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Abstract
Time series classification has been an important and challenging research task. In different domains, time series show 
different patterns, which makes it difficult to design a global optimal solution and requires a comprehensive evaluation 
of different classifiers across multiple datasets. With the rise of big data and cloud computing, deep learning models, 
especially deep neural networks, arise as a new paradigm for many problems, including image classification, object detec-
tion and natural language processing. In recent years, deep learning models are also applied for time series classification 
and show superiority over traditional models. However, the previous evaluation is usually limited to a small number of 
datasets and lack of significance analysis. In this study, we give a comprehensive comparison between nearest neighbor 
and deep learning models. Specifically, we compare 1-NN classifiers with eight different distance measures and three 
state-of-the-art deep learning models on 128 time series datasets. Our results indicate that deep learning models are 
not significantly better than 1-NN classifiers with edit distance with real penalty and dynamic time warping.

Keywords  Time series classification · Nearest neighbor · Deep learning

1  Introduction

A time series is the data set arranged at sequential time inter-
vals [22]. It is universally embedded in many fields and appli-
cations, from air pollution to electricity consumption, from 
earthquake to electrocardiogram, and from traffic readings to 
psychological signals [11, 27, 28, 40]. A time series can be uni-
variate, where a sequence of measurements from the same 
variable are collected, or multivariate, where a sequence of 
measurements from multiple variables are collected [37].

Due to its generality, time series has been studied heavily in 
both academia and industry, mainly in three categories, namely, 
forecasting/prediction, clustering, and classification as follows:

•	 Time series forecasting/prediction: the task is to predict 
the value in the next time period, given historical data. 

For example, in a financial market, historical prices can 
be used to build prediction models for next day’s price, 
which guides the trading decision and a better predic-
tion contributes to a higher profit.

•	 Time series clustering: the task is group the unlabeled 
time series into different clusters, using an unsuper-
vised learning approach. For example, given tem-
perature data, different clime types are grouped and 
defined afterwards.

•	 Time series classification: the task is to build classifi-
ers that could automatically decide the types of new 
series, given labeled time series as training data using 
an supervised learning approach. For example, ECG 
records the electrical voltage in the heart and is used 
to determine whether the heart is performing normally 
or suffering from abnormalities.
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In this study, we would focus on the univariate time series 
classification problem. Traditional time series classification 
methods can be classified into three categories:

•	 Distance-based methods: With some pre-defined sim-
ilarity measures, e.g., Euclidean distance or Dynamic 
time warping, k-nearest-neighbors classifier is known 
to be the representation of the distance-based meth-
ods [30], which we would use in this study.

•	 Feature-based methods: these methods extract a set 
of features that are able to represent the global/local 
time series patterns, represented by Bag-of-Words 
(Bow) [32], Bag-of-features framework (TSBF) [5], Bag-
of-SFA-Symbols (BOSS) [39].

•	 Ensemble-based methods: these methods combine dif-
ferent classifiers together to achieve a higher accuracy, 
for example, Elastic Ensemble (PROP) [33] combines 11 
classifiers based on elastic distance measures with a 
weighted ensemble scheme. Shapelet ensemble (SE) 
[4] produces the classifiers through the shapelet trans-
form in conjunction with a heterogeneous ensemble.

Recently, with the rise of big data, cloud computing and 
GPU-based acceleration, deep neural networks, includ-
ing convolutional neural networks and residual networks, 
have achieved a great success for many problems, e.g., 
image classification [23], object detection [38], traffic fore-
casting [25], and handwritten numeral recognition [26]. 
Neural networks have also been applied to time series clas-
sification, e.g., a multi-channel CNN (MC-CNN) is proposed 
for multivariate time series classification [45], and a multi-
scale CNN approach is proposed for univariate time series 
classification [12].

The difficulty for deep learning models in time series 
classification lies in two aspects: diverse problem types 
and limited training data. The success of deep learning 
models has been powered by large amount of datasets, 
e.g., ImageNet [15], in the past years. Whether their advan-
tages remain in time series classification when the data 
size is relatively small is still an open question.

In this study, we focus on a specific question that if deep 
learning models are better than distance-based models or 
not. To study this problem, we compare 1-NN classifiers 
with eight different distance measures and three state-of-
the-art deep learning models on 128 time series datasets. 
Our contributions are summarized as follows:

•	 We present a comprehensive comparison between two 
major types of time series classification models on a 
large number of 128 time series datasets.

•	 Our result reveal that deep learning models perform 
better than distance-based models, albeit the perfor-
mance difference is not significant.

•	 Our detailed results as we provide in the supplemental 
file can be used as baselines for further studies.

