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Abstract
Intelligent manufacturing requires significant technological interventions to interface manufacturing processes with 
computational tools in order to dynamically mold the systems. In this era of the 4th industrial revolution, Artificial neural 
network (ANNs) is a modern tool equipped with a better learning capability (based on the past experience or history 
data) and assists in intelligent manufacturing. This research paper reports on ANNs based intelligent modelling of a 
turning process. The central composite design is used as a data-driven modelling tool and huge input–output is gener-
ated to train the neural networks. ANNs are trained with the data collected from the physics-based models by using 
back-propagation algorithm (BP), genetic algorithm (GA), artificial bee colony (ABC), and BP algorithm trained with self-
feedback loop. The ANNs are trained and developed as both forward and reverse mapping models. Forward modelling 
aims at predicting a set of machining quality characteristics (i.e. surface roughness, cylindricity error, circularity error, 
and material removal rate) for the known combinations of cutting parameters (i.e. cutting speed, feed rate, depth of 
cut, and nose radius). Reverse modelling aims at predicting the cutting parameters for the desired machining quality 
characteristics. The parametric study has been conducted for all the developed neural networks (BPNN, GA-NN, RNN, 
ABC-NN) to optimize neural network parameters. The performance of neural network models has been tested with the 
help of ten test cases. The network predicted results are found in-line with the experimental values for both forward and 
reverse models. The neural network models namely, RNN and ABC-NN have shown better performance in forward and 
reverse modelling. The forward modelling results could help any novice user for off-line monitoring, that could predict 
the output without conducting the actual experiments. Reverse modelling prediction would help to dynamically adjust 
the cutting parameters in CNC machine to obtain the desired machining quality characteristics.

Keywords ANNs · Intelligent modelling · Turning process · Material removal rate · Surface roughness · Cylindricity error · 
Circularity error

1 Introduction

Surface quality of the engineered parts plays pivotal 
role and determines their functional performance and 
service life [1]. Dimensional accuracy, surface finish, and 

subsurface integrity aspects are some of the important 
surface quality parameters and have direct influence 
on wear behaviour, tribological characteristics, fatigue 
strength and corrosion resistance etc. Note that, dete-
riorated surface quality of the machined part could 
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eventually decrease the fatigue life, increase friction which 
in turn results in wear and noise during their operation. 
The deflection forces in turning of soft materials, such as 
aluminium alloys will result in poor cylindricity and circu-
larity etc. (that is, form errors) [2, 3]. Machined shafts with 
high precision are used in almost all machines, satellites, 
submarine, automotive, aircraft etc. applications. Hence, 
control of form (i.e. cylindricity and circularity) errors is an 
important issue and given high importance in machin-
ing industries [4]. To meet the stringent industry require-
ments for economic machining in large production scale, 
Higher material removal rate with good surface quality 
and dimensional accuracy are major requirements of 
economic machining in industries. Note that, in machin-
ing parts with high tolerance and precision, there is close 
interdependency among the productivity and product 
quality (i.e. surface quality) [5]. Inappropriate methods (i.e. 
expert’s recommendation, guidelines of data handbook, 
and trial–error method etc.) of controlling machining 
parameters may result in reduced productivity and poor 
surface quality [6].

Four popular methods were used to develop models for 
surface roughness and material removal rate: theoretical 
or mathematical modelling based on physics of the pro-
cess [7, 8], multiple regression technique [2], fuzzy inter-
face system [9], and network modelling [10]. The assump-
tions were mandated in physics based models, while 
determining the accurate value of minimum un-deformed 
chip thickness related to the radius of round cutting edge 
[11]. These assumptions are difficult to measure and model 
accurately. Soft computing tools (neural networks, fuzzy 
logic, genetic algorithm and so-on) have been considered 
in machining industry from the last two decades. Soft 
computing tools pose the following capabilities.

1. Excellent learning and generalisation capabilities from 
input–output data,

2. The capability to recognise and understand the 
mechanics and dynamics of a process

3. Capture the dependencies among multiple inputs and 
outputs that could approximate the future predictions

4. Minimizes the need for practical experiments and 
expert’s decision

Soft computing tools will handle the complex and 
uncertainty conditions by developing the physics-based 
models to predict and optimise machining processes [12]. 
Note that, ANNs had made better predictions, compared 
to multiple regression models. This is due to their inherent 
ability to understand and handle uncertainties and model 
non-linearities with complex interactions [10]. It was found 
that the neural models had shown better prediction than 
fuzzy and multiple regression models for surface quality 

characteristics. Only surface roughness in turning was 
aimed in their research work, leaving scope for cylindric-
ity and circularity type of form errors. The present research 
work is focused on soft computing-based approach to 
model machining quality characteristics, namely surface 
roughness, cylindricity error, circularity error, and material 
removal rate.

