class of material, which has 
been widely used in variable fields of industry and mod-
ern technology as well. There are many types of hybrid 
polymers synthesized worldwide. Each polymer has its 
specific property which enhance its usage for a particular 
application. The polymer that shows diverse properties 
can be used in variable applications. This is only possible 
if different moieties are attached with a single polymer 
chain. Therefore, a polymer chain can be modified by 
adding two or three moieties of different functionalities. 
The resulting new chain is called hybrid chain which carry 
the properties of individual as well as extraordinary com-
ponents. Hybrid polymers and copolymers are a class of 
macromolecules that can be designed by carrying two or 
more diverse functional groups. Many hybrid polymers 
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ether linkage as a corner stone in the polymer chain as well 
as the new ether bond can also be treated as the main pol-
ymer formulation response. As reported aromatic nucleo-
philic substitution reaction is the common procedure that 
applied for such type of polymerization. Aromatic dihal-
ide molecules invigorated by a high electron deficiency 
groups, chaired with dihydroxy, in order to form specific 
polyethers [23, 24]. The presence of ether bonds into the 
macromolecular backbone with aromatic substituent ren-
ders superior melt processing behaviors, solubility, adhe-
sion, hydrolytic stability, thermal oxidative, high glass tran-
sition temperatures, tough mechanical properties as well 
as liquid crystallinity which may lead them to be applied 
in micro-electronics and other applications [25–27]. Poly-
ethers also show film production ability for ultrafiltration, 
gas separation and aerospace vehicles [28]. So far, seg-
mented polyether sulfones are multilateral thermoplastic 
polymers and copolymers that can be used in industrial 
engineering due to its unparalleled properties. Polyether 
sulfones based on aromatic nuclei have been extensively 
examined due to their high applicability [29–31]. Much 
more interest expected by the synthesis of separated aro-
matic polyether sulfone and their copolymers together 
with other building blocks in the main polymers chain [30, 
32]. On the other hand, cobalt is found in soil, sea water, 
rocks and mineral as a trace amount [33], which is very 
essential for industries as well as for the biological system. 
Therefore, a trace amount of cobalt is necessary for many 
living organism including with human. The metallic cobalt 
is main component of vitamin B-12 and thiamine [34, 35]. 
With other essential elements, cobalt(II) is also required 
for human up to few milligram daily [36]. On the other 
hand, over dose of cobalt(II) metal ion in human body 
may causes harmful effect such as the damage of heart 
muscles, over production of red-blood cell and damage 
of thyroid gland. The deficiency of cobalt(II) ion leads to 
the retardation of growth, anemia and loss of appetites 
[37]. So, the optimized quantity of cobalt(II) is essential in 
human body. In this decade, the consumption of cobalt(II) 
as raw material is increased remarkably, basically in electri-
cal vehicles and digital components manufacturing indus-
tries [36, 38]. Beside this, cobalt(II) is used extensively in 
various industries such as nuclear power plant, electroplat-
ing, paints, pigments, mining, transformer, generator, and 
motor [39]. Due to the diversified industrial applications 
of cobalt(II), there is a great possibility to contaminate the 
environment with cobalt(II) ions, which released with-
out treating properly. Therefore, it is an urgent necessity 
to develop a reliable method for  Co+2 ion detection in a 
sustainable way. There are mainly two conventional meth-
ods to detect  Co+2 ion such as ICP-AES (inductive coupled 
plasma-atomic emission) [40] and AAS (atomic absorption 
spectrophotometry) [41]. But these detection methods 

have disadvantages such as heavy and expensive complex 
instrumentation, involvement of large infrastructure and 
backup, low sensitivity and time consuming. Therefore, a 
method of simple, reliable, high sensitivity, short response 
time, and portable is desired [42]. On the other hand, the 
electrochemical method has the best features such as high 
selectivity, quick response time, inexpensive, and portable 
[43]. Cobalt(II) ion has both positive and negative impact 
on human body and now a day, industrial activities with 
cobalt(II) is increased potentially day by day. Therefore, 
it very important to develop a reliable method based 
on electrochemical approaches for the determination of 
selective cobalt ions. The targeted poly(ether-arylidene-
ether-sulphone)s are one of the most important hybrid 
polymers which carry a huge number of amazing proper-
ties. The designed poly(ether-arylidene-ether-sulphone)s 
can carry characters of all of its components (polyethers, 
polyarylidenes as well as polysulphones). Our aim was to 
design new hybrid applicable in diverse applications. I–V 
technique in aqueous medium has been utilized to detect 
the sensing properties of these new hybrid sulphone 
based polymers against different metal ions. The working 
electrode of the desire cation sensor has been prepared 
by deposition of copolymer 8e (as selected example) as 
thin layer onto GCE with conducting binder. Then, the pro-
jected sensor has been employed to detect  Co+2 and it has 
been exhibited good sensitivity, lower detection limit, a 
broad linear dynamic range and short response time.

2  Experimental

2.1  Materials, solvents and reagents

Cycloalkanones including cyclohexanone and cyclopen-
tanone were purchased from Merck (99% and 99%) and 
used as purchased. 4,4′-thioxo-bis(4′′-aminophenylene) 
was purchased from BDH (95%) was used as purchased. 
4-chlorobenzaldehyde was purchased from Fluka (97%) 
and was also used as purchased. Vanillin as well as 
p-hydroxy benzaldehyde were purchased from Merck 
(95% and 98%). Potassium carbonate anhydrous was 
purchased from Aldrich. Dimethyl sulfoxide was of spec-
troscopic grade and was purchased from Sigma Aldrich 
(99%). To execute this study, the analytical grade chemicals 
such as Cobalt(II) nitrate, Lead(II) nitrate, gallium(III) nitrate, 
Zinc sulphate, Chromium(III) chloride, cerium(II) nitrate, 
calcium(II) chloride, Ferric(III) chloride, Mercury(II) chlo-
ride, Cadmium sulphate, disodium phosphate, ammonium 
hydroxide and monosodium phosphate were used. These 
chemicals were bought from Sigma-Aldrich Company 
(USA) and they were used as received. All other chemicals 
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and/or reagents were of high purity and they were used 
as purchased without further purification.