The rest of this paper is organized as follows. Section 2 is 
the related work. Sections 3 and  4 define the distance-
based and deep learning models, respectively. Section 5 
gives the description of the time series datasets we use 
in this study. Section 6 presents the experiments and 
the associated result analysis. We conclude this paper in 
Sect. 7.

2 � Related work

In this part, we would give a short review of the related 
work, covering the models both in the distance-based 
and deep-learning approaches. As deep-learning based 
time series classification only begins to spring up in the 
past decade, there is little work comparing these two 
approaches, and we aim to fill the gap.

2.1 � Distance‑based time series classification

Distance-based classifiers are both intuitive and easy to 
implement for time series classification, while the key 
point is the choice of the distance definition, which leads 
to diverse classification performances on different data-
sets. With this consideration, previous studies usually 
evaluate several distance measures simultaneously on as 
many datasets as possible.

Wang et al. [42] conducts an extensive experimental 
study re-implementing eight different time series repre-
sentations and nine similarity measures and their variants, 
and testing their effectiveness on 38 time series data sets 
from a wide variety of application domains. The similarity 
measures include Lp-norms [44] (including L1-norm, e.g., 
Manhattan Distance, L2-norm, e.g., Euclidean Distance 
[16], and Linf-norm), DISSIM [19], Dynamic Time Warping 
(DTW) [6], Longest Common SubSequence (LCSS) [41], Edit 
Sequence on Real Sequence (EDR) [9], Swale [36], Edit Dis-
tance with Real Penalty (ERP) [8], Threshold query based 
similarity search (TQuEST) [2], and Spatial Assembling 
Distance (SpADe) [10]. Bagnall and Lines [3] gives a series 
of experiments to compare 1-NN classifiers with Euclid-
ean and DTW distance to standard classifiers (including 
SVM and Random Forest) on 77 time series classification 
problems and finds that 1-NN with DTW is competitive 
with these standard classifiers, while 1-NN with Euclidean 
distance is fairly easy to beat. Jeong et al. [24] defines a 
weighted dynamic time warping (WDTW) measure, which 
achieves accuracy improvement for time series classifica-
tion than both the DTW and Euclidean distances. Lines 
and Bagnall [33] defines an ensemble classifier of elastic 
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distance measures, which significantly outperforms the 
individual classifiers with one kind of distance measure. 
Furthermore, Abanda et al. [1] gives a comprehensive 
review of distance-based time series classification.

2.2 � Deep learning for time series classification

Inspired by their success in computer vision and natural 
language processing tasks, deep learning models are 
applied in time series classification problems in the past 
few years, as we mentioned in the Introduction section.

Wang et al. [43] proposes a fully convolutional network 
as a strong baseline for time series classification, which 
outperforms a multilayer perceptron and is competitive 
with a much deeper residual network. Karim et al. [29] 
proposes a long short term memory fully convolutional 
network that augments the fully convolutional networks 
with LSTM sub-modules. Attention mechanism is also 
explored for performance improvement and decision 
process visualization. Grabocka and Schmidt-Thieme [21] 
proposes a measure named NeuralWarp that models the 
alignment of time-series indices in a deep representation 
space, by modeling a warping function as an upper level 
neural network between deeply-encoded time series val-
ues. Inspired by the Inception-v4 architecture used for 
computer vision tasks, Fawaz et al. [18] proposes Incep-
tionTime as an ensemble of deep convolutional neural 
network models and achieves a higher accuracy with a 
less time consumption, compared with the HIVE-COTE 

algorithm. Ma et al. [34] proposes a end-to-end framework 
called the Echo Memory Network, which uses echo state 
networks to learn the time series dynamics and multi-scale 
discriminative features.

Deep learning models are also applied in multivariate 
time series classification. Che et al. [7] proposes a metric 
learning model named Deep ExpeCted Alignment Dis-
tancE (DECADE) for multivariate time series, which yields 
a valid distance metric for time series with unequal lengths 
by sampling from an innovative alignment mechanism 
and captures complex temporal multivariate dependen-
cies in local representation learned by deep networks. Fur-
thermore, Fawaz et al. [17] gives a comprehensive review 
of deep learning models for time series classification.

3 � Distance‑based model

3.1 � Nearest neighbor

The nearest neighbor algorithm leverages the similarity 
between different data samples and for a new data sam-
ple, the algorithm finds a predefined number (usually 
denoted as k) of training samples closest in distance to 
the new sample, and predict the label from these known 
samples. The algorithm is shown in Algorithm 1. Then we 
define the different distance measures in the next part and 
choose k as 1 for this study.

