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Abstract
This study developed a compartmental process-based model (PBM) as an alternative approach to estimate ammonia 
emission from liquid dairy manure during storage to improve the accuracy of quantification tools for nitrogen cycling at 
the farm level compared to the currently used non-compartmental PBM. The compartmental PBM developed partitions 
stored manure into several layers in the vertical domain to facilitate the spatial temperature and substrate concentration 
calculations. In contrast, the non-compartmental PBMs currently used consider the bulk stored manure as a material with 
homogenous properties. The models used similar equations and processes from the well-established principles of heat 
and mass transfer and pertinent known biogeochemical processes for the production and emission of ammonia. The 
models were calibrated, and their performance assessed using literature-based experimentally derived ammonia emis-
sion rates. Additionally, a scenario analysis was conducted to compare ammonia emission rate estimates by the models 
from stored liquid manure at a dairy farm during two (cold and warm) storage periods. Model outputs were sensitive to 
ambient air temperature, manure pH, wind speed, manure total ammoniacal nitrogen concentration, and the two-way 
interactions of ambient air temperature, pH, and wind speed. Ammonia emission rates by the models and literature-based 
experimentally derived ammonia emission rates were similar (p > 0.05). In general, the compartmental PBM predicted 
lower ammonia emission rates compared to the non-compartmental PBM. Also, the compartmental PBM had a relatively 
better performance compared to the non-compartmental PBM. Compared to the non-compartmental PBM, the compart-
mental model estimated lower ammonia emission rates, i.e., 28% and 34%, for the cold and warm periods, respectively.

Keywords  Ammonia · Ammonia emission rates · Biogeochemical processes in manure · Compartmental model · Dairy 
manure · Process-based model
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1  Introduction

Ammonia (NH3) is one of the chemically and biologically 
reactive nitrogen (N) compounds that is associated with 
adverse effects to the environment including damage 
to N-sensitive ecosystems and contributing to visibility 
impairment and degradation of air quality through the for-
mation of ammonium containing aerosols when released 
to the atmosphere [1, 2]. Thus, it is imperative to manage 
NH3 in sources like animal agriculture that contribute to 
its loss to the atmosphere. Minimizing or preventing NH3 
loss to the atmosphere is not only good for the environ-
ment but also results in preserving the N content and fer-
tilizer value of stored manure [3, 4]. This study uses as a 
reference, dairy farms, where the three primary sources 
of NH3 are animal housing, manure storage, and crop or 
pasture lands. Specifically, the study addresses N-cycling 
in manure during storage. Developing appropriate mitiga-
tion strategies to prevent NH3 losses from stored manure 
to the atmosphere starts with the knowledge of the quan-
tity of NH3 produced and released [5, 6].

Methods for quantifying NH3 losses from on-farm 
sources include direct measurements, emission factors, 
empirical models, and process-based models (PBMs) [6, 
7]. Direct measurement is the most desirable method for 
quantifying NH3 losses; however, implementing it can be 
challenging and expensive, depending on the site and 
the equipment and skill level required to set up and con-
duct the work [8, 9]. Using emission factors and empirical 
model approaches to estimate NH3 losses are convenient 
but are sometimes unreliable because of the differences in 
management practices and weather conditions (e.g., tem-
perature, wind speed, relative humidity, etc.) that influence 
NH3 emission at study locations compared to the appli-
cation site [6]. The National Research Council (NRC), 2003 
[6], recommended using PBMs to overcome the challenges 

in quantifying NH3 emissions. The NRC stated that PBMs 
developed using well-defined and known physical and 
biogeochemical processes occurring in manure during 
storage provide a better mathematical understanding 
and simulation of the dynamics of the NH3 emission pro-
cess. Since the NRC recommendation about using PBM 
was published, many scientists have developed variants 
of PBMs to estimate NH3 emission from animal feeding 
operations [10–14], some of which include modules for 
manure storage. Briefly, the published PBMs pertinent to 
this study include manure denitrification–decomposition 
(Manure-DNDC) [12], integrated farm system model (IFSM) 
[14], dairy gas emissions model (DairyGEM) [13], process-
based ammonia emission model (PBAEM) [11], and farm 
emissions model (FEM) [10]. In general, these models use 
sub-models (sub-modules) to simulate the various com-
ponents or functions of a dairy farm (e.g., feedlot, hous-
ing, and manure storage structure) to estimate NH3 emis-
sions from the whole farm. Specific to manure storage, 
the storage sub-model of the Manure-DNDC simulates 
the transformation of manure carbon (C) and nitrogen (N) 
during storage and then uses the resulting by-products 
to estimate emissions of NH3 and other manure gases, i.e., 
carbon dioxide (CO2), methane (CH4), and nitrous oxide 
(N2O), nitric oxide (NO), and dinitrogen (N2). Similarly, the 
IFSM and the DairyGEM storage sub-model also estimate 
the emissions of multiple pollutants NH3, N2O, CH4, CO2, 
hydrogen sulfide (H2S), and volatile organic compounds 
(VOC) by simulating the C, N, and sulfur (S) transforma-
tion in the stored manure. In contrast, the PBAEM and the 
FEM storage sub-models estimate only NH3 emission from 
stored manure.