2.2  Equipments

Elemental analyses were estimated by an Elemental Anal-
yses system GmbH, VARIOEL,  V2.3 July 1998 CHNS Mode. 
Melting points for all precursors, monomers as well as for 
model compound were estimated on a Gallen-kamp melt-
ing Point apparatus with a digital thermometer type MFB-
595-010 M. IR spectra were determined on IR-470, Infrared 
spectrophotometer, Shimadzu using the KBr pellet tech-
nique. Mass spectra were investigated on a Joel JMS600 
mass spectrometer. 1H-NMR spectra were carried out on a 
Varian EM-390-NMR (90 MHz) spectrometer and a GNM-LA 
400-MHz NMR spectrophotometer using DMSO or  CDCl3 
as deuterated solvents and in the presence of TMS as an 
internal reference. Inherent viscosities were measured by 
an Ubbelohde suspended level viscometer using 0.5% w/v 
of polymer and copolymers solutions in DMSO at 30 °C. The 
X-ray diffraction patterns of the polymers were carried out 
with a Philips X-ray PW1710 diffractometer, and Ni—filtered 
CuK � radiations. The molecular weight determination was 
carried out using GPC gel permeation chromatography 
using Agilent-GPC Agilent technologies. The refractive 
index detector was G-1362A with 100–104–105 Å Altras-
tyragel columns connected in series. DMF was used as the 
eluent with flow rate 1.0 mL/min. PMMA and/or PS stand-
ards were of commercial type and were used to calibrate 
the columns. TGA thermogravimetric analysis and DTG 
differential thermal gravimetric were obtained in air with 
TA 2000 thermal analyzer at heating rate of 10 °C/min. in 
air. The surface morphology for polymers and copolymers 
were measured by a SEM scanning electron microscope 
using a JEOL-JSM-5400 LV-SEM. The SEM sample was pre-
pared by putting a smooth part of polymer powder on a 
copper holder and then coating it with a gold–palladium 
alloy. SEM micrographs were picked up using a Pentax 
Z-50P Camera with Ilford film. The images obtained using 
a low dose technique at accelerating voltage of 15 kV. The 
Keithley electrometer (6517A, USA) is a simple two elec-
trodes system, which has been implemented to complete 
the whole experiment of  Co+2 ion detection process with 
fabricated GCE at applied potential of 0 ~ + 1.5 V.

2.3  Synthesis of monomers

2.3.1  Synthesis of 4,4′‑thioxo‑bis(4″‑chlorobenzylideneim
ino‑phenylene) 1

A mixture of (2.2  g, 0.01  mol) 4,4′-thioxo-bis(4′′-
aminophenylene) and 1.4 g, 0.01 mol 4-chlorobenzaldehyde 

were fused together on a hot plate for about 3–4 min, 
then 20 ml of absolute ethanol was added and refluxed 
for 4–5 h. The solid product was filtered, washed several 
times with ethanol, and then recrystallized from DMF as 
light yellow crystals, m.p 239 °C, yield 65%. Anal. Calcd. for 
 C26H18Cl2N2O2S: Calcd.%: C, 63.28; H, 3.65; N,5.68; S,6.49; 
Cl,14.40; Found %: C, 63.80; H,4.13; N, 5.88; S,6.22; Cl, 14.64. 
IR (KBr)  (cm−1): υ = 3095 (m, CH stretching of aromatic), 
1620 (s, C=N azomethine groups), 1130–1350 (s, sulphone 
group) and no more absorption bands due to primary 
amino groups. 1H-NMR (DMSO-d6, ppm): δ = 8.2–7.4 (m, 16H 
aromatic protons), 8.8 (s, 2H of N=CH azomethine bond). 
Mass spectrum showed a molecular ion peak at m/z = 492.1, 
494.2, 493.06 due to  (M+, Cl = 35, 100%);  (M+, Cl = 37, 92.6%), 
and  (M+, Cl = 35.5, 40.5%) respectively which is in agreement 
with its molecular formula  (C26H18Cl2N2O2S). Other peaks 
were observed at m/z = 456.99  (M+–Cl, 4.2%); at m/z = 422.7 
 (M+–2 Cl, 3.2%), at m/z = 270.03  (M+–C12H8Cl2, 2.7%).

2.3.2  Synthesis of diarylidenecycloalkanones monomers 
2a,b and 3a,b their sodium salts 4a,b and 5a,b

Diarylidenecycloalkanones monomers 4a,b and 5a,b in the 
form of sodium salts were prepared from their parent pre-
monomers 2a,b and 3a,b as reported in literature [44, 45]. As 
well as their chemical structures have been confirmed by 
elemental and spectral characterization techniques.

2.4  Synthesis of 4,4′‑thioxo‑bis(4′′‑phenoxybenzyli
deneiminophenylene) 6

The title model compound 6 was synthesized by mixing 
of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-chlorobenzylide
neiminophenylene) 1, (0.464 g, 0.004 mol) sodium phe-
noxide and (0.50 g) potassium carbonate anhydrous in the 
presence of 25 ml DMSO as a reaction solvent. The reac-
tion mixture was heated under vigorous stirring for 12 h 
at temperature of 160 °C. The mixture was left to coal to 
its original temperature, then poured onto ice cold water. 
The precipitated product was collected by filtration, then 
washed with water, and crystallized benzene/ethanol as 
yellowish needles, yield 79%, m.p > 300 °C. Anal. Calcd. 
for  C38H28N2O4S: Calcd.%: C, 75.00; H, 4.60; N, 4.60; S, 5.26; 
Found %: C, 74.79; H, 4.66; N, 4.54; S, 5.33. IR (KBr)  (cm−1): 
υ = 3085 (m, CH stretching of aromatic), 1620 (s, C=N 
azomethine groups), 1270 (s, ether bonds), 1135–1350 (s, 
sulphone group). Mass spectrum exhibited a molecular ion 
peak at m/z = 608.04 (9.5%) which is in agreement with its 
molecular formula  (C38H28N2O4S). Other peaks were in 
accordance with the proposed structure.
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2.5  Synthesis of polymers 7a–d

General procedure

A mixture of (0.002 mol) 4,4′-thioxo-bis(4′′-chlorobenz
ylideneiminophenylene) 1, (0.002  mol) diarylidenecy-
cloalkanones monomers 4a,b and 5a,b, 0.50 g potassium 
carbonate anhydrous and 30 ml of DMSO was inserted 
in a three-necked flask installed with a magnetic stirrer 
and a condenser. The reaction mixture was also carried 
out in the presence of nitrogen atmosphere. The reaction 
mixture was heated under vigorous stirring for 10–20 h 
at temperature of 160 °C. The mixture was left to coal to 
its original temperature, then poured onto ice cold water. 
The resulting polymers were separated out by filtration, 
and washed several times with water and other appreciate 
solvents. Finally, the products were dried under reduced 
pressure (1.0 mm/Hg) at 80 °C for 2 days. The following 
polymers 7a–d were synthesized using the overhead men-
tioned procedure:

2.5.1  Polymer 7a

The titled polymer resulted as brownish powder by the 
polymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneiminophenylene) monomer 1 with 
(0.672 g, 0.002 mol) monomer 4a for 20 h, yield 56%. Anal. 
Calcd. for  (C45H32N2O5S)n: Calcd %: C, 75.84; H, 4.49; N, 3.93; 
S, 4.49; Found %: C, 75.61; H, 4.53; N, 3.99; S, 4.55. IR (KBr) 
 (cm−1): υ = 3030 (m, CH stretching of aromatic), 2910 (m, 
CH stretching of aliphatic), 1660 (m, C=O cyclopentanone), 
1610 (s, C=N azomethine groups), 1270 (s, ether bonds), 
1125–1340 (s, sulphone group).