Despite many research efforts made in the past, devel-
oping the basic relationship between variables is still miss-
ing to analyse the metal cutting phenomenon [12]. This 
observation is valid till today, as most of the studies do 
not provide complete insights of the machining process, 
which has a vital role on machining quality (i.e. cylindric-
ity error CE, circularity error Ce, and surface roughness 
SR) and economics (i.e. better material removal rate MRR) 
of machining. Modelling of turning process is still chal-
lenging due to their existing complexity and exiting intel-
lectual problem, which led to the development of many 
fascinating models by various researchers. Modelling of 
surface quality and improving productivity is the primary 
objective of machining.

In the recent past, meta-heuristic algorithms are exten-
sively used to solve complex modelling multi-input and 
multi-output manufacturing problems [13]. Meta-heuris-
tic algorithms (i.e. GA, ABC, particle swarm optimisation 
(PSO), etc.) are popularly known for their robustness, faster 
convergence, solution accuracy and ability to overcome 
local minima while training back propagation neural net-
work (BPNN) [14]. The choice of a specific algorithm to 
train neural networks is quite often difficult, because of 
different learning mechanisms and their tuning parame-
ters, computational complexity and the problem domain. 
The learning mechanism in PSO will evolve by the evalu-
ation of personal best position with neighbouring best 
position and global best positions for all particles as a 
single pattern [15]. This may lead to the trapping of PSO 
solution in local minima. The meta-heuristic algorithms 
(i.e. GA, PSO, ABC) were employed to tune NN that might 
ensure approximate gene expressions. Their research work 
showed that, GA tuned NN performed better than PSO and 
ABC tuned NN [16]. NN models (i.e. PSO-NN, GA-NN, BPNN) 
were developed for both forward and reverse modelling of 
welding suprocess [17]. Noteworthy, that BPNN was found 
to perform better than GA-NN and PSO-NN.

ABC algorithm had shown superior performance than 
PSO and DE, due to their better balances with exploration 
and exploitation processes that could solve many engi-
neering design problems [18]. ABC algorithm successfully 
optimized the machining parameters compared to other 
methods (GA, harmony search and simulated anneal-
ing) [19]. Bat algorithm showed better performance than 
cuckoo search algorithm for benchmark classification 
problems when trained with neural networks [20]. ABC 
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algorithm produced better performance than other nature 
inspired algorithms such as Bat algorithm, ant colony opti-
mization and GA [21]. ABC algorithm is employed to train 
the neural networks for the various applications such as 
signal processing [22], classify data sets for machine learn-
ing community [23], and prediction of ripping production 
[24]. ABC trained neural network performed better predic-
tion of ripping production compared to imperialism com-
petitive algorithm (ICA) and PSO [24]. ABC-NN had per-
formed better as compared to GA-NN, and BP-NN, while 
modelling the tube spinning process [25].

It is worth to mention that, the ANNs is dependent on 
training data. Therefore, introducing intermediate feed-
back connections to the network as a dynamic element 
could result in better prediction (recurrent neural network, 
that performance is RNN) [26]. More recently, NN tools 
(RNN, BPNN, GA-NN, ABC-NN) were employed for both 
forward and reverse modelling of different manufactur-
ing processes [26–28]. Significant attention is required to 
develop the predictive tools for the practising engineers 
to obtain desired machining quality characteristics.

Intelligent manufacturing is a latest development, which 
can fulfil the primary requirements of Industry 4.0 (that is 
4th industrial revolution). The concepts of data-driven mod-
elling, big data analytics, data-enabled predictions, real-
time information sharing for control and monitoring the 
process are used in Industry 4.0. This will enable increased 
flexibility in manufacturing, which could result in better 
quality and higher productivity [29]. Intelligent manufac-
turing also uses cyber-physical systems along with above 
mentioned concepts. This will allow computation, which 
integrates them with the physical processes and feedback 
loop to adjust dynamic situations and requirements based 
on experience and learning capacities [29, 30]. ANNs pos-
sess better learning and generalisation capabilities, that 
enable both off-line and online monitoring of the systems.