3.2 � Distance definitions

In this section, we give the definitions of the eight dif-
ferent distance measures used in this study. We classify 
these measures into three types, lock-step measure, elastic 
measure, and threshold-based measure, where lock-step 
measures compare the ith point of one time series to the 
ith point of another, thus requiring that two time series 
have exactly the same length, while elastic measures 

allow comparison of one-to-many points and one-to-none 
points. The summary of the measures and their abbrevia-
tions used in this study are as follows:

•	 Lock-step Measure

•	 Manhattan Distance (Manhattan)
•	 Euclidean Distance (Euclidean)
•	 Pearson’s Correlation (Cor)

Algorithm 1 k-Nearest Neighbor
Classify (X,Y, x), where X is the training data with size m, Y is the class labels of X, x
is an unknown new sample
for i = 1 to m do

Compute distance d(Xi, x)
end for
Compute set I containing indices for the k smallest distances d(Xi, x)
return majority label for Yi, where i ∈ I
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•	 Elastic Measure

•	 Dynamic time warping (DTW)
•	 Longest common subsequence (LCSS)
•	 Edit sequence on real sequence (EDR)
•	 Edit distance with real penalty (ERP)

•	 Threshold-based Measure
•	 Threshold Query Based Similarity Search (TQuEST)

3.2.1 � Manhattan distance

Manhattan distance is a L1-norm distance, which is meas-
ured along axes at right angles. Given two time series 
X = {x0, x1,… , xN−1} and Y = {y0, y1,… , yN−1} , their Man-

hattan distance is defined as follows:

3.2.2 � Euclidean distance

Euclidean distance [16] is a L2-norm distance, which is the 
straight-line distance in Euclidean space. Given two time 

series X = {x0, x1,… , xN−1} and Y = {y0, y1,… , yN−1} , their 
Euclidean distance is defined as follows:

3.2.3 � Pearson’s correlation

Pearson’s correlation is a number between −  1 and 1, 
which measures the extent to which two variables are 

(1)Manhattan (X , Y) =

N−1∑
i=0

|xi − yi|

(2)Euclidean(X , Y) =

√√√√N−1∑
i=0

(xi − yi)
2

linearly related. Given two time series X = {x0, x1,… , xN−1} 
and Y = {y0, y1,… , yN−1} , their Pearson’s correlation is 
defined as follows:

where x  and y  represent the mean values of two time 
series.

3.2.4 � Dynamic time warping

Dynamic time warping (DTW) [6] computes the opti-
mal alignment between points of two time series with a 
window size, e.g., 100 used in this study. Given two time 
series X = {x0, x1,… , xN−1} and Y = {y0, y1,… , yM−1} , their 
dynamic time warping is defined recursively as follows:

where d(⋅) is Euclidean distance, Rest(X ) = {x1,… , xN−1} , 
Rest(Y) = {y1,… , yM−1}.

3.2.5 � Longest common subSequence

Longest common subsequence (LCSS) [41] finds the long-
est subsequence common to all sequences in two time 
series. Given two time series X = {x0, x1,… , xN−1} and 
Y = {y0, y1,… , yM−1} , their longest common subsequence 
is defined recursively as follows:

where epsilon is a threshold parameter, which we 
choose as 0.1 empirically, Rest(X ) = {x1,… , xN−1} , 
Rest(Y) = {y1,… , yM−1}.

3.2.6 � Edit sequence on real sequence

Edit sequence on real sequence (EDR) [9] counts the num-
ber of edit operations (insert, delete, replace) that are nec-
essary to transform one time series into the other time 
series. Given two time series X = {x0, x1,… , xN−1} and 
Y = {y0, y1,… , yM−1} , their edit sequence on real sequence 
is defined recursively as follows:

(3)Cor(X , Y) =

∑N−1

i=0
(xi − x)(yi − y)�∑N−1

i=0
(xi − x)2

�∑N−1

i=0
(yi − y)2

(4)DTW(X , Y) =

⎧⎪⎨⎪⎩

0 if M − 1 = N − 1 = 0

inf if M − 1 = 0 or N − 1 = 0

d(x0, y0) +min{DTW(Rest(X ), Rest(Y)),

DTW(Rest(X), Y),DTW(X , Rest(Y))} otherwise

(5)LCSS(X , Y) =

⎧
⎪⎨⎪⎩

0 if M − 1 = 0 or N − 1 = 0

LCSS(Rest(X ), Rest(Y)) + 1 if �x0 − y0� ≤ �

max{LCSS(Rest(X ), Y), LCSS(X , Rest(Y))} otherwise
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where Rest(X ) = {x1,… , xN−1} , Rest(Y) = {y1,… , yM−1} , 
dedr(x0, y0) is 0, if the Euclidean distance between x0 and 
y0 is below a threshold, which we choose as 0.1 empirically 
in this study, otherwise dedr(x0, y0) is 1.