In this study, the common PBMs currently used to esti-
mate NH3 emissions are considered non-compartmental. 
Briefly, non-compartmental PBMs assume and consider 
stored manure as a single homogenous material with uni-
form properties and characteristics. In reality, this assump-
tion is not accurate. The conditions in manure storages are 
heterogeneous and diverse, with spatial variability in phys-
ical, chemical, and biological aspects. Missing to address 
the spatial variability of the manure characteristics such as 
temperature and total ammonia nitrogen (TAN) concentra-
tion during storage [3, 15, 16] is a potential cause of inad-
equate quantification of nitrogen by the models. Given the 
knowledge that manure continuously undergoes a series 
of microbial and biogeochemical reactions and is exposed 
to variable and changing weather conditions, the assump-
tions of the non-compartmental PBM need adjustment. 
This study uses a compartmental PBM approach to capture 
the spatial variation in pertinent parameters that impact 
ammonia production and emissions in a manure storage 
pit as a method to improve the accuracy of model output. 
The compartmental PBM considers the stored manure as a 
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series of smaller, vertically layered compartments with dif-
ferent characteristics that interact with each other. Imple-
menting the compartmental PBMs in this manner has the 
potential to improve the accuracy of models due to the 
ability to estimate and to use the spatially varying param-
eters in the overall calculation of material emitted [17].

The objective of this study was to develop a new 
approach for estimating the production and emission 
rates of NH3 from liquid dairy manure during storage in a 
tank or pit using a compartmental PBM method to replace 
the current non-compartmental PBM. The two modeling 
approaches used similar fundamental equations and pro-
cesses that describe NH3 production, release, and emis-
sions from manure pit during storage. We assessed the 
performance of the models by comparing their outputs, 
i.e., the ability to predict the quantity of NH3 emitted and 
the associated manure characteristics (temperature and 
TAN) during the storage period.

2 � Model development

2.1 � Models description and processes pertinent 
to NH3 production and emission

Manure storages are complex dynamic systems that inte-
grate simultaneous physical and biogeochemical pro-
cesses that enhance the degradation of manure result-
ing in the release of manure gases to the atmosphere. 
The processes (physical and biogeochemical) considered 
in developing models for NH3 production and emission 
during the storage period are in Fig. 1. Ideally, the models 
should calculate the (1) required storage volume, changes 
in stored manure volume and depth, and material balance; 

(2) heat exchange or transfer within the stored manure; 
(3) manure organic nitrogen (Org-N) mineralization; (4) 
diffusion of total ammonium nitrogen (TAN) in the bulk 
stored manure; and (5) NH3 volatilization from the surface 
of the stored manure. Although not listed explicitly, the 
influence of pH on NH3 release is included in the calcula-
tions of the fraction F, during ammonia volatilization. In 
this study, the equations describing similar processes in 
the compartmental and non-compartmental PBMs were 
the same and also identical to those used in implement-
ing NH3 emissions estimates in the commonly used PBMs, 
such as Manure-DNDC [12], IFSM [14], and PBAEM [11].

The compartmental PBM included all the subroutines 
listed above, while the non-compartmental PBM had 
four subroutines: storage size, manure volume/depth 
change, manure TAN, and ammonia volatilization. 
The input parameters and their units used in both the 
compartmental and non-compartmental PBMs are in 
Table 1. The processes and the flow diagram for imple-
menting the compartmental PBM are in Figs. 2 and 3, 
and the flow diagram for the non-compartmental PBM 
is in Fig. 4. The models calculated the size of a storage 
tank required using the basic equations for standard 
geometrical (circular, rectangular) shapes based on 
model inputs. The manure volume introduced into 
storage each day was used for material (manure and 
water) balance calculations to estimate the changes in 
the total depth of manure in the storage structure at 
each time step. In the compartmental model, the heat 
transfer subroutine predicted the temperatures at vari-
ous depths of the stored manure. The estimated tem-
peratures were used in the TAN subroutine to calculate 
the rates of Org-N mineralization and TAN concentration 
at different depths at each time step. The distribution of 

Fig. 1   Biological, chemical, and 
physical processes pertinent 
to ammonia production and 
emission from stored liquid 
dairy manure considered in 
developing the process-based 
models
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spatially in the stored manure is driven by the concen-
tration gradient, which is estimated by the NH3 transfer 
subroutine. Lastly, the NH3 volatilization subroutine cal-
culates the NH3 loss from the surface of stored manure 
to the atmosphere. Unlike the compartmental PBM, the 
non-compartmental PBM does not include sub-models 
(heat transfer and ammonia transfer) to estimate the 
spatial distribution of manure temperature and TAN.   