2.5.2  Polymer7b

The titled polymer resulted as brown powder by the 
polymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneiminophenylene) monomer 1 with 
(0.792 g, 0.002 mol) monomer 4b for 18 h, yield: 59%. Anal. 
Calcd. for  (C47H36N2O7S)n: Calcd %: C, 73.05; H, 4.66; N, 3.62; 
S, 4.14; Found %: C, 72.79; H, 4.78; N, 3.77; S, 4.10. IR (KBr) 
 (cm−1): υ = 3030 (m, CH stretching of aromatic), 2920 (m, 
CH stretching of aliphatic), 1660 (m, C=O cyclopentanone), 
1610 (s, C=N azomethine groups), 1250 (s, ether bonds), 
1130–1330 (s, sulphone group).

2.5.3  Polymer 7c

The titled polymer resulted as brownish powder by the 
polymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneiminophenylene) monomer 1 with 
(0.70 g, 0.002 mol) monomer 5a for 19 h; yield 72%. Anal. 

Calcd. for  (C46H34N2O5S)n: Calcd %: C, 76.03; H, 4.68; N, 3.85; 
S, 4.40; Found %: C, 76.93; H, 4.61; N, 3.79; S, 4.46. IR (KBr) 
 (cm−1): υ = 3050 (m, CH stretching of aromatic), 2910 (m, 
CH stretching of aliphatic), 1645 (m, C=O cyclohexanone), 
1620 (s, C=N azomethine groups), 1260 (s, ether bonds), 
1130–1330 (s, sulphone group).

2.5.4  Polymer 7d

The titled polymer resulted as pale-brown powder by the 
polymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) monomer 1 with 
(0.82 g, 0.002 mol) monomer 5b for 20 h; yield 69%. Anal. 
Calcd. for  (C48H38N2O7S)n: Calcd %: C, 73.28; H, 4.83; N, 3.56; 
S, 4.07; Found %: C, 73.30; H, 4.85; N, 3.62; S, 3.92. IR (KBr) 
 (cm−1): υ = 3050 (m, CH stretching of aromatic), 2910 (m, 
CH stretching of aliphatic), 1645 (m, C=O cyclohexanone), 
1620 (s, C=N azomethine groups), 1270 (s, ether bonds), 
1125–1340 (s, sulphone group).

2.6  Copolymers syntheses 8a–f

General procedure

A mixture of (0.004 mol) 4,4′-thioxo-bis(4′′-chlorobenzylid
eneiminophenylene) 1, (0.002 mol for each) equal amount 
from two different diarylidenecycloalkanone monomers 
4a,b and 5a,b, potassium carbonate anhydrous and 30 ml of 
DMSO was inserted in a three-necked flask installed with 
a magnetic stirrer and a condenser. The reaction mixture 
was also carried out in the presence of nitrogen atmos-
phere. The reaction mixture was heated under vigorous 
stirring for 10–20 h at temperature of 160 °C. The mixture 
was left to coal to its original temperature, then poured 
onto ice cold water. The resulting copolymers were sepa-
rated out by filtration, and washed several times with 
water and other appreciate solvents. Finally, the products 
were dried under reduced pressure (1 mm/Hg) at 80 °C for 
two days. The following copolymers 8a–f were synthesized 
using the overhead mentioned procedure:

2.6.1  Copolymer 8a

The titled copolymer resulted as black powder by the 
copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) monomer 1 with 
(0.672 g and 0.792 g, 0.002 mol for each) monomers 4a 
and 4b for 20 h; yield: 59%. Anal. Calcd. for  (C92H68N4O12 
 S2)n: Calcd %: C, 74.39; H, 4.58; N, 3.77; S, 4.31; Found %: 
C, 74.54; H, 4.63; N, 3.79; S, 4.22. IR (KBr)  (cm−1): υ = 3050 
(m, CH stretching of aromatic), 2920 (m, CH stretching 
of aliphatic), 1645 (m, C=O cycloalkanone), 1610 (s, C=N 



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:774 | https://doi.org/10.1007/s42452-020-2528-3

azomethine groups), 1265 (s, ether bonds), 1125–1330 (s, 
sulphone group).

2.6.2  Copolymer 8b

The titled copolymer resulted as pale brown powder by 
the copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-
bis(4′′-chlorobenzylideneimino-phenylene) monomer 
1 with (0.672 g and 0.70 g, 0.002 mol for each) mono-
mers 4a and 5a for 19  h; yield: 63%. Anal. Calcd. for 
 (C91H66N4O10S2)n: Calcd %: C, 75.93; H, 4.59; N, 3.89; S, 
4.45; Found %: C, 77.03; H, 4.69; N, 3.93; S, 4.35. IR (KBr) 
 (cm−1): υ = 3030 (m, CH stretching of aromatic), 2920 (m, 
CH stretching of aliphatic), 1645 (m, C=O cycloalkanone), 
1600 (s, C=N azomethine groups), 1260 (s, ether bonds), 
1125–1330 (s, sulphone group).

2.6.3  Copolymer 8c

The titled copolymer resulted as dark brown powder by 
the copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-
bis(4′′-chlorobenzylideneimino-phenylene) monomer 
1 with (0.672 g and 0.82 g, 0.002 mol for each) mono-
mers 4a and 5b for 19  h; yield: 55%. Anal. Calcd. for 
 (C93H70N4O12S2)n: Calcd %: C, 74.50; H, 4.67; N, 3.73; S, 
4.27; Found %: C, 75.42; H, 4.80; N, 3.79; S, 4.24. IR (KBr) 
 (cm−1): υ = 3030 (m, CH stretching of aromatic), 2920 (m, 
CH stretching of aliphatic), 1645 (m, C=O cycloalkanone), 
1610 (s, C=N azomethine groups), 1265 (s, ether bonds), 
1120–1340 (s, sulphone group).

2.6.4  Copolymer 8d

The titled copolymer resulted as black powder by the 
copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) monomer 1 with 
(0.792 g and 0.70 g, 0.002 mol for each) monomers 4b and 
5a for 18 h; yield: 69%. Anal. Calcd. for  (C93H70N4O12S2)n: 
Calcd %: C, 74.50; H, 4.67; N, 3.73; S, 4.27; Found %: C, 
74.43; H, 4.73; N, 3.52; S, 4.26. IR (KBr)  (cm−1): υ = 3050 
(m, CH stretching of aromatic), 2910 (m, CH stretching 
of aliphatic), 1660 (m, C=O cycloalkanone), 1610 (s, C=N 
azomethine groups), 1260 (s, ether bonds), 1125–1330 (s, 
sulphone group).