3.2.7 � Edit distance with real penalty

Edit distance with real penalty (ERP) [8] is a variant of edit 
distance and searches for the minimal path in a Euclidean 
distance matrix that describes the mapping between the 
two time series. Given two time series X = {x0, x1,… , xN−1} 
and Y = {y0, y1,… , yM−1} , their edit distance with real pen-
alty is defined recursively as follows:

where Rest(X ) = {x1,… , xN−1} , Rest(Y) = {y1,… , yM−1} , d(⋅) 
is Euclidean distance, g is a parameter, which we choose as 
0 empircally in this study.

3.2.8 � Threshold query based similarity search

Threshold query based similarity search (TQuEST) [2] rep-
resents the series based on a set of time intervals that fulfill 
some conditions including all values are above a prede-
fined threshold, and the TQuEST distance between two 
time series is defined in terms of the similarity between 
their threshold passing interval sets. Specifically, given two 
time series X and Y, their threshold query based similarity 
search is defined as follows:

where S(X , �) and S(Y , �) are sets of time intervals in which 
all the values are above a predefined threshold, e.g., 0.1 
used in this study, and the distance between two time 
intervals s = (sl , su) and s� = (s�

l
, s�

u
) is defined as 

d(s, s�) =
√

(sl − s�
l
)2 + (su − s�

u
)2.

(6)EDR(X , Y) =

⎧⎪⎨⎪⎩

N if M − 1 = 0

M if N − 1 = 0

min{EDR(Rest(X ), Rest(Y)) + dedr(x0, y0),

EDR(Rest(X), Y) + 1, EDR(X , Rest(Y)) + 1} otherwise

(7)ERP(X , Y) =

⎧
⎪⎪⎨⎪⎪⎩

∑N−1

i=0
�yi − g� if M − 1 = 0∑M−1

i=0
�xi − g� if N − 1 = 0

min{ERP(Rest(X ), Rest(Y)) + d(x0, y0),

ERP(Rest(X ), Y) + d(x0, g), ERP(X , Rest(Y)) + d(g, y0)} otherwise

(8)

TQuEST (X , Y) =
1

|S(X , �)|
∑

s∈S(X ,�)

min
s�∈S(Y ,�)

d(s, s�)

+
1

|S(Y , �)|
∑

s�∈S(Y ,�)

min
s∈S(X ,�)

d(s�, s)

4 � Deep learning model

In this study, we use three deep learning models for time 
series classification. Previous study shows that a fully con-
volutional network is a strong baseline for time series clas-
sification, which outperforms a multi-layer perceptron and 
is competitive with a much deeper residual network [43].

4.1 � Multi‑layer perceptron

Multi-layer perceptron (MLP) or mutlti-layer nueral net-
work is the most traditional form of deep neural networks, 
with multiple hidden layers between the input and output 

layers. With the standard back-propagation algorithm, the 
gradient of the loss function can be efficiently calculated 
and the weights can be set iteratively. To avoid overfitting 
in a deeper neural network, regularization methods and 
dropout operations are often used. In this study, we use a 
multi-layer perceptron with four layers, where each one is 
fully connected to the output of its previous layers, with 
a dropout operation with rate as 0.2. All the three hidden 
fully connected layers contain 500 neurons and ReLU is 
used as the activation function. The classification result is 
generated by the final layer as a softmax classifier.

4.2 � Fully convolutional neural network

Convolutional neural network (CNN) is a special form of 
deep neural networks, which achieves a great success for 
two-dimensional image processing tasks. In the hidden 
layer of CNNs, each group of neurons (as a filter) shares 
the same weights and performs a convolution operation 
in different regions of the image. Max pooling is used in 
CNNs to reduce the original input size, which uses a max 
operation to choose the max value for each feature map.

CNNs were developed for image classification, in which 
the model accepts a two-dimensional input representing 
an image’s pixels and color channels. Yet, 2D CNNs may 
not be a viable option in numerous applications over 1D 
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signal, e.g., univariate time series as we consider here. To 
address this issue, 1D CNNs have been proposed recently, 
which perform only 1D convolutions (scalar multiplica-
tions and additions). Also the max pooling operations are 
reduced to one dimension.

Instead of using max pooling for size reduction, fully 
convolutional neural networks (FCNs) do not contain any 
local pooling layers and the length of a time series is kept 
unchanged throughout the convolutions. In this study, 
we use a 1D fully convolutional neural network with three 
blocks. Each block is composed of a convolutional layer 
(we use 128, 256 and 128 filters with length as 3 for the 
three blocks) and a batch normalization layer with ReLU as 
the activation function. The result of the third block is con-
nected to a global average pooling layer, which is further 
connected to a traditional softmax classifier.