2.2 � Processes and model equations

2.2.1 � Materials balance in manure storage

The model simulated the process of storing manure for 
6 months. The material balances considered daily aver-
ages of manure scraped from the barn floors, precipita-
tion, evaporation, and storage effluent removed for land 

Table 1   List of the input 
parameters for compartmental 
and non-compartmental 
models

Category Input Units

Weather Average ambient air temperature °C
Total precipitation cm
Average wind speed ms−1

Average relative humidity percent
Wind speed measurement height m
Wind speed correction height m

Herd and manure management Manure storage period d
Number of animals count
Mass of manure produced per animal kg
Mass of bedding used per animal kg
Density of manure kg m−3

Density of bedding kg m−3

Manure storage structure dimensions Total depth m
Surface area open to the atmosphere m−2

Depth of residual manure m
Manure characteristics Initial organic nitrogen concentration kg m−3

Initial TAN concentration kg m−3

pH –

Fig. 2   Physical and biogeochemical processes simulated in the compartmental process-based model
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Fig. 3   Flowchart for imple-
menting the compartmental 
process-based model
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Fig. 4   Flowchart for implementing the non-compartmental process-based model
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application. The tank capacity or size required was calcu-
lated using the American Society of Agricultural and Bio-
logical Engineers (ASABE) guidelines, i.e., the Manure Stor-
ages standard ASAE EP393.3 [18] and Manure Production 
Characteristics standard ASAE D384.2 [19]. Material bal-
ance for manure and water from rainfall at each time step 
followed the mass balance equations outlined in Zhang 
et al. [11]. The assumptions for completing the material 
balance included impermeable bottom and sidewalls of 
the storage tank; minimal material loss through biologi-
cally mediated gases, e.g., CH4, CO2, and H2S, similar to 
[11]; and no recycled wash liquid used when scraping 
manure from barn floors. The manure depth in the stor-
age tank changes daily, depending on the quantities of 
materials fed or removed from storage. The sidewalls of 
the storage structure were perpendicular to the ground 
surface.

2.2.2 � Heat transfer and temperature profile in stored 
manure

The manure temperature at different depths was esti-
mated using the transient heat conduction equation by 
Nellis and Klein [20] assuming that heat transfer occurs 
only vertically along the depth profile (z-direction); tem-
perature variation in the horizontal direction is negligible; 
and manure properties (density, heat capacity, thermal 
conductivity, and internal heat generation) remain con-
stant in space and time. We used the one-dimensional 
(1-D) transient heat transfer Eq. (1), discretized by the finite 
difference method. Using the 1-D approach for tempera-
ture simulation has been reported as adequate by Rennie 
et al. [21]. The finite difference method used to discretize 
the heat transfer equation presents adequate computa-
tional tractability and ease of application to the geometry 
resulting from accumulating manure during the storage 
period.

where k is the thermal conductivity of manure 
(W m−1 °C−1), Q is the internal heat generation rate per 
unit volume (W m−3), ρ is the density of manure (kg m−3), 
c is the specific heat of manure (J kg−1 °C−1), T is the tem-
perature (°C), z is the depth of manure (m), and t is time (h).

Discretization entailed dividing the manure depth into 
sections with defined points (nodes) to solve the heat 
Eq. (1). The discretization process resulted in forming a 
grid containing i layers (elements) of the stored manure 
with a thickness of ∆z and corresponding i + 1 nodes. The 
manure storage structure was assumed to be open to 
the atmosphere. The manure temperature at the surface 

(1)
�T

�t
=

k

� c

(

�2T

� z2

)

+
Q

� c

(interface with the ambient air) depends on external fac-
tors, e.g., ambient air temperature and wind speed. These 
external factors were estimated using the average daily 
ambient air temperature, Eq. (2), described by Stefan and 
Preud’Homme [22].

where TS is the surface temperature of the stored manure 
(°C) and TA is the ambient air temperature (°C).

The model assumed that the temperature of the 
manure at the bottom of the storage tank (boundary 
value) was the same as the surrounding soil temperature. 
The soil temperature at the bottom of the stored manure 
was estimated using the sinusoidal function by Hillel [23].

2.2.3 � Ammonia production and diffusion in stored manure

The TAN concentration in a layer included quantities gen-
erated from the mineralization process of organic nitrogen 
(Org-N) and preexisting quantities in the stored manure. 
The TAN concentration was calculated using Eq. (3) similar 
to Zhang et al. [11]. 

where CTAN,i,n is the concentration of TAN in the ith layer at 
the end of nth time step (kg N m−3), CTAN,i,n−1 is the concen-
tration of TAN in the ith layer at the beginning of nth time 
step (kg N m−3), kON20

 is the rate constant of mineralization 
at 20 °C (d−1), θ is the temperature coefficient, CON,i,n is the 
concentration of Org-N in ith layer at nth time step, and Ti,n 
is the temperature of manure in the ith layer at nth time 
step (°C).

The changes in TAN concentration in the layers of stored 
manure occur mainly through diffusion. The diffusion pro-
cess followed Fick’s second law (Eq. 4) for unsteady-state 
conditions [24]. In this study, NH3(g) volatilization or loss to 
the atmosphere occurs from the surface layer and triggers 
the diffusion process. Briefly, NH3(g) loss to the atmosphere 
occurs when the concentration of NH3(aq) at the surface 
layer is lower than the concentration in bulk of the stored 
manure, creating a gradient. This concentration gradient 
then triggers the process of NH3 diffusion from the bottom 
to the top layers of the stored manure. The finite difference 
method and discretization techniques similar to that used 
in the heat transfer section were used to solve the partial 
differential Eq. (4) to calculate the concentration at each 
node along the z-direction.