2.6.5  Copolymer 8e

The titled copolymer resulted as black powder by the 
copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) monomer 1 with 
(0.792 g and 0.82 g, 0.002 mol for each) monomers 4b and 
5b for 20 h; yield: 67%. Anal. Calcd. for  (C95H74N4O14S2)n: 
Calcd %: C, 73.17; H, 4.75; N, 3.59; S, 4.10; Found %: C, 

73.77; H, 4.65; N, 3.63; S, 4.16. IR (KBr)  (cm−1): υ = 3050 
(m, CH stretching of aromatic), 2920 (m, CH stretching 
of aliphatic), 1660 (m, C=O cycloalkanone), 1600 (s, C=N 
azomethine groups), 1260 (s, ether bonds), 1120–1340 (s, 
sulphone group).

2.6.6  Copolymer 8f

The titled copolymer resulted as brown powder by the 
copolymerization of (0.98 g, 0.002 mol) 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) monomer 1 with 
(0.70 g and 0.82 g, 0.002 mol for each) monomers 5a and 
5b for 19 h; yield: 66%. Anal. Calcd. for  (C94H72N4O12S2)n: 
Calcd %: C, 74.60; H, 4.76; N, 3.70; S, 4.23; Found %: C, 
74.66; H, 4.62; N, 3.75; S, 4.29. IR (KBr)  (cm−1): υ = 3030 
(m, CH stretching of aromatic), 2920 (m, CH stretching 
of aliphatic), 1645 (m, C=O cycloalkanone), 1595(s, C=N 
azomethine groups), 1260 (s, ether bonds), 1125–1340 (s, 
sulphone group).

2.6.6.1 Fabrication of  GCE with  hybrid sulphone based 
polymers The working electrode fabrication process is 
very important step to success this study. After complet-
ing the preparation of these polymers and copolymers, 
the synthesized copolymer 8e was used to coat on a GCE 
with conducting binder as a selected sample. To do this, a 
slurry of copolymer 8e was prepared in ethanol and then 
it was used to deposit on GCE as thin layer. After drying 
of modified GCE at room condition, a drop of nafion was 
added on it. Thus, the fabricated electrode was placed 
inside an oven at 35  °C for a time necessary to dry the 
electrode entirely. As a conducting binder, nafion (5% 
nafion suspension in ethanol) was used to fabricate the 
electrode. The using of nafion as conducting binder has 
various advantages, such as it establishes the binding 
strength between copolymer 8e and GCE, which increases 
the conductivity and electron transfer rate of fabricated 
electrode in electrochemical sensing performance. A 
chemical sensor was assembled by Keithley electrometer, 
where the fabricated electrode (GCE modified with copol-
ymer 8e and binder) was acted as working electrode and a 
Pt-wire was as a counter electrode. To perform this study, 
a number of  Co+2 ion solution based on the concentration 
ranging from 1.0 nM to 0.1 M was prepared and used as 
target analyte in assembled  Co+2 ion sensor. The sensitiv-
ity of  Co+2 ion sensor was calculated from the slope of the 
calibration curve (current vs. concentration of  Co+2 ion). 
The linear dynamic rang (LDR) of the projected chemical 
sensor was calculated from calibration curve at the range, 
where the regression  (r2) coefficient value is maximum 
and detection limit was calculated at signal to noise ratio 
of 3. Amount of 0.1 M PBS-solution was kept constant in 
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the beaker as 10.0 mL throughout the chemical investiga-
tion.

3  Results and discussion

This research paper aimed to synthesize and characterize 
a new series of hybrid poly- and copoly(ether-arylidene-
ether-sulphone)s which containing diarylidenecyclo-
alkanone moieties in the polymers essential body. The 
polymerization reaction was carried out through high 
temperature polycondensation technique. It was also 
important to examine all possible characterization tech-
niques. Characterizations based on viscosity, solubility, 
GPC molecular weight, crystallinity, thermal stability and 
surface study were investigated and the resulting data 
were discussed. More particularly, the research aimed to 
develop a new selective and sensitive fabricated GCE as 
a  Co+2 cationic sensor based on our synthesized hybrid 
sulphone based polymers by electrochemical approach.

3.1  Chemistry

The desired new polymers and copolymers presuppose 
the synthesis of alternative precursors, monomers and 
model compound as well. Diphenyl sulphone based mon-
omer named 4,4′-thioxo-bis(4′′-chlorobenzylideneimino-
phenylene) 1 was synthesized by the interaction of 
4,4′-thioxo-bis(4′′-aminophenylene) with 4-chloroben-
zaldehyde by fusion for a short period of time and then 
refluxed in ethanol. The structure of this monomer was 
elucidated by both elemental and spectral analyses as 
described in the experimental part (cf. figures  S1–S3). 
Where, the IR spectrum showed a new characteristic 
absorption peak at 1620 cm−1 which was attributed to the 
formation of azomethine groups as well as no more bands 

for the primary amino groups were found. Furthermore, 
diarylidenecycloalkanone monomers 4a,b and 5a,b in the 
form of sodium salts were prepared from their parent pre-
cursors 2a,b and 3a,b throughout the reaction with sodium 
ethoxide as estimated in our previous studies [44, 45]. The 
structure of these precursors and monomers were eluci-
dated by correct elemental and spectral analyses [44, 45]. 
Furthermore, the polymerization procedure was tested 
and checked via model compound 6 preparation. One 
mole of monomer 1 interacted easily with double moles 
of sodium phenoxide in DMSO using appropriate amount 
from anhydrous potassium carbonate as a catalyst. A new 
absorption band at nearly 1270 cm−1 which was attrib-
uted to ether connection was found while checking the 
IR spectrum. In addition to other characteristic absorption 
bands which were attributed to other groups are still pre-
sent. The mass spectrum exhibited a molecular ion peak 
(m/z) in accordance with its molecular structure as shown 
in the experimental part (cf. figures S4 and S5). Figures 1, 2 
and 3 showed the schematic diagrams for these recourses, 
monomers as well as model compound 1, 2a,b and 3a,b and 
4a,b and 5a,b and 6 respectively.

On the other hand, a new series of hybrid poly- and 
copoly(ether-arylidene-ether-sulphone)s based on dia-
rylidenecycloalkanone moieties in the polymers essen-
tial body was synthesized through high temperature 
polycondensation method [10–12, 17, 18, 29–31]. These 
polymers as well as copolymers were synthesized by 
the interaction of sulphone based monomer 1 with 
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Fig. 1  Synthetic method for thio-ether based monomer 1 
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Fig. 3  Synthesis of model 
compound 6 
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Fig. 5  Synthesis of 
copoly(ether-arylidene-ether-
sulphone)s 8a–f
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diarylidenecycloalkanone monomers 4a,b and 5a,b in 
DMSO and in the presence of anhydrous potassium car-
bonate [44–46]. The schematic diagrams for such polym-
erization process were illustrated in Figs. 4 and 5 for both 
polymers and copolymers respectively. The chemical 
structure of these new polymers and copolymers was 
confirmed by elemental analyses and spectral data. New 
bands attributed to carbonyl group of the cycloalkanone 
moieties were found in the IR spectra as an evidence for 
the presence of arylidene moieties in the polymers and 
copolymers main chains. Simultaneously, absorption 
peaks due to ether new bonds were also observed. Other 
distinctive peaks which were attributed to the other com-
mon functional groups present in the polymers structures 
for example: azomethine and sulphone groups were also 
examined (cf. figures S6 and S7 as selected examples).