In the present work, the soft computing tools (BPNN, 
GA-NN, RNN and ABC-NN) are used to model the turning 
process. The input variables considered are nose radius 
(NR), feed rate (FR), depth of cut (DOC) and cutting speed 
(CS). Machining quality characteristics, such as SR, MRR, 
circularity error and cylindricity error are treated as output 
(responses). The modelling methods used in machining 
processes are generally classified as forward modelling 
and inverse modelling. The form error (i.e. cylindricity and 
circularity error), average surface roughness and MRR are 
predicted in the present work for the known set of cut-
ting parameters (i.e. NR, DOC, CS, and FR), which is known 
as forward mapping. Four neural network-based models 
(BPNN, GA-NN, ABC-NN and RNN) are developed and their 
performance is compared among themselves and that of 
regression model in forward modelling. Whereas in inverse 
approach, the measured form error, average surface 

roughness and MRR are the input to the system and cor-
responding set of cutting parameters are predicted. The 
transformation matrix in conventional approach (that 
is, regression model) might be non-square and singular. 
Hence, it is difficult to apply this and carryout reverse 
modelling. The reverse modelling is carried out in the pre-
sent work by using NN based approaches, namely BPNN, 
RNN, ABC-NN, GA-NN and their performance is compared 
among themselves.

The organisation of this paper is as follows: In Sect. 2, 
the phenomenological behaviour of turning process about 
modelling is presented. In Sect. 3, the proposed methodol-
ogy of network (BPNN, GA-NN, ABC-NN and RNN) models 
with their working principles is discussed. In Sect. 4, we 
study the performance of developed models is studied 
which involves discussion of network training results and 
testing predictions. Finally, concluding remarks for the 
defined objectives are made in Sect. 5.

2  Materials and methods

The applications of high-strength Aluminium 7075 alloys 
are used in structural, aerospace and automotive applica-
tions, where good surface finish and high geometrical and 
dimensional accuracy are required. Therefore, the turning 
process for machining of Al 7075 alloy should fulfil these 
requirements with high productivity (in terms of MRR). 
Tungsten carbide inserts with three different nose radii are 
mounted on the commercial tool holder SCLCL2525M16. 
It is to be noted that, the values of nose radii are obtained 
from DOE design matrix. Form accuracy, surface rough-
ness, and MRR are primary quality characteristics and 
governed by the machining parameters (i.e. CS, FR, NR, 
and DOC). Hence, the former are treated as responses 
(output) and later ones as variables (input) in the present 
work. CNC lathe machine is used for turning Al 7075 with 
the dimension of φ30 mm diameter and 50 mm height 
(refer Fig. 1a, b). RONDCOM 31C measuring instrument is 
used to check the circularity of the machined surface (refer 
Fig. 1c). COMET L3D Tripod type 3D scanner equipment is 
used to know the form accuracy of the cylindrical speci-
men (refer Fig. 1d). The surface roughness is measured at 
many distinct locations on the turned samples by using 
SurfCom Flex 50 instrument (refer Fig. 1e).

The control variables and operating range are finalized 
with the help of Ishikawa diagram and literature survey 
respectively [31]. Full factorial design, Central composite 
design and Box-Behnken designs are the popular response 
surface methodologies used to develop process models. 
Although full factorial designs test all possible combina-
tion of factors with multiple levels, they are limited to esti-
mate the main and low-order interaction effects. Fitting 
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the second-order polynomial to input–output relation 
may result in better fit and accurate predictions. Further, 
this will provide information on higher order interaction of 
parameters and indicate their effect on response [32]. CCD 
and BBD models are designed to estimate the full quad-
ratic (all linear, square and interaction factors) effects for 
modelling [32]. The BBD models require a smaller number 

of experiments as compared to CCD and FFD. Although, 
BBD models are considered as labour efficient models, 
they do not test all factors at extreme levels. Thus, the fea-
ture extraction of the response variable (i.e. outputs), if lies 
at extreme levels of inputs may not be estimated properly 
with BBD. Therefore, regression models for machining of 
Al 7075 alloy in turning process are developed by utilizing 

Fig. 1  a Experimental set-up, b turned parts, c circularity measurement device (RONDCOM 31C), d cylindricity measurement device (COMET 
L3D Tripod a column type 3D Scanner) and e surface roughness test device (SurfCom Flex 50)
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experimental matrix based on CCD [31]. The input–output 
variables for both forward and reverse modelling of artifi-
cial neural networks are presented schematically in Fig. 2.