(2)TS = 5.0 + 0.75 TA

(3)CTAN,i,n = CTAN,i,n−1 + kON20
�(Ti,n−20)CON,i,n

(4)
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(
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where D is the diffusion coefficient of NH3 (m2 h−1), C is the 
concentration of NH3 (kg N m−3), z is the depth of manure 
(m), and t is time step (h).

2.2.4 � Ammonia volatilization

The volatilization or loss of NH3(g) from the surface of the 
stored manure to the atmosphere followed the two-phase 
boundary layer process described by De Visscher et al. 
[25]. This process follows a two-step mass transfer process 
involving diffusion of NH3(aq) from manure bulk liquid to 
liquid–gas interface and convective NH3(g) transfer from 
the liquid–gas interface to the atmosphere governed by 
Eq. (5).

where MNH3
 MNH3 is the NH3 emission rate from manure 

surface (kg m−2 s−1), CL is the concentration of TAN in the 
top layer of stored manure (kg m−3), CA is the concen-
tration of TAN in the air (kg m−3), F is the fraction of free 
ammonia present as TAN, and KL is the mass transfer coef-
ficient (m s−1).

The mass transfer coefficient (KL) of NH3 was calculated 
using Eq. (6). The details on how to calculate Henry’s con-
stant (H) and mass transfer coefficients of NH3 in the liquid 
phase (kL) and gas phase (kG) are in [25].

where H is Henry’s constant, kL is the mass transfer coef-
ficient of NH3 in the liquid phase (m s−1), and kG is the mass 
transfer coefficient of NH3 in the gas phase (m s−1).

3 � Selecting computational platform 
and model algorithm development

The codes for compartmental and non-compartmental 
PBMs were developed in MATLAB software (MATLAB 
2016a version 9.0). The MATLAB platform provides a con-
venient and amenable programming environment that 
allows quick algorithm testing without recompilation. 
The flowcharts providing the basis for the algorithms 
used for the compartmental and non-compartmental 
PBM are in Figs. 3 and 4, respectively. The compartmen-
tal PBM (Fig. 3) assumes that manure depth in the stor-
age structure changes with new material added daily. 
The manure added each day was considered to spread 
uniformly over the top layer of the stored manure with 
no mixing between layers. The geometry used for heat 
transfer and material balance changes with the addition 
of new manure daily. The model assumes that 0.3 m of 

(5)MNH3
= KL(F CL − CA)

(6)KL =
kLH kG

kL + H kG

manure is present in the storage tank at the beginning of 
the storage period and new material added once every 
day (24-h period). The change in manure depth during the 
storage period depends on the flow of materials depicted 
in Fig. 5. The geometry used for heat and material balance 
calculations was modified on a daily (1 day or 24 h) time 
step. In applying the compartmental PBM, the manure 
in storage was discretized by setting the thickness (∆z) 
of each manure layer to 0.01 m and nodes defined at the 
boundaries (Fig. 5). At each time step, a new geometry was 
created by adding a new layer of manure to the quantity at 
the previous time step and new sets of manure properties 
calculated. The process repeats for 180 days, i.e., the time 
assumed for the manure storage to fill up before being 
emptied. For the non-compartmental PBM, the incoming 
manure is mixed in with the existing batch, and new mate-
rial balances and other manure characteristics and model 
attributes are calculated for the entire new volume (Fig. 4).

4 � Model evaluation

The model evaluation comprised calibration and per-
formance assessments using data from a field study at a 
lagoon in a dairy farm in Jasper Co., Indiana, by Grant and 
Boehm [26]. We divided the experimental data into two 
periods, May 29 to August 17, 2009 (Period I), and March 
12 to April 27, 2009 (Period II). The data from Period I and 
Period II were used for model calibration and performance 
assessment, respectively. The number of data points was 
81 and 47 for Periods I and II, respectively. Although not 
ideal, the dataset used was the most complete we found 
in the literature to calibrate and perform assessments 
of our model. The experimental data reported daily NH3 

Fig. 5   Representation of modeled material flows, manure layers, 
and manure depth during storage
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emissions (g m−2 day−1), average ambient air temperature, 
and manure pH. We obtained other model input param-
eters, such as wind speed, relative humidity, and precipita-
tion, not reported as part of the dataset from NCEP [27].

First, we calibrated the models by fine-tuning the 
parameters pertinent to NH3 diffusion, NH3 volatiliza-
tion, and heat transfer within the manure listed in Table 2, 
before undertaking the model performance. Each calibra-
tion step entailed defining three levels (low, medium, and 
high) for each model parameter presented in Table 2. The 
model calibration started by setting all the parameters at 
their lowest levels and running the simulation with input 
parameters similar to those of Period I of the field study 
(i.e., the days of data collection). The values of the param-
eters were changed one at a time, at the end of every sim-
ulation run. The final parameter value was then selected 
based on the defined model performance criteria. We 
assessed the model performance using the magnitudes 
of the Pearson’s correlation coefficient, r, Eq. (7), and the 
normalized mean square error, NMSE, Eq.  (8) resulting 
from comparing the model estimated and experimentally 
derived NH3 emission rates [32]. Typically, values of r range 
from − 1 to 1, with values close to 1, suggesting excellent 
model performance and a strong positive relationship 
between experimentally derived and predicted values. 
The NMSE is a measure of the overall deviation between 
experimental and predicted values. NMSE values of zero 
indicate a perfect model, while NMSE values < 0.25 imply 
adequate model performance.

where r is the Pearson’s correlation coefficient, NMSE is the 
normalized mean square error, YOi is the experimentally 

(7)
r =

∑n

i=1

�

YOi − YO
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�
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nYOYP

derived NH3 emission rate (g m−2 day−1), YPi is the pre-
dicted NH3 emission rate (g m−2 day−1), ȲO is the average of 
experimentally derived NH3 emission rates (g m−2 day−1), 
YP is the average of predicted NH3 emission rates (g m−2 
day−1), and n is the number of observations.