3.2  Polymers characterizations

Solubility character of polymers 7a–d and copolymers 8a–f 
was determined at room temperature using 0.02 g of poly-
mer or copolymer sample in 3–5 ml of different solvents. 
The solubility data were listed in Table 1. Dimethyl sulfox-
ide, dimethylformamide, tetrahydrofuran, dimethylaceta-
mide, chloroform: acetone mixture (1:1/v: v), methylene 
chloride, formic and concentrated Sulfuric acid were used 
as solvents in solubility measurements. The data in Table 1 
showed that, all the polymers and copolymers, were com-
pletely soluble in HCOOH and conc.  H2SO4 acids; while 
they were insoluble in common organic solvents. As it can 
be also clarified from Table 1, most of the polymers and 
copolymers were completely soluble in DMSO and DMF 

exclude polymer 7a and 7a,b for both solvents respectively. 
Furthermore, in THF solvent it was mentioned that, all sam-
ples were partially soluble except copolymers 8d–f which 
were easily soluble. Whereas, in DMA all of the copoly-
mers were readily soluble except copolymer 8a which was 
partially soluble. More particularly, all the polymers and 
copolymers were partially soluble or completely insolu-
ble in chloroform: acetone mixture and methylene chlo-
ride. The synthesized series was noticeably slightly more 
soluble in all the selected solvents as compared to other 
similar series, this was mainly attributed to the presence of 
sulphone groups together with cyclohexanone moieties 
in the polymers main chains [11, 12, 21, 47]. Furthermore, 
the solubility character of the synthesized copolymers was 
slightly higher than the corresponding polymers which 

Table 1  Solubility characteristics and inherent viscosity of poly(ether-arylidene-ether-sulphone)s 7a–d and copoly(ether-arylidene-ether-
sulphone)s 8a–f

++: Soluble at room temperature (RT)

+: Partially soluble at (RT)

−: Insoluble

*: Inherent viscosity was measured in DMSO at 30 °C

Polymer code Chloroform-
acetone mix

Methylene 
chloride

DMA THF DMF DMSO Formic acid Sulfuric acid ηinh* (dL/g)

7a − − + + + + ++ ++ –
b − − + + + ++ ++ ++ 0.38
c + + ++ + ++ ++ ++ ++ 0.44
d + + ++ + ++ ++ ++ ++ 0.33
8a + − + + ++ ++ ++ ++ 0.61
b + − ++ + ++ ++ ++ ++ 0.55
c + − ++ + ++ ++ ++ ++ 0.49
d + + ++ ++ ++ ++ ++ ++ 0.70
e + + ++ ++ ++ ++ ++ ++ 0.54
f + + ++ ++ ++ ++ ++ ++ 0.66

Table 2  GPC molecular weight results for selected polymers and 
copolymers 7b,d and 8b,d,f

a All GPC measurements were performed in DMF
b number-average molecular weight
c Weight-average molecular weight
d PDI = Mw/Mn
f Average number of repeating units

Polymer code aGPC

bMn
cMw

dPDI fPw

7b 79,061.7 87,467.2 1.106 ~ 113
d 73,320.7 82,947.5 1.13 ~ 105
8b 90,705.7 103,427.1 1.14 ~ 72
d 102,245.4 116,392.5 1.14 ~ 78
f 91,726.8 108,842.6 1.19 ~ 72
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may be attributed to the presence two cycloalkanone 
moieties in the polymers backbone compared to the cor-
responding polymers.

It is well known that polymers molecular weight gives 
us a real indication about the chain length. Determina-
tion of molecular weight was carried out by GPC meas-
urement for selected polymers and copolymers samples 
7b,d and 8b,d,f and the resulting data were listed in Table 2. 
The data in Table 2 showed the average number molecular 
weight (Mn), the average molecular weight (Mw), PDI (poly-
dispersity index, which represents Mw/Mn) and finally the 
average number of repeating units (Pw) for each sample. 
A clear look to the data in Table 2, it was easily to notice 
that, Mn values for the tested samples were in the range 
102,245.4–73,320.7; while Mn values were ranged from 
116,392.5 to 82,947.5; so that PDI values were nearly the 
same ~ 1.14–1.13 except for polymer 7b and 8f~ 1.10 and 
1.19 respectively. Accordingly, the average number of 
repeating units were in the range 113–72 depending on 
the estimated molecular weights and theoretical molec-
ular weight values for the repeating units. The resulting 
average molecular weight for tested polymers was some-
what lower than that observed for the tested copolymers. 
Polymer 7b showed the highest average repeating units 
Pw= ~ 113; whereas, copolymers 8b,f showed the lowest 
Pw values~ 72 in both cases. By comparing the data for 
all the selected polymers and copolymers it was found 
that, copolymer 8d provide the highest average molecu-
lar weight in spite of its average repeating units is low 
(Mw= 116,392.5, Mn= 102,245.4, Pw= ~ 78 and PDI = 1.14). 
Whereas, polymer 7d provide the lowest average molecu-
lar weight in spite of its average repeating units still high 
(Mw= 82,947.5, Mn= 73,320.7, Pw= ~ 105 and PDI = 1.13).

The inherent viscosity values (ηinh) for polymers 7a–d, 
and copolymers 8a–f were calculated from the following 
equation [10–12, 21, 22]:

η/ηo represent the viscosity ratio and C represents the sam-
ple concentration, almost 0.5 g/100 ml of DMSO was used. 
The results were also listed in Table 1. Polymer 7a had no 
ηinh value due to partial soluble indicator. Copolymer 8d 
was the highest viscous copolymer compared to the other 
tested ones, its ηinh value was 0.70 dL/g due to its higher 
molecular weight value. However, copolymers 8a,f still 
have high ηinh values (0.61 & 0.66 dL/g) but slightly lower 
than 8d. Whereas, polymers 7b,d were the lowest viscous 
polymers, their ηinh values were 0.38 dL/g and 0.33 dL/g 
respectively. These results were in agreement with that 
observed from GPC results in the previously mentioned 
paragraph. The order of higher viscosity for all polymers 

�inh = [2.3 log �∕�o]∕C

and copolymers was 8d > 8f > 8a > 8b,e > 8c > 7c > 7b,d, which 
was also in harmony with GPC consequence.