4.3 � Residual network

Residual network (ResNet) was originally proposed to 
solve image classification, which is featured by the short-
cut residual connections between consecutive convolu-
tional layers [23]. In this study, we use a residual network 
with three residual blocks. Each residual block consists of 
three convolutional layers (we use 64, 128 and 128 filters 
with length as 3 for the three layers), a batch normalization 
layer and the ReLU activation function. We choose the fil-
ter’s length as 8, 5 and 3 respectively for the three residual 
blocks. The residual block’s input is added to the output 
of the third convolutional layer and then fed to the next 
layer. Similar to the fully convolutional neural network, the 
result of the third residual block is connected to a global 
average pooling layer and a traditional softmax classifier, 
which generates the final classification result, and the con-
volutional layers and filters are also one-dimensional.

5 � Data description

In this study, we use the latest UCR Time Series Classifi-
cation Archive [13], which contains 128 datasets from 15 
types, as shown in Table 1. The top three types with the 
largest number of datasets are Image (32), Sensor (30) and 
Motion (17).

The train versus test sample numbers are shown in 
Fig. 1. Most of the datasets have a relatively small size, 
e.g., less than 1000 train samples and less than 2000 test 
samples. This is different from the problems in computer 

vision, where millions of images are collected for train-
ing deep learning models with thousands to billions of 
parameters. With such a small number of training samples, 
it would raise a concern that the deep learning models 
would overfit the training samples and show a poor per-
formance on test sets.

We also plot the distributions of class numbers and time 
series lengths of datasets with different types in Fig. 2a, b, 
respectively. Later we would evaluate how these factors 
would affect the performance of different classification 
models.

6 � Experiment and analysis

6.1 � Implementation

The 1-NN classifiers with different distance measures 
are implemented with an R package named TSdist [35], 
which provides a OneNN function and is convenient to 
switch among different distances. The deep learning 
models are implemented with Python packages includ-
ing fastai 1 and PyTorch 2. They are trained with Adam 
[31] with the learning rate 0.001, �1 = 0.9, �2 = 0.999 and 
� = 1e−08. The loss function for all tested deep learning 
model is categorical cross entropy. We choose the best 
model that achieves the lowest training loss and apply 
it on the test set.

The experiments are conducted on a desktop com-
puter, which has a Windows 10 operating system, 16GB 
random-access memory (RAM) and Intel core i5-9600K 
central processing unit (CPU). A graphical accelerated pro-
cessing (GPU) of GeForce RTX 2070 with 8GB RAM is also 
equipped to accelerate the training process of the deep 
learning models.

6.2 � Data preprocessing

For each dataset, we perform two standard preprocessing 
technologies:

Missing data fill-in with mean values;
Z-score normalization, which is calculated by subtract-
ing the mean from an individual value and then divid-
ing the difference by the standard deviation.

1  https​://www.fast.ai/.
2  https​://pytor​ch.org/.

https://www.fast.ai/
https://pytorch.org/
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Table 1   Dataset grouped 
by problem types, 
where ECG represents 
electrocardiography, EOG 
represents electrooculography, 
EPG represents electrical 
penetration graph, HRM 
represents high-resolution 
melt

Type (Count) Dataset names

Device (9) Computers ElectricDevices
LargeKitchenAppliances RefrigerationDevices
ScreenType SmallKitchenAppliances
ACSF1 HouseTwenty
PLAID

ECG (6) ECG200 ECG5000
ECGFiveDays NonInvasiveFetalECGThorax1
NonInvasiveFetalECGThorax2 TwoLeadECG

EOG (2) EOGHorizontalSignal EOGVerticalSignal
EPG (2) InsectEPGRegularTrain InsectEPGSmallTrain
Hemodynamics (3) PigAirwayPressure PigArtPressure

PigCVP
HRM (1) Fungi
Image (32) Adiac ArrowHead

BeetleFly BirdChicken
DiatomSizeReduction DistalPhalanxOutlineAgeGroup
DistalPhalanxOutlineCorrect DistalPhalanxTW
FaceAll FaceFour
FacesUCR​ FiftyWords
Fish HandOutlines
Herring MedicalImages
MiddlePhalanxOutlineAgeGroup MiddlePhalanxOutlineCorrect
MiddlePhalanxTW OSULeaf
PhalangesOutlinesCorrect ProximalPhalanxOutlineAgeGroup
ProximalPhalanxOutlineCorrect ProximalPhalanxTW
ShapesAll SwedishLeaf
Symbols WordSynonyms
Yoga Crop
MixedShapesRegularTrain MixedShapesSmallTrain

Motion (17) CricketX CricketY
CricketZ GunPoint
Haptics InlineSkate
ToeSegmentation1 ToeSegmentation2
UWaveGestureLibraryAll UWaveGestureLibraryX
UWaveGestureLibraryY UWaveGestureLibraryZ
Worms WormsTwoClass
GunPointAgeSpan GunPointMaleVersusFemale
GunPointOldVersusYoung

Power (1) PowerCons
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Since all the deep learning models take one-dimensional 
time series data as input, there is no need for 1D-to-2D 
reshape in the preprocessing step.