The model performance was conducted by running 
simulations to generate NH3 emission rates using the cal-
ibrated model parameters and the weather data corre-
sponding to Period II (March 12 to April 27, 2009) of the 
field study (Table 3). The r and NMSE were calculated to 
evaluate the agreement between the experimental and 
model estimated NH3 emissions data for Period II. The 
differences between the experimentally derived ammo-
nia emission rates and the predicted ammonia emission 
rates by the compartmental and non-compartmental 
PBMs were calculated, and statistical significance tested 
using a t test, with the p value set at 0.05.

4.1 � Sensitivity analysis

Sensitivity analysis to ascertain the contribution of the 
input parameters and their interactions to the variance 
of outputs of the compartmental and non-compart-
mental PBMs was conducted using the global sensitiv-
ity analysis (GSA) approach by Saltelli et al. [34]. We ran 
a total of 100,000 Monte Carlo simulations using model 
input parameters randomly drawn from their expected 
ranges (Table 4). The input parameter values were con-
sidered uniformly distributed within the listed ranges. 
The results from the Monte Carlo simulations were used 
to calculate the sensitivity coefficients of the input 
parameters and their interactions to assess their impact 
on the model output [34, 39]. The sensitivity coefficients 
were ranked by order (e.g., first order, second order) and 
magnitude. In general, the influence of parameters or 
parameter interactions on the model output is directly 
proportional to the size of the coefficient, i.e., the larger 
the factor, the more significant the impact. 

Table 2   Range of parameters values used in model calibration and the selected parameter values after calibration

Process Parameter Range Calibrated Units References

NH3 volatilization Roughness height ( z0) 8 × 10−5 to 1 × 10−3 1 × 10−3 m [28]
Diffusion of NH3 in manure Diffusion coefficient ( D) 1.24 × 10−9 to 2.5 × 10−9 2.5 × 10−9 m2 s−1 [3, 29]
Organic nitrogen mineralization Temperature coefficient ( �) 1.036–1.2 1.2 – [11, 13]

Mineralization rate constant ( kON20
) 0.007–0.06 0.06 d−1 [11, 13]

Manure temperature Thermal conductivity (k) 0.0901–0.6814 0.6814 W m−1 °C−1 [30]
Heat capacity of manure (c) 1992 to 3606 1992 J kg−1 °C−1 [30]
Soil thermal diffusivity ( Dh) 0.03–0.08 0.08 m2 day−1 [23, 31]
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4.2 � Scenario analysis

A scenario analysis was performed to compare the NH3 
emission rates from manure during storage predicted by 
the compartmental and non-compartmental PBMs for a 
100 milking herd dairy farm. The farm location was assumed 
to be Rockingham County, Virginia. The NH3 emission rates 
were estimated for two storage periods designated as 
“warm” (May to October) and “cool” (November to April), 
consistent with the typical farm operations in Rockingham 
County. The daily manure production of 68 kg (150 lbs) for a 
635 kg (1400 lbs) lactating cow as listed in the Manure Pro-
duction Characteristics standard ASAE D384.2 [19] was used. 
The farm was considered to use a scrape system to move 
manure from the barn floors and to a concrete storage tank 

with enough capacity to store manure for 6 months (180 
days). The model assumed the pit was full on April 30, the 
end of the cool period, and empty on May 01 to start the 
Warm period. The same assumption was made for the transi-
tion from the warm to the cool period in October/Novem-
ber. We acknowledge that in real life, emptying manure pits 
may take days to be completed. Our assumption was a sim-
plification to implement the first edition of the model. The 
manure properties used were obtained from Collins et al. 
[40], a study that collected and characterized manure for a 
biogas digester on a dairy farm in Virginia. Historical weather 
data, namely average daily ambient air temperature, relative 
humidity, wind speed, and total precipitation for Rocking-
ham County, Virginia from January 01, 1979, to July 31, 2014, 
was obtained from the National Centers for Environmental 
Prediction (NCEP) [27] for use in the study. The average value 
for each weather parameter was calculated for each Julian 
day (from Jan 01 to Dec 31) from the dataset and used as 
model input parameters in the scenario analysis. The aver-
age daily NH3 emission rates, manure spatial TAN concen-
trations, and manure temperatures predicted by the two 
models for each storage period recorded from the model 
runs. The daily NH3 emission rates predicted by the com-
partmental and non-compartmental PBMs were compared 
using paired t-tests.