Figure  6 shows the scanning electron microscopy 
micrographs of polymer 7a as selected example. A nee-
dles-like aggregates were observed on the surface of poly-
mer 7a in both magnifications of X = 500 and 1000 Figs. 6a, 
b respectively.

Figure 7 illustrated the X-ray diffraction analyses for 
selected polymers and copolymers 7a,c and 8b,f in the 
region 2θ = 5°–60°. The data in Fig. 7 also showed no sig-
nificant changes in the crystal structures for all tested 
samples; the crystallographic data were nearly similar. 
Furthermore, the XRD diffractograms showed high degree 
of crystallinity in all samples which indicated that these 
polymers and copolymers were crystalline. This remarks 
confirm that, there was a major class of structures that 
were found in the ordered states between crystalline 
and amorphous phases with respect long-range order 
in the configuration of their atoms and molecules. As it 
was reported, the existence of methoxy groups as pen-
dent groups along the polymer backbone decrease the 

Fig. 6  SEM micrograpgs of polymer 7a surface at magnifications of 
X (a: X = 500 and b: X = 1000)
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crystallinity [45]. Whereas, copolymer 8f showed high 
crystallinity which may be attributed to the presence of 
sulphone groups together with cyclohexanone moieties 
along the polymer chain.

The thermal behavior of polymers is very important 
character in order to understand the thermal stability and 
the degradation processes that may occur in our targeted 
products. TG values were measured from room tempera-
tures up to 750 °C. Table 3 showed the temperatures for 
diverse percentages of degradations. Temperatures at 10, 
20, 30, 40 and 50% of weight losses were determined in the 
form of  T10,  T20,  T30,  T40 and  T50 respectively. No significant 

decomposition were mentioned before  T10 in all cases, so 
that it was treated as polymers degradation temperatures 
(PDT). PDT values were highly significant which give us 
good indicator about the thermal stability of this new 
series. PDT values were appeared in the rang 234–330 °C. 
Therefore, no considerable decomposition occurs before 
nearly 300 °C except for copolymer 8d that showed  T10 at 
234 °C. the PDT thermal stabilities of these polymers and 
copolymers were in the order 7d > 8a > 7b > 8e > 8b > 8d. Pol-
ymer 8d showed the lower thermal stability than the oth-
ers only at  T10, while it showed normal thermal behavior 
at other detected temperatures similar to the others. The 
polymers decomposed mainly in two steps. The predict-
able nature of decomposition count on the origin of these 
polymers and copolymers. The degradation in first step 
was attributed to a pyrolytic oxidation of carbon–carbon 
double bonds that come from arylidene moieties followed 
by cleavage of many other weak bonds. Meanwhile, the 
prospective nature of degradation in the second step was 
attributed to cleavage of ether as well as sulphone bonds 
and scission of many other bonds. At the end, many burnt 
segment produced as an indicator for the formation of end 
products. The degradation mechanism was nearly similar 
to that observed in our previous studies for polymers carry 
the same groups in their backbones [10, 11, 21]. The exten-
sive weight loss % (EWL) was referring to the observed 
weight loss at 600 °C. EWL values were ranged between 
29 and 41% for all tested samples. EWL can go for further 
decomposition while the temperatures are going to raise 
up until the formation of end char product at the end of 
each degradation process. Copolymer 8e showed the low-
est EWL value while polymer 7b showed the highest value; 
which was referring to the higher and the lower stability 
of both products respectively. Copolymers 8d,e displayed 
higher  T40%  andT50% values than others  T50% values (568, 
593 and 550, 631 °C) which was referred to the higher sta-
bility of those polymers. While  T50% values for other sam-
ples were nearly comparable and ranged between 560 and 
570 °C (+2). Whereas, polymer 7b and copolymer 8a have 
lower thermally stable values at  T40 and  T50 (528, 560 and 

Fig. 7  XRD patterns of poly(ether-arylidene-ether-sulphone)s 7a,c 
and copoly(ether-arylidene-ether-sulphone)s 8b,f

Table 3  Thermal properties 
of poly(ether-arylidene-
ether-sulphone)s 7a–d and 
copoly(ether-arylidene-ether-
sulphone)s 8a–f

a The values were determined by TGA at heating rate of 10 °C min−1

b The values were determined by TGA AT 600 °C

Polymer code EWLb % Temperature (°C) for various percentage  decompositionsa

10% 20% 30% 40% 50%

7b 41 318 360 488 528 560
d 36 330 368 502 540 570
8a 39 320 427 480 526 562
b 35 296 432 480 540 572
d 32 234 398 470 568 593
e 29 300 415 476 550 631
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526, 562 °C) than other products. These results were in a 
complete harmony with that observed for EWL values.

3.3  Applications

3.3.1  Detection of  Co+2 ion by sulphone base copolymers

The potential application of the proposed cationic sensor 
based on copolymer 8e/binder/GCE has been performed 
to detect selective  Co+2 ion in aqueous medium (pH = 7.0). 
The  Co+2 cationic sensor has been exhibited advantages 
such as stability in air and chemical environment, non-
toxicity, enhanced electrochemical activity, simplicity to 
assemble, inexpensive, very easy to fabricate and above all 
safe chemo-characteristic. During the successive detection 
of  Co+2 ion in neural buffer medium, the electrochemical 
response is measured on thin film of copolymer 8e/binder/
GCE and the holding period of sensing performance has 
been fixed for 1.0 s in electrochemical analyzer.

For  Co+2 ionic sensor, the resultant current response 
in electro-chemical method of copolymer 8e/binder/GCE 
considerably was changed when aqueous metallic ana-
lyte was adsorbed onto the sensor surface. The copoly-
mer 8e/binder/GCE was applied for fabrication of ionic-
sensor, where  Co+2 ion was measured as target analyte 
by selectivity study. The fabricated copolymer 8e/binder/
GCE electrode was placed into the oven at low tempera-
ture (30.0 °C) for 2.0 h to make it dry, stable, and uniform 

the fabricated-surface totally. Electrochemical signals of 
 Co+2 ionic sensor were anticipated having copolymer 8e/
binder/GCE onto thin-film as a function of current ver-
sus potential. A significant amplification in the current 
response with applied potential was noticeably confirmed 
during electrochemical investigation at room conditions. 
Electrochemical characteristic of the copolymer 8e/binder/
GCE was activated as a function of  Co+2 ions concentration 
at room conditions, where improved current response was 
presented in Scheme 1 in presence of different analytes 
including target  Co+2. For a low concentration of  Co+2 ions 
in liquid medium, there was a smaller surface coverage of 
 Co+2 ions onto copolymer 8e/binder/GCE film and hence 
the surface reaction proceeds steadily. By increasing the 
target  Co+2 ions concentration, the surface reaction was 
increased significantly (gradually increased the response 
as well) owing to surface area (assembly of copolymer 8e/
binder/GCE) contacted with  Co+2 ions (Scheme 1a). Fur-
ther increasing of  Co+2 ions onto copolymer 8e/binder/
GCE sensor surface, it exhibited a more rapid increasing 
of the current responses, due to larger area covered by 
 Co+2 ions and the interaction of lone-pair of nitrogen, 
sulfur, and oxygen containing with the functional groups 
(Scheme 1b). The cation can be adsorbed onto the nitro-
gen, sulfur, and oxygen sites of the co-polymer chains. 
Usually, the surface coverage of  Co+2 ions on copolymer 
8e/binder/GCE surface was reached to saturation, based 
on the regular enhancement of current responses with 