The response equations are derived by utilizing the 
experimental input–output data. Further, huge amount 
of data required to train NN based models is generated 
by utilizing the regression equations. The regression equa-
tions for the responses, namely, cylindricity error, circu-
larity error, surface roughness and material removal rate 
developed via experimental data, DOE and CCD are pre-
sented in Eq. [1–4].

3  Soft computing tools

The theoretical background of GA, BP, ABC, tuned NN and 
RNN are discussed with a focus on basic working principles 
and functional behaviour. Three layered neural network 
models are developed to map the input–output relation-
ships in turning process. In the present work, the input 
and output layer consists of four neurons representing the 
cutting parameters and machining quality characteristics 
respectively. In forward mapping, cutting parameters are 
treated as input neurons, whereas, machining quality char-
acteristics represent the output neurons of the network. 
Conversely, in reverse mapping, machining quality char-
acteristics are the inputs neurons and cutting parameters 
are the output neurons of the network. The neurons of the 

(1)

Cylindricity error, CE = 2.203 + 0.02631A − 22.6B

− 12.42C + 3.09D − 0.000045A2 + 141.5B2

+ 7.76C2 − 2.189D2 − 0.06572AB − 0.00163AC

+ 0.001051AD + 7.18BC − 7.01BD + 2.48CD

(2)

Circularity error, Ce = −4.86 + 0.0892A − 17.8B − 26.27C

+ 23.0D − 0.00013A2+478B2

+ 19.81C2 − 9.08D2 − 0.2378AB − 0.00201AC

− 0.0041AD − 4.2BC − 60.55BD + 4.26CD

(3)

Surface roughness, SR = −1.727 + 0.00088A + 28.61B − 0.093C − 0.041D

− 0.000003A2 − 22.6B2 + 0.05C2 + 0.856D2

+ 0.00137AB + 0.000383AC − 0.000241AD

+ 0.20BC − 15.0BD − 0.085CD

(4)

Material removal rate,MRR = − 14.24 + 0.0156A + 104B + 9.8C − 0.4D

− 0.000064A2 − 225B2 − 7.2C2 − 3.54D2

+ 0.169AB + 0.0753AC + 0.0127AD + 18.7BC

+ 9.2BD + 3.99CD

hidden layer are decided based on the minimum mean 
squared error value obtained during network parametric 
study. Linear (y = x), Log-sigmoid (y = 1/1 + e−ax) and Log-
sigmoid (y = 1/1 + e−bx) transfer functions are used in input, 
hidden and output layer of the ANNs respectively. Linear 
and log-sigmoid transfer functions resulted in better predic-
tion performances carried out earlier by authors [17, 25–28, 
33, 34].  [Vij] and  [Wjk] are the connection weight strengths 
between the input-hidden layers and hidden-output layer, 
respectively. The [V and W] weights are generated randomly 
in the ranges of zero to one. Terms, a and b will represent 

the transfer function coefficients, associated with the hid-
den and output layer, respectively. The term ‘x’ denotes the 
input value to the neuron. The present work has utilized 
1000 (i.e. 27 experimental and 973 artificially generated 
through Eqs. 1 to 4) data set to tune the ANNs parameters. 
The following subsections will explain the development of 
neural network models for the Al 7075 turning process.

3.1  NN trained with BP algorithm (BPNN)

Neural network trained with BP algorithms are extensively 
reported in the literature to model complex input–output 
relationships. BP algorithm uses gradient search method 
to optimize NN parameters. BP algorithm uses a super-
vised learning mechanism. Huge amount of training data 
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Fig. 2  Flowchart of the proposed intelligent modelling of the Al 7075 turning process
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(1000 input–output data set) is passed through NN in 
batch mode. The network training is performed to update 
or modify the weights by altering network parameters (i.e. 
transfer function constants, bias, learning rate, alpha, hid-
den neurons). Mean squared error (MSE) is used as the 
criterion to evaluate the performance and the same is 
computed by utilizing Eq. 5.