Table 3   Summary of 
input data used for model 
verification

a The value provided is the range of these input variables
b The lagoon was not emptied during the year so that the residual depth was assumed to be 3 m

Input Units Value Data source

Average ambient air temperature °C 14.4–27.3[a] [26]
Total precipitation per day cm 0–4.14[a] [27]
Average wind speed ms−1 1.33–5.46[a] [27]
Average relative humidity % 52.15–93.64[a] [27]
Manure storage period d 81 [26]
Number of animals count 2600 [26]
Mass of manure produced per animal kg 67 [19, 33]
Density of manure kg m−3 993 [33]
Total depth/height m 5 [26]
Surface area open to the air m−2 9744 [26]
Depth of residual manure m 3 Assumed[b]

Initial organic nitrogen concentration kg m−3 1.387 [40]
Initial TAN concentration kg m−3 1.089 [40]
pH 7.14 [26]
Wind speed measurement height (standard) m 1.5 [27]

Table 4   Model input parameter variables and their ranges used for 
the sensitivity analysis

Input Units Range References

Ambient air temperature, TA °C 0–30 [27]
Relative humidity, RH % 0–100 [27]
Wind speed, Uz ms−1 0–8 [27]
Precipitation, Rain cm 0–6 [27]
Atmospheric pressure, P atm 0.876–1.025 [27]
Ambient NH3 concentration, CAir kg m−3 0–2 ×10−5 [27]

Manure pH – 6.5–7.5 [28], [35]
Organic nitrogen concentra-

tion, CON

kg m−3 1.203–4.1 [36], [37]

TAN concentration, CTAN kg m−3 0.66–2.6 [37], [38]
Manure density, MD kg m−3 993–1040 [33]
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5 � Results and discussion

5.1 � Model evaluation and sensitivity analysis

The calibrated model parameter values used in the model 
simulations are presented in Table 2. The magnitudes of 
most of the calibrated parameters fell in the upper range 
of literature values. The average daily NH3 emission rates 
estimated by the PBMs compared to those derived empir-
ically from measurements at the manure storage at the 
dairy farm in Jasper Co. Indiana [26] are presented in Fig. 6. 
The magnitudes and trends of NH3 emissions rates by the 
three methods were similar during the March 12–April 27, 
2009, measurement period when the data used for model 
evaluation were obtained. The experimentally derived 
and modeled NH3 emission rates tracked the ambient 
air temperature, TA. No discernible trends were observed 
between the average NH3 emissions rates and wind speed, 
relative humidity, and precipitation (Fig. 6). The average 

NH3 emissions rates estimated from experimental data, 
compartmental PBM, and non-compartmental PBM dur-
ing the measurement period were not significantly differ-
ent (p > 0.05) from each other with absolute values of 2.1 
(± 0.1), 1.5 (± 0.2), and 2.2 (± 0.6) g m−2 day−1, respectively. 
The NH3 emission rates predicted by both PBMs were close 
in magnitude to the experimentally derived rates, espe-
cially when the ambient air temperature was ≤ 10 °C. How-
ever, when the ambient air temperatures were above 10 °C 
(e.g., after April 22), the NH3 emissions rates predicted by 
both models were much larger than the experimentally 
derived. In fact, at ambient air temperatures above 10 °C, 
the non-compartmental PBM predicted more than double 
the estimates by the compartmental PBM and empirically 
derived values. The corresponding average ambient air 
temperature, relative humidity, wind speed, and precipita-
tion during the period data for verification collected were 
7.8 (± 0.8)  °C, 80 (± 1.3)  %, 4.3 (± 0.3) ms−1, and 0.47 (± 0.11) 
cm, respectively.

The r-values for the differences between the empiri-
cally derived and modeled average daily NH3 emission 
rates were positive, based on the model performance 
criteria defined for this study. The r-values were 0.49 and 
0.54 for the compartmental and non-compartmental 
PBMs, respectively. According to ASTM [32], r-values close 
to 1.0 denotes excellent model performance. Thus, we 
presume an average performance by both PBMs in this 
study, based on these r-values. The NMSE for the model 
performance generated by comparing experimentally 
derived NH3 emission rates to those predicted by the 
compartmental and non-compartmental PBMs were 0.75 
and 2.65, respectively. These NMSE values suggest both 
the compartmental and non-compartmental PBMs did not 
have a strong performance based on the criteria outlined 
in [32], i.e., NMSE values ≤ 0.25 for strong performance. 
However, the lower NMSE value for the compartmental 
model suggests a better performance compared to the 
non-compartmental PBM. Since the main improvement to 
the compartmental PBM was the incorporation of spatial 
heterogeneity compared to the non-compartmental PBM, 
this result suggests that enhancement of the compart-
mental PBM has the potential of improving the accuracy of 
estimating NH3 emissions from stored manure. Also, model 
performance depends on the accuracy of the measured 
data and estimates of model parameters. The Grant and 
Boehm [26] dataset used in this study reported meas-
urement errors of up to 24%. The errors reported for the 
measured field dataset and those inherent in the model 
parameter estimates may have contributed to the lack of 
strong model performance obtained in this study. How-
ever, because this is a comparative study of a compart-
mental and non-compartmental modeling approaches, 
the consistency and closeness between the modeled and 
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Fig. 6   Pertinent weather data and ammonia emission rates by the 
compartmental model, non-compartmental model, and experi-
mentally derived for a dairy lagoon in Jasper County, IN during 
Period II (March 12, 2009 to April 27, 2009) of the field measure-
ments
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experimentally derived results were used to judge model 
performance. The results of the comparisons suggest that 
the compartmental PBM is suitable for use as a predictive 
tool for estimating ammonia emission rates because it 
was consistently closer to the measured data compared 
to the non-compartmental PBM results. We acknowledge 
and caution careful use of the model for dynamic systems 
like manure pits where changes may happen in unantici-
pated ways, being biological nature and management. 
Additionally, we also acknowledge the need to verify and 
challenge the model with data collected beyond over a 
more extended period than the single year as used in this 
study. Still, we consider the result of this study satisfactory 
given this was the first generation of the model.