6.3 � Evaluation metrics

The evaluation metric for a single dataset would be the 
accuracy/error ratio on the test set, which corresponds 
to the ratio of correctly/wrongly classified samples. For 
deep learning models, we use the mean accuracy aver-
aged over 10 runs and each run takes 40 epochs. The 
accuracy/error ratio could be used to evaluate the per-
formance of the classifiers on a single dataset. However, 

to comprehensively evaluate the classifier’s performance 
across different datasets, we propose to use three further 
evaluation metrics based on the accuracy for the individ-
ual datasets:

–	 win rate: win rate evaluates the ratio of datasets that a 
classifier is most accurate for. For example, if FCN beats 
every other classifier by earning a 100% accuracy on 
every dataset, then its win rate is 100%, while the oth-
ers are 0%;

–	 average ranks: similar to win rate, but we use the rank 
value instead of only choosing the best one, e.g., the 
most accurate classifier would have a rank value as 1, 

Table 1   (continued) Type (Count) Dataset names

Sensor (30) Car ChlorineConcentration

CinCECGTorso Earthquakes

FordA FordB

InsectWingbeatSound ItalyPowerDemand

Lightning2 Lightning7

MoteStrain Phoneme

Plane SonyAIBORobotSurface1

SonyAIBORobotSurface2 StarLightCurves

Trace Wafer

AllGestureWiimoteX AllGestureWiimoteY

AllGestureWiimoteZ DodgerLoopDay

DodgerLoopGame DodgerLoopWeekend

FreezerRegularTrain FreezerSmallTrain

GesturePebbleZ1 GesturePebbleZ2

PickupGestureWiimoteZ ShakeGestureWiimoteZ
Simulated (8) CBF Mallat

ShapeletSim SyntheticControl
TwoPatterns BME
SmoothSubspace UMD

Spectro (8) Beef Coffee
Ham Meat
OliveOil Strawberry
Wine EthanolLevel
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and the second most accurate one would get a rank 
value as 2, etc. Then we take the average value for the 
ranks across all datasets;

–	 critical difference diagram: following Fawaz et  al. 
[17], we perform the Wilcoxon signed-rank test with 
Holm’s alpha (5%) correction [20] and use the critical 
difference diagram for visualization [14], in which a 
thick horizontal line shows a group of classifiers (a 
clique) that are not-significantly different in terms of 
accuracy.

6.4 � Results

In this section, we discuss our experimental results based 
on the above evaluation metrics. We refer to the distance-
based classifiers with their abbreviations and use FCN, MLP 
and ResNet to denote the three deep learning models.

6.4.1 � Accuracy

The distribution of accuracy for different classifiers is 
shown in Fig. 3. It is not so obvious which classifier is much 
better than the others in Fig. 3.

6.4.2 � Win rate

Win rates of different methods across the 128 datasets split 
by problem types in Table 1 is shown in Table 2. Overall 

ResNet has the highest win rate as 18.6% and keeps this 
advantage for datasets with type as Motion and Sensor, 
while EDR achieves the best win rate for datasets with type 
as Image.

6.4.3 � Average ranks

Average ranks of different methods across the 128 data-
sets split by problem types in Table 1 is shown in Table 3. 
The result agrees with Table 1. We further evaluate the 
impact of different factors, namely, the training sizes 
(in Table 4), time length (in Table 5), class numbers (in 
Table 6). ResNet achieves the best average ranks with 
some exceptions:

•	 ERP is the best for datasets with a training size less than 
100 and a length less than 81;

•	 DTW is the best for datasets with a time length 
between 251 and 450 and a class number between 
10 and 19.

The better performance of ERP on datasets with a sam-
ller training size and a shorter time length is reasona-
ble, since deep learning models tend to perform better 
with a large amount of training data. The better perfor-
mance of DTW over deep learning models needs further 
investigation.

Fig. 1   The train versus test 
sample numbers of datasets 
with different types
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6.4.4 � Critical difference diagram

The critical difference diagram is shown in Fig. 4. As we can 
tell from Fig. 4, deep learning models fail to outperform 
1-NN classifiers with significant differences, even though 
sophisticated models including FCN and ResNet perform 
better. MLP with a simple structure fails to beat the 1-NN 
classifiers. This indicates that 1-NN classifiers with ERP and 
DTW distances remain strong baselines for time series clas-
sification problems.