Scheme 1  Mechanism of the probable interaction of  Co+2 with co-
polymer with conducting nafion binders embedded onto GCE. a 
Fabricated GCE electrode with co-polymer, b adsorption of  Co+2 on 

the copolymer 8e, and c corresponded current responses in pres-
ence of  Co+2 ions by electrochemical method
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different analytes, which was shown in Scheme 1c. In the 
other approach, current–voltage behaviors of the copoly-
mer 8e were activated as a function of  Co+2 ions concentra-
tion at room conditions, where improved current response 
was observed. The possible interaction on bonding mech-
anism between  Co+2 ions and copolymer 8e was explained 
in this Scheme 1. As obtained, the current response of the 
copolymer 8e fabricated GCE was increased (π–π as well as 
π–π* interaction) with the increasing of  Co+2 ionic concen-
tration in the bulk solution, however similar phenomena 
for toxic chemical detection have also been reported ear-
lier [48–55]. For a low concentration of  Co+2 ions in buffer 
medium, there was a smaller surface coverage of  Co+2 ions 
on copolymer 8e/binder/GCE and hence the surface reac-
tion proceeds steadily. By increasing the  Co+2 ions con-
centration, the surface reaction was increased significantly 
(gradually increased the response as well) due to surface 
area (assembly of copolymer 8e/binder/GCE) contacted 
with  Co+2 ions molecules. Further increasing of  Co+2 ions 
onto copolymer 8e/binder/GCE surface, it exhibited the 
rapid increasing of the resultant current responses. This 
attributed to larger area is covered by  Co+2 ions and the 
π-π interaction of the functional groups in copolymer 8e. 
The π–π and π–π* interaction could be approached as 
inter-molecular and intra-molecular interactions of the 
copolymer 8e [56]. Usually, the surface coverage of  Co+2 
ions on copolymer 8e/binder/GCE surface was reached to 
saturation, based on the regular enhancement of current 
responses.

To estimate the selectivity of the proposed cation sen-
sor, a number of heavy metal ions were considered to 
investigate by electrochemical method at 0.01 µM and 
7.0 pH. The Fig. 8a was represented such electrochemi-
cal responses of  Co+2,  Pb+2,  Gd+3,  Zn+2,  Cr+3,  Ce+2,  Ca+2, 
 Fe+3,  Hg+2, and  Cd+2. Obviously, among the heavy metal 
ions,  Co+2 ion has been showed the supreme and intensive 
electrochemical response. The response time of a chemical 
sensor was important analytical performance. Thus, the 
 Co+2 cation sensor has been investigated at 0.01 µM con-
centration of  Co+2 and pH of 7.0 to estimate the response 
time. As it was showed in Fig. 8b, the steady state elec-
trochemical response has been obtained at around 18.0 s. 
This value of response time was very good and fast enough 
to detect the target analyte compared to publish report by 
Shimizu et al. [57]. The reproducibility was another impor-
tant criteria to measure the reliability of chemical sensor. 
The reproducibility test has been executed at 0.01 µM 
concentration of  Co+2 and pH of 7.0. As it was demon-
strated in Fig. 8c, the seven replicated run have been exe-
cuted under the identical condition, but electrochemical 
responses were indistinguishable and any changes were 
not found even after washing the electrode in each run. 
Therefore, it was provided the evidence for reliability of 
method. The relative standard deviation of the reproduc-
ibility was calculated and it was found to be 0.91%. The 
synthesized copolymer 8e/binder/GCE sensor probe was 
not equally active in whole pH range in the electrochemi-
cal solution. Therefore, obtaining the maximum current of 

Fig. 8  Optimization of  Co+2 ion 
sensor with sulphone based 
copolymer a selectivity, b 
response time, c reproducibil-
ity, d control experiment, and 
d pH effect
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the electrochemical responses, the pH of the measuring 
buffer system was necessary to optimize for copolymer 
8e/binder/GCE. Figure 8d represents the electrochemical 
response of pH ranged from 5.7 to 8.0. Obviously, among 
the all pH system, the highest electrochemical response 
was found at pH 7.0. Therefore, the rest experiment was 
carried out at pH 7.0.

The Fig. 9a showed the electrochemical responses of 
 Co+2 ion based on the concentration of  Co+2 ranging from 
1.0 nM to 0.1 M. obviously, this was very wide range of 
concentration of  Co+2 and applied potential was above 
+1.0 V. As it was presented in Fig. 9a, the current versus 
potential (electrochemical) responses were distinguish-
able from lower to higher concentration of  Co+2 ion. A 
calibration curve (Fig. 9b: current versus concentration 
of  Co+2) has been plotted by taking the current data, 
which were collected from Fig. 9a at applied potential 
+1.5 V. The linearity of this plot has been estimated with 
the concentration axis in logarithmic scale and the linear 
relationship of plot was found with the regression coef-
ficient  (r2 = 0.9814). The sensitivity of the proposed  Co+2 
ion sensor was calculated from the slope of calibration 
curve by considering the active surface area and it was 
found to be 12.8165 µA mM−1 cm−2. The linear dynamic 
range (LDR) was fixed as concentration range of  Co+2 ion 

from the calibration plot. The calibration plot was maxi-
mum linear in the range of 1.0 nM to 0.01 M. The estimated 
detection limit (DL) was calculated as 0.74 ± 0.04 nM at 
signal to noise ratio of 3. Thus, it can be noticed that the 
proposed  Co+2 ionic sensor probe would be a reliable to 
detect selective  Co+2 ion by electrochemical method in 
aqueous medium.