The sensitivity analysis coefficients (Table 5) indicate 
how the input parameters and their interactions affected 
the outputs of the compartmental and non-compartmen-
tal PBMs. The sensitivity analysis coefficients for both mod-
els were identical for each parameter and indicated that 
ambient air temperature, manure pH, wind speed, and the 
concentration of TAN in the lagoon were the most critical 
model input parameters (in that order). For both models, 
the single-input parameters accounted for 65% of the 
model variance of the average daily NH3 emission rates, 
and the two- and three-way input parameter interactions 
accounted for 30% and 5% of the variability of the aver-
age daily NH3 emission rates, respectively. The ambient 
air temperature (used to estimate manure temperature) 
had the highest total effect in both models, explaining 
23% of model output variance, supporting the observa-
tion that NH3 emission rates (measured and modeled) 

tracked TA (Fig. 5). Manure pH, wind speed (Uz), and TAN 
concentration of manure (CTAN) contributed 19%, 17.5%, 
and 4%, respectively, to the variance of output of both 
the models. Interaction of ambient air temperature and 
pH (TA pH), ambient air temperature and wind speed (TA 
Uz), and wind speed and pH (Uz pH) had more influence 
on variance of model output compared to other second-
order interactions. These results are qualitatively similar 
to GSA for a non-compartmental PBM for ammonia emis-
sions for a swine manure lagoon reported by Ogejo et al. 
[39]. Although pH is an essential factor in the dynamics 
of ammonia emissions from manure, its role becomes 
substantial at values above 9.2 when the volatile frac-
tion of TAN, i.e., NH3 present in a solution, is 50% [41]. At 
the manure pH range used in this study, i.e., 6.5–7.5, less 
than 10% of TAN is present as NH3, perhaps reflected in 
the magnitude of sensitivity coefficient obtained in this 
study. We acknowledge that if it is necessary for future ver-
sions of the model to consider a subroutine for pH as part 
of the model improvement, some of the ideas presented 
by Hafner and Bisogni [42] could be used to guide that 
process.

5.2 � Scenario analysis

5.2.1 � Ammonia emission rates

The estimated NH3 emission rates from stored manure 
during the warm and cold periods by the compartmen-
tal and non-compartmental PBMs are in Figs. 7 and 8, 
respectively. The NH3 emission rates tracked the ambient 
air temperature for both models, while no discernible 
patterns were observable for wind speed, RH, and pre-
cipitation (Figs. 7 and 8). In general, the compartmental 
PBM always predicted lower ammonia emissions com-
pared to the non-compartmental PBM (Figs. 7 and 8). 
However, during the colder months between Novem-
ber and March (Fig. 8), the emissions predicted by both 
models were almost similar. The average NH3 emission 
rates predicted by the compartmental and non-compart-
mental PBMs for the warm period (May to October) were 
0.91 g m−2 day−1 and 1.37 g m−2 day−1, respectively. Dur-
ing the cold period (November to April), the predicted 
average NH3 emission rates were 0.33 g m−2 day−1 and 
0.46 g m−2 day−1 for the compartmental and non-com-
partmental PBMs, respectively. The NH3 emission rates 
increased with ambient air temperatures and vice versa. 
This outcome is similar to observations made during the 
model evaluation process, and the results from sensitiv-
ity analysis reflecting the models were most sensitive to 
ambient air temperature. Both models predicted higher 
NH3 flux during the warm period compared to the cold 
period, a result consistent with the average ambient 

Table 5   Global sensitivity analysis coefficients for the model input 
parameters

a Coefficients less than 0.005 are not included in this table

Parametera Compartmental Non-com-
partmental

First order
TA 0.233 0.233
pH 0.187 0.186
Uz 0.174 0.176
CTAN 0.042 0.043
Second order
TA pH 0.094 0.091
TA Uz 0.092 0.088
Uz pH 0.071 0.068
TA CTAN 0.019 0.015
pH CTAN 0.018 0.016
Uz CTAN 0.013 0.015
Higher order
Total 0.053 0.080
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air temperatures, 19.1 (± 0.3) and 4.5 (± 0.3)  °C during 
the warm and cold periods, respectively. Overall, the 
results showed high correlations between the ambi-
ent air temperature and NH3 emissions during both 
the warmer and colder periods (Pearson correlation 

coefficient (r) greater than 0.9 for both the models), a 
result consistent with findings reported by [43]. There 
were no discernable trends between NH3 flux with the 
RH, wind speed, and precipitation (Figs. 7 and 8). The 
estimated ammonia emission rates predicted by both 