6.4.5 � Pair‑wise comparison

For better illustrations, we give the pairwise compari-
sons of accuracy between deep learning models versus 
1-NN classifiers with different distance measures (Fig. 5 
for FCN, Fig. 6 for MLP, and Fig. 7 for ResNet). The results 
further confirm that FCN and ResNet present a better per-
formance, while MLP shows no obvious advantages than 
distance-based models. For further analysis, the readers 
may refer to the detailed results as we provide in the sup-
plemental file.Fig. 2   The distributions of class numbers and time series lengths 

of datasets with different types. a Class numbers; b Time series 
lengths

Fig. 3   The distribution of accuracy of different classifiers
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Table 2   Performances of different methods across the 128 datasets split by problem types in Table 1 (bold indicates the best model)

Each entry is the percentage of datasets a classifier is most accurate for

Type Manhattan Euclidean Cor DTW LCSS EDR ERP TQuEST FCN MLP ResNet

Device 0.0 0.0 0.0 11.1 11.1 0.0 0.0 0.0 55.6 0.0 22.2
ECG 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0 50.0 16.7
EOG 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EPG 16.7 0.0 0.0 0.0 16.7 16.7 16.7 0.0 16.7 8.3 8.3
HRM 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Hemodynamics 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Image 0.0 2.9 2.9 8.6 2.9 28.6 5.7 0.0 11.4 17.1 20.0
Motion 9.1 0.0 0.0 9.1 4.5 9.1 18.2 0.0 9.1 9.1 31.8
Power 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Sensor 13.9 2.8 5.6 13.9 2.8 5.6 11.1 0.0 11.1 5.6 27.8
Simulated 0.0 0.0 0.0 33.3 0.0 0.0 22.2 11.1 33.3 0.0 0.0
Spectro 0.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 10.0 60.0 0.0
Spectrum 0.0 20.0 20.0 0.0 0.0 0.0 60.0 0.0 0.0 0.0 0.0
Traffic 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0
Trajectory 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 33.3 0.0 33.3
Overall 6.4 2.6 3.8 11.5 4.5 12.2 11.5 0.6 14.1 14.1 18.6

Table 3   Average ranks of different methods across the 128 datasets split by problem types in Table 1 (bold indicates the best model)

Type Manhattan Euclidean Cor DTW LCSS EDR ERP TQuEST FCN MLP ResNet

Device 6.11 8.44 8.89 4.06 5.28 5.78 3.89 8.78 2.33 9.56 2.89
ECG 6.67 6.00 6.00 8.83 7.33 7.00 4.83 9.50 3.33 3.17 3.33
EOG 6.00 4.50 4.50 1.00 9.50 11.00 3.00 9.50 4.50 8.00 4.50
EPG 3.50 10.50 10.50 8.50 3.50 3.50 3.50 8.50 3.50 5.50 5.00
Hemodynamics 6.00 8.83 8.83 5.67 7.67 1.00 2.67 11.00 3.67 7.33 3.33
HRM 2.00 5.50 5.50 3.00 10.00 8.00 1.00 11.00 7.00 4.00 9.00
Image 6.17 6.48 6.48 5.56 5.88 4.72 4.75 9.61 5.28 6.31 4.75
Motion 5.68 7.65 7.71 5.59 6.47 4.68 3.53 9.47 3.35 9.24 2.65
Power 2.00 4.50 4.50 9.00 10.00 8.00 3.00 11.00 6.00 1.00 7.00
Sensor 5.20 5.93 6.28 5.03 6.47 5.67 5.42 9.72 4.73 7.17 4.38
Simulated 6.31 7.19 7.19 3.44 6.31 7.38 4.50 8.06 3.88 7.50 4.25
Spectro 5.44 4.44 4.44 6.50 8.69 7.44 6.44 7.38 6.38 2.00 6.88
Spectrum 4.00 6.25 6.25 4.00 7.75 8.25 2.75 11.00 6.50 2.75 6.50
Traffic 6.00 6.50 3.50 6.00 10.00 9.00 5.50 11.00 2.50 3.50 2.50
Trajectory 7.00 3.67 5.67 3.00 9.17 10.17 8.00 10.67 2.67 4.33 1.67
Overall 5.70 6.53 6.65 5.30 6.65 5.80 4.66 9.44 4.45 6.56 4.25

Table 4   Average ranks of 
different methods across the 
128 datasets grouped by the 
training size (bold indicates the 
best model)