From the Fig. 9a, the electrochemical responses of  Co+2 
ion was varied with the concentration of  Co+2. As it was 
observed, electrochemical response was exhibited the 
highest value with the lowest concentration of  Co+2 ion. 
At the time of sensing performance of  Co+2 in aqueous 
medium, electrochemical response was measured on 
surface of thin-film of fabricated copolymer 8e/binder/
GCE sensor probe. At the initial of this experiment, the 
small surface coverage on the working electrode was 
observed due the adsorption of few of  Co+2 ions onto 
surface of working electrode of proposed cationic sen-
sor and corresponding reaction was started slowly in the 
beginning. With the increasing of  Co+2 cation concentra-
tion in sensing medium, the surface coverage by  Co+2 ion 
was also increased. Further, enrichment of  Co+2 cation 
in sensing medium, the corresponding surface cover-
age was approached to its equilibrium. In this condition, 
a steady state current density was obtained. The Fig. 9b 

Fig. 9  a Concentration 
variation of  Co+2 cation sen-
sor based on copolymer 8e/
binder/GCE by I–V method and 
b calibration curve (Inset: log 
 [Co+2 ion. Conc.] vs. current)
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was described this steady state current versus concen-
tration relation and experimental data were distributed 
homogeneously around linear plot. Therefore, it should be 
noted that,  Co+2 cationic sensor based on copolymer 8e/
binder/GCE can applied to detect  Co+2 cation successively 
in aqueous medium by electrochemical method. The loga-
rithm of calibration plot was also presented in the inset of 
Fig. 9c, where the linearity was observed. Furthermore, a 
control experiment has been performed and presented in 
Fig. 9d with various modification of GCE such as bare-GCE, 
Nafion/GCE and copolymer(8e)/Nafion/GCE. It was clearly 
observed that the current response was significantly found 

higher on  Co+2 detection with copolymer(8e)/Nafion/
GCE compared with only bare-GCE and Nafion/GCE elec-
trode probes. As it was previously described in Fig. 8b, the 
response time was around 18.0 s, that means, this time 
was necessary to find steady state detection of  Co+2 ion in 
phosphate buffer system with pH value of 7.0. Thus, with 
this study, the data recording time was set as 20.0 s. Table 4 
showed the comparison of sensor performances based on 
various modified electrodes [48–51, 58–67]. Therefore, the 
proposed cationic sensor based on copolymer 8e/binder/
GCE was very simple and reliable for selective detection 

Table 4  Comparison of sensor performances for the detection of selective divalent cobalt ion with on various modified electrodes

Materials Method Sensitivity Detection limit Response time References

N2-(bis(pyridin-2-ylmethyl)amino)-N-(2-
((2,4-dinitrophenyl)amino)phenyl)
acetamide

Colorimetric – 0.99 μM – [48]

2-(N-(2-hydroxybenzyl)-N-((pyridin-2-yl)
methyl)amino)-N-(2-hydroxyphenyl)
acetamide)

Colorimetric method – 1.8 μM – [49]

4-diethylaminosalicylaldehyde-diethyl-
enetriamine

Colorimetric method – 0.65 μM – [50]

phthalazine Chromatography – 1.5 μM – [51]
p-(4-n-butylphenylazo)calix [4] arene Potentiometric titration – 4.0 × 10−6 M 25 s [58]
Macrocycle compound Potentiometry – – 20 s [59]
Coumarin moiety/GCE Electrochemical method 19.9146 μA μM−1 cm−2 94.04 pM – [60]
CpAD mesoporous silica Optical method 185.23 mg/g 0.39 μg/L – [61]
P(Py-co-OT)/CF/CS NCs Electrochemical method 16.2848 μAμM−1 cm−2 94.67 pM – [62]
silica based nano-conjugate materials Optical method 170.17 mg/g 0.33 µg/L – [63]
Benzenesulfonohydrazide (BSH)/GCE Electrochemical method 1582.3 pA μM−1 cm−2 87.6 pM – [64]
Ce doped  SnO2 NPs/GCE ICP-OES – – – [65]
Ag2O3-ZnO NCs/GCE ICP-OES 76.69 mg g−1 – – [66]
EBDMBS/GCE Electrochemical method 1.87 μA μM−1 cm−2 0.17 nM – [67]
Copolymer(8e)/binder/GCE Electrochemical method 12.8165 µA nM−1 cm−2 0.74 ± 0.04 nM 18 s Present study

Table 5  The detected 
concentration of  Co+2 ion in 
real environmental samples

a Mean of three repeated determination (signal to noise ratio 3) with copolymer 8e/binder/GCE
b Concentration of  Co+2 ion determined/concentration of  Co+2 ion taken
c Relative standard deviation value indicates precision among three repeated determinations

Sample Added  Co+2 ion con-
centration (µM)

Determined  Co+2 ion conc.a 
by copolymer 8e/GCE (µM)

Recoveryb (%) RSDc (%) (n = 3)

Industrial 
effluent

0.01000 0.01007 100.7
0.01000 0.01006 100.6 0.49
0.01000 0.00998 99.8
0.0100 0.01085 108.5

Sea water 0.0100 0.01097 109.7 0.88
0.0100 0.01104 110.4
0.0100 0.01185 118.5

Tape water 0.0100 0.01186 118.6 1.76
0.0100 0.01222 122.2
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of  Co+2 ion in neutral buffer medium for the safety of 
environment.

3.3.2  Real sample analysis

To find out the validity of copolymer 8e/binder/GCE sensor, 
it was very important to test the proposed  Co+2 cationic 
sensor in real environmental samples by electrochemical 
approach. The applicability of  Co+2 cationic sensor has 
been carried out in various environmental samples, which 
were collected from different sources such as sea water, 
tap water and industrial waste effluents. The resulted data 
were represented in Table 5 and found very satisfactory.

4  Conclusion

A novel class of hybrid poly(ether-arylidene-ether-
sulphone)s and their corresponding copolymers 
has been successfully synthesized through solu-
tion polycondensation technique. 4,4′-thioxo-bis(4′′-
chlorobenzylideneimino-phenylene) was prepared as a 
leading monomer prior the polymerization process. The 
other required monomers, and precursors were also syn-
thesized and their chemical framework were established 
by right elemental and spectral analyses. Alongside, a 
hybrid diphenyl(ether-sulphone-ether) compound was 
synthesized as a model compound and its structure was 
also investigated by both elemental and spectral data. 
The synthesized category of sulphone based polymers 
and copolymers has significantly high solubility charac-
ter and viscosity as well. The average molecular weight 
for tested copolymers is somewhat higher than that 
measured for the tested polymers. XRD diffractograms 
of polymers 7a,c and copolymers 8b,f show high degree 
of crystallinity. Polymer 7b and copolymer 8a have lower 
thermally stable values at  T40 and  T50. Whereas, copolymers 
8d,e display high thermal stability in the same range. The 
PDT thermal stabilities of these polymers and copolymers 
are in the order 7d > 8a > 7b > 8e > 8b > 8d. EWL values are 
ranged between 29 and 41% for all tested samples. The 
 Co+2 cationic sensor based on copolymer 8e/binder/GCE 
is performed well by electrochemical approach in terms 
of good sensitivity, lower detection limit, shorter response 
time, real sample validation, and a broader linear dynamic 
range (1.0 nM ~ 0.01 M). The proposed cationic sensor is 
excellent to detect selective  Co+2 ion in various environ-
mental real samples. Therefore, the  Co+2 cationic sensor 
might be a reliable and effective sensor to detect selective 
 Co+2 ion for the safety of environmental and healthcare 
sector in a broad scales.
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