Terms,  Tk l and  Ok l denotes the target and the network 
predicted values respectively for the kth output neuron 
and lth training scenario. L and N will represent the set of 
training scenarios and some network outputs. The weights 
of the network are updated with the help of generalised 
delta rule, adopted in the back-propagation algorithm and 
the same is presented in Eqs. 6, 7.

The terms, t and η will denote the iteration number and 
the learning rate, respectively. The computation of chain 
rule of differentiation ( �E

/
�Wjk , �E

/
�vij ) is shown below 

(refer Eqs. 8, 9).

The synaptic or connecting weights are updated with 
the help of the back-propagation algorithm. The equation 
used to update the weights is presented in Eq. 10.

3.2  NN trained with GA (GA‑NN)

GA searches for optimal solutions in a multi-dimensional 
search space at many spatial locations. GA hits the global 
optimal solutions due to their stochastic search mecha-
nism, which enables the user to obtain the optimal solu-
tion for complex manufacturing problems. In GA-NN, 
GA replaces BP algorithm (i.e. BP algorithm use gradient 
descent learning mechanism, which poses more probabil-
ity to get trapped at the local solution) to train the neural 
networks. GA starts with initialising a set of the population 

(5)MSE =
1

2 × L × N

N∑
K = 1

L∑
l=1

(
Tkl − Okl

)2

(6)Δwjk(t) = −�
�E

�Wjk

(t) + �Δwjk(t − 1)

(7)Δvij(t) = −�
�E

�vij
(t) + �Δvij(t − 1)

(8)
�E

�Wjk

=
�E

�El

�El

�Ek

�Ek

�Ook

�Ook

�Oik

�Oik

�Wjk

(9)
�E

�vi j
=

�E

�El

�El

�Ek

�Ek

�Ook

�Ook

�Oik

�Oik

�HOj

�Hoj

�Hij

�Hij

�vij

(10)Wjk, updated = Wjk, previous + Δwjk(t)

of solutions, represented by chromosomes generated heu-
ristically for the problem domain. Later, genetic param-
eters (i.e. crossover and mutation) are altered to locate the 
possible global solutions. In each successive generation 
or iteration, the individuals in the current population are 
decoded and examined according to the fitness function. 
The best individuals are selected based on their fitness 
function to form a new population (the generated solu-
tion might be comparatively better than the previous 
population). The best population, thus selected naturally 
undergoes the mutation and cross-over operation to gen-
erate the off-springs. The generated new off-springs are 
replaced with few or all population according to fitness 
value. This mechanism of learning creates hope that the 
generated new population could perform better than the 
previous one. This mechanism is repeated till the accept-
able solutions, or pre-determined condition is met. In the 
auxiliary hybrid system of GA-NN, GA optimizes the net-
work parameters (i.e. synaptic weights). During network 
training, GA-string will supply the information of network 
parameters, represented with 5-bit. Typical GA string used 
in the present work is shown below.

The appropriate choice of genetic algorithm param-
eters (i.e. hidden neurons, cross-over probability, muta-
tion probability, size of population and generation) could 
result in optimal global solutions. A set of 1000 data points 
are supplied to the network in batch training mode rep-
resented in the form of GA-string could help to optimize 
the genetic algorithm parameters based on the compu-
tation of MSE. The computed MSE for all the responses is 
treated as the fitness value of GA-string. Noteworthy, that 
the bit-wise mutation, uniform cross over and tournament 
selection are employed to update and adjust the solutions.

3.3  NN trained with ABC (ABC‑NN)

ABC is a metaheuristic, nature-inspired algorithm, which 
uses the artificial bees of a colony to locate the global solu-
tions. ABC mimics the intelligent behaviour of honey bees 
looking for a quality food source. In ABC, honey bees are 
the essential components, wherein they split the duties 
and do share information correspond to food sources 
between many individuals. Employed bees, onlooker 
bees and scout bees are the three major groups of artifi-
cial bees in ABC. The scout bees do their duty to hunt for 
possible new food sources. The employed bees do share 
the food source information with onlooker bees which 
are waiting in the hive. If the information contains many 
food sources, the onlooker bees will decide which food 

10101
⏟⏟⏟
V ,weights

01101
⏟⏟⏟
W ,weights

10001
⏟⏟⏟

bias

10101
⏟⏟⏟

Transfer function
cons tan t ’a’

10101
⏟⏟⏟

Transfer function
cons tan t ’b’
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source need to be exploited. In ABC, the position of food 
source represents the feasible solution to the optimization 
problem. The quality of food source at a particular location 
will be the fitness function value. The principle or practice 
of honey bees, searching the food sources and their posi-
tions are used to determine an optimal solution in multi-
dimensional search space. ABC follows the necessary steps 
to update and locate the optimal position of food sources. 
The phases used in ABC are briefly described in the follow-
ing sub-sections.

3.3.1  Initialization phase

The number of solutions in the population correspond-
ing to the employed and onlooker bees are generated at 
random (refer Eq. 11).

3.3.2  Employed bee phase

After completion of the initialization phase, the fitness of 
all individual food sources is evaluated based on updating 
and selecting the feasible solutions by limiting the local 
(i.e. suboptimal) solutions. To update the solutions, all the 
employed bees will choose a new position of competitor 
food source. In this stage, the employed bees will generate 
an updated solution by searching the neighbourhood of 
its earlier food source. Equation 12 is used to determine 
the updated position of the food source.

The new feasible solution (i.e.  Vij) is obtained from the 
previous solution  (Xij), and a neighbour solution  (Xkj) 
selected at random. The term, � represents the adaptively 
generated random number, whose value is distributed 
uniformly in the range of [− 1 to + 1]. Note that, if the gen-
erated new solution offers a better fitness function value 
than the current or previous one, then the employed and 
onlooker bees will replace with a new solution. Moreover, 
the employed bees will leave their position, move towards 
the new food source and share the information with the 
onlooker bees.

3.3.3  Onlooker bee phase

Here, each onlooker bee selects the feasible solution 
(i.e. food source), based on the fitness value information 

(11)x
j

i
= x

j

min
+ rand[0, 1]

⎛
⎜⎜⎜⎜⎝

x
j

max − x
j

min
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Upper and lower limit of positions

⎞⎟⎟⎟⎟⎠

(12)vij = xij + �ij
(
xij − xkj

)

gathered from the employed bees. The probability  (Pi) of 
onlooker bees in selecting the feasible solutions (i.e. new 
food source) is dependent on the relative fitness of each 
solution (refer Eq. 13).

3.3.4  Scout bee phase

Finally, scout bees are employed to evade local solutions. 
Note that, if the employed bee fails to locate the food 
source, which results in an abandoned current solution. 
During this stage, the employed bee tends to become the 
scout bee to search new solutions generated at random.

In ABC-NN, ABC replaces BP algorithm (i.e. in many 
cases the BP algorithm get trapped at local solutions, 
when the nature of error surface is multi-modal) to train 
the neural networks that could search globally the opti-
mal weights [14]. In ABC-NN, the prediction performances 
dependent on minimum mean squared error rely on the 
appropriate choice of parameters (hidden neurons, size of 
population or food source positions, and maximum num-
ber of cycles or iterations) [18, 22, 25, 35, 36]. Thereby, 1000 
input–output data sets are passed to neural networks to 
determine optimal weights after tuning the afore said that 
could resulted in minimum MSE. The trained ABC-NN is 
tested with random ten experimental cases (“Appendix”).

3.4  Recurrent neural network (RNN)

RNN uses a recursive loop to capture the dynamics of the 
process, through intermediate feedback connections [37, 
38]. This learning mechanism will enable the RNN to pre-
dict the outputs in any process [33]. If the functions that 
estimates the network output is differentiable and the tar-
get output is well-known, then the BP algorithm is found 
to be more suitable to train the RNN. The structure of ANNs 
parameters (such as hidden neurons, weights, alpha, learn-
ing rate, sigmoid transfer function and their constants, bias 
value) is same as that of BPNN, except the intermediate 
feedback connection in the learning mechanism [26, 34, 
39]. In turning process, the input behaves non-linearly 
with the output. The error prediction (difference value of 
the target and network output) information of all previous 
runs must be utilised in deciding the changes to be made 
for successive trials. RNN is trained with backpropagation 
algorithm which works with a steepest descent method 
(refer to Fig. 2). The MSE computation is done by utilising 
Eq. 5.

(13)pi =
fi∑N

i =1
fi
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3.5  Data collection for network training and testing

ANNs are data-dependent models, wherein the prediction 
performances will rely on the quality and huge quantity of 
input–output training data. Conducting practical experi-
ments to obtain huge quantity of training data is impracti-
cal. The well-planned statistical central composite design 
of experiments is used to conduct experiments. Table 1 
provides information on variables and their operating 
range used in conducting experiments. The regression 
equations developed, tested statistically and validated 
through test cases are used to generate training data [31]. 
Supervised learning ANNs, such as BPNN, GA-NN, ABC-NN, 
and RNN are trained with one thousand set of input–out-
put data.

To test the performance of developed neural network 
models, few practical experiments are conducted and 
input–output data is collected. Ten input–output data sets. 
In CNC turning equipment, there exists a provision to set 
the parameters between their respective levels of operat-
ing variables. The experimental data collected from ten 
experiments are used to test the prediction performances 
of neural network models. The best models are selected for 
both forward and reverse mappings based on the average 
absolute percent deviation value.

4  Results and discussion

This section discusses the results obtained in forward and 
reverse modelling of machining process. The detailed par-
ametric study is carried out to optimize neural network 
structure (parameters) in all NN models. The optimized NN 
are used to make prediction of machining quality char-
acteristics (forward mapping) and cutting parameters 
(reverse modelling). Test cases are used to test perfor-
mances of all NN models in both forward and reverse mod-

elling (refer “Appendix”). In forward mapping, the results 
of predictions are compared among the neural networks 
(BPNN, GA-NN, ABCNN and RNN) with that of statistical 
design of experiments (CCD). In reverse mapping, the 

results are compared among the neural network models 
(BPNN, GA-NN, RNN, ABCNN).

4.1  Parameter study results of forwarding 
modelling

Forward modelling will predict the outputs (i.e. CE, Ce, SR, 
and MRR) for the known set of inputs (i.e. CS, FR, DOC, 
and NR). BPNN, GA-NN, ABC-NN and RNN parameters are 
optimised by conducting systematic parameter study. The 
mean squared error varied for each parameter of BPNN, 
GA-NN, ABC-NN and RNN is presented in Figs. 3, 4, 5 and 
6. Note that the parameter study is conducted to optimize 
the network parameters and weights. Mean squared error 
(MSE) is used to test the performance of training algo-
rithms. Many authors [25–28, 33, 34] have made effort to 
reduce the mean squared error value while training neural 
networks. It is to be noted that many times the prediction 
performance is found to be good. In the present work, 
neural networks terminate the training when they met 
either of the following conditions,

1. When the difference in the mean squared error values 
of previous and current iterations are less than 5 × 10−9.

2. When the number of iterations reaches to a maximum 
of 1 lakh.

The results of optimal parameters obtained after con-
ducting the parametric study are summarized in Table 2 
(BPNN, RNN) and Table 3 (GA-NN, ABC-NN).

4.2  Comparison of ANNs and CCD model 
performances in forward modelling

Response-wise prediction of machining quality character-
istics by neural network (BPNN, GA-NN, ABC-NN, RNN) and 
CCD models are discussed below.

The model (CCD, BPNN, GA-NN, ABC-NN, and RNN) pre-
dicted values of cylindricity error are compared with target 
(experimental) values obtained from ten test cases (refer 
“Appendix”). Scatter plots and percent deviation plots are 
made to carry out the said task. The BPNN and RNN predic-
tion performances are found comparable, with major data 
points fall on the best-fit line (refer Fig. 7a–e). Note that, 
percent deviation in predicting cylindricity error by the 
five different models have followed a similar trend with the 
data points lie both on positive and negative sides (refer 
Fig. 8a). RNN has predicted percent deviation values with 
narrow ranges and close to reference zero line for cylin-
dricity error compared to other tested models (refer Fig. 8a 
and Table 4).

Similar analysis is made for the rest of responses, namely 
circularity error, surface roughness and material removal 

Table 1  Cutting parameter levels for the neural network model

Factors Symbols Levels of cutting 
factors

Cutting speed, CS (m/min) A 94 188 282
Feed rate, FR (mm/rev) B 0.10 0.15 0.20
Depth of cut, DOC (mm) C 0.40 0.70 1.00
Total nose radius, NR (mm) D 0.40 0.80 1.20
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Fig. 3  Parameter study of BPNN: MSE versus a no. of hidden neurons, b learning rate—hidden layer, c learning rate—output