Train size Manhattan Euclidean Cor DTW LCSS EDR ERP TQuEST FCN MLP ResNet

< 100 5.45 6.33 6.21 5.31 6.11 5.50 4.75 8.67 6.10 5.36 6.21
100–399 5.80 6.77 7.20 4.75 6.47 5.67 4.45 9.78 3.92 7.48 3.71
400–799 6.05 6.67 6.83 5.67 7.00 6.62 5.08 10.32 3.25 5.60 2.90
> 799 5.56 6.12 5.88 6.50 8.19 5.97 4.59 9.31 3.31 8.06 2.50
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7 � Conclusion

In this study, we give an exploration for the question that 
whether deep learning models are better than distance-
based nearest neighbor models or not for time series 
classification. We compare 1-NN classifiers with eight dif-
ferent distance measures and three state-of-the-art deep 
learning models on 128 time series datasets. The results 
indicate that even though ResNet and FCN show a better 
performance for most of the datasets, they are not signifi-
cantly different from 1-NN classifiers with some traditional 
distance measures (e.g., edit distance with real penalty and 
dynamic time warping) in terms of accuracy.

The findings can be interpreted from two aspects. 
From the positive aspect, sophistic deep learning mod-
els do perform better for most of the datasets, which give 
them a higher probability of achieving a good result on a 
new time series classification problem. From the negative 
aspect, the success of deep learning techniques in image 
processing, video processing and natural language pro-
cessing where they are dominant is not so easy to be rep-
licated in time series classification. Old-fashion approach 
of using 1-NN classifiers with distances including edit dis-
tance with real penalty and dynamic time warping is still 
very competitive nowadays.

For further evaluation, more time series data are 
needed, especially those from real problems. Multivariate 
time series may present different results from univariate 
time series. Compared with the diverse deep learning 
models used for image classification, we only evaluate 
three models in this project, which leaves a huge space of 
exploring neural networks with different structures.

Table 5   Average ranks of 
different methods across the 
128 datasets grouped by the 
datasets’ length (bold indicates 
the best model)

Length Manhattan Euclidean Cor DTW LCSS EDR ERP TQuEST FCN MLP ResNet

< 81 5.45 6.33 6.21 5.31 6.11 5.50 4.75 8.67 6.10 5.36 6.21
81–250 5.67 6.58 7.10 5.68 6.65 5.10 5.18 9.98 3.83 6.83 3.38
251–450 6.04 7.11 7.32 3.66 6.34 6.70 3.68 9.91 4.14 7.04 4.07
451–700 6.00 6.29 6.54 6.50 7.21 6.29 5.46 9.88 2.50 7.00 2.33
701–1000 5.75 6.75 6.88 6.00 7.62 3.81 4.31 8.50 4.50 8.50 3.38
> 1000 5.38 5.50 4.88 7.00 8.75 8.12 4.88 10.12 2.12 7.62 1.62

Table 6   Average ranks of 
different methods across the 
128 datasets grouped by the 
class number (bold indicates 
the best model)

Class number Manhattan Euclidean Cor DTW LCSS EDR ERP TQuEST FCN MLP ResNet

< 10 5.73 6.52 6.59 5.67 6.37 5.83 4.91 9.13 4.59 6.20 4.47
10–19 5.00 6.76 6.87 3.42 7.68 5.84 3.53 10.00 4.26 8.37 4.26
> 20 6.43 6.32 6.75 5.29 7.14 5.57 4.57 10.79 3.79 6.57 2.79

Fig. 4   The critical difference diagram



Vol.:(0123456789)

SN Applied Sciences (2020) 2:721 | https://doi.org/10.1007/s42452-020-2506-9	 Research Article

Fig. 5   Accuracy of FCN versus 
1-NN classifiers with differ-
ent distance measures. a FCN 
versus Manhattan; b FCN 
versus Euclidean; c FCN versus 
Cor; d FCN versus DTW; e FCN 
versus LCSS; f FCN versus EDR; 
g FCN versus ERP; h FCN versus 
TQuEST
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Fig. 6   Accuracy of MLP versus 
1-NN classifiers with different 
distance measures. a MLP ver-
sus Manhattan; b MLP versus 
Euclidean; c MLP versus Cor; d 
MLP versus DTW; e MLP versus 
LCSS; f MLP versus EDR; g 
MLP versus ERP; h MLP versus 
TQuEST
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Fig. 7   Accuracy of ResNet 
versus 1-NN classifiers with 
different distance measures. 
a ResNet versus Manhattan; 
b ResNet versus Euclidean; c 
ResNet versus Cor; d ResNet 
versus DTW; e ResNet versus 
LCSS; f ResNet versus EDR; g 
ResNet versus ERP; h ResNet 
versus TQuEST
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