Fig. 7   Pertinent weather data and ammonia emission rates estimated by the compartmental model and non-compartmental model for the 
described scenario dairy manure storage in Rockingham County, VA during the warm period (May 01 to October 31)
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the compartmental and non-compartmental PBMs in 
this study were less than the values reported in the lit-
erature (i.e., 5–6.5 g m−2 day−1) for warm periods of the 
year at different locations around the world (35, 37, 38, 
45, 47, 48). This difference may be due to the limited data 
used in developing the model concept presented in this 

study. Another potential factor contributing to the differ-
ence is the differences in the weather conditions at the 
locations reported in the literature and the farms used in 
the scenario analysis. Thus, we acknowledge that further 
evaluation of the model in this study is necessary before 
their full deployment and use.

Fig. 8   Pertinent weather data and ammonia emission rates estimated by the compartmental model and non-compartmental model for the 
described scenario dairy manure storage in Rockingham County, VA during the cold period (November 01 to April 30)
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5.2.2 � Manure temperature and TAN concentrations

Examples of manure temperature and TAN concentra-
tions predicted by the compartmental and non-com-
partmental PBMs during each storage period simulated 
are presented in Figs.  9 and 10. The compartmental 
PBM showed spatial and temporal changes in manure 
temperature and TAN concentrations during the stor-
age period (Figs. 9a and 10a). On the other hand, the 
non-compartmental PBM predicted changes in temporal 
manure temperature and TAN concentrations that were 
uniform throughout the bulk of the stored manure at 
any given time, for the entire bulk of the stored manure 
at any given time (Figs. 9b and 10b). The compartmen-
tal PBM captures and reflects the influence of ambi-
ent air temperatures on stored manure temperatures, 
as would be expected, at different depths during the 
storage period. Under normal circumstances, tempera-
ture differences between the top and bottom layers of 
stored liquids in open structures are expected, and the 
compartmental PBM developed in this study was able 
to capture this phenomenon. During the warm period 
(between May and October), the temperature of the 
manure in the top layer is higher than the bottom lay-
ers (May to August) when ambient air temperatures are 

typically high. As the ambient air temperatures cool off, 
the bottom layers of the stored manure become warmer 
than the top layer. The reverse of the temperature dif-
ferential process between the top and bottom layers of 
stored manure happens during the cool storage period. 
These modeled results are consistent with results studies 
that have reported temperature variability by depth in 
manure pits [15, 21] and lagoons [44].

The compartmental PBM predicts differentiated manure 
TAN concentration at different depths (layers) during the 
storage period, while the non-compartmental PBM pre-
dicts uniform TAN concentration in the manure pit (Figs. 8 
and 9). The compartmental PBM showed that manure TAN 
concentrations were higher in the bottom compared to 
the top layers during storage. This result is qualitatively 
similar to observations by VanderZaag et  al. [45] and 
computer simulations and laboratory results reported 
by Muck and Steenhuis [3] for dairy manure storage and 
Zhang et al. [46] for swine manure pit. Higher TAN con-
centration at lower depths can be attributed to the slow 
diffusion of NH3 thorough manure [3, 46] and ammoni-
fication of organic nitrogen in the bottom layers due to 
the settling process. Further, during the cooler period, the 
stored manure TAN concentration was lower compared to 
warmer months. This could be due to decreased biological 

Fig. 9   Temperatures and total ammonia nitrogen (TAN) concen-
tration of stored manure estimated by the compartmental and 
non-compartmental process-based model for the scenario dairy 

manure storage in Rockingham County, VA during the warm period 
(May 01 to October 3)
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activities (e.g., mineralization of Org-N) contributing to 
generations of TAN at a lower temperature.

6 � Conclusion

This study successfully developed a compartmental 
process-based model to estimate NH3 emission rates 
from stored liquid dairy manure. The ability of the com-
partmental process-based models to predict the factors 
that affect NH3 production and emission spatially and 
temporally provides a tool that enables the depiction 
of and potentially improving our understanding of 
the differentiation of the manure physical and chemi-
cal properties and their impacts on the biogeochemi-
cal processes that affect NH3 production and release. 
Thus, the implementation of compartmental process-
based models will add value in the tasks of (1) designing 
mitigation methods, (2) farm-scale models for nitrogen 
accounting, and (3) life cycle assessment models that 
include manure storages. The incorporation and depic-
tion of the heterogeneity of environmental factors, 
manure characteristics, and biogeochemical reactions 
in the compartmental process-based model provided 

a realistic and better representation of NH3 emissions 
from manure storages. Although the magnitudes of 
NH3 emission rates predicted by the compartmental 
process-based model were generally lower compared to 
the commonly used non-compartmental process-based 
modeling approach, the results should be interpreted 
with caution. The work presented in this study repre-
sents the beginning and a demonstration of a method 
to estimate NH3 emissions from manure pits that cap-
ture spatial variability. Indeed, more work is needed to 
include to verify further and refine the spatial variability 
concept to include other factors not reported in this 
study such as microbial communities, manure solids, 
crusting at the surface of stored manure, and other 
nutrients impact the rate of biogeochemical reactions 
related to production and emission of NH3, need to be 
studied and used to improve the model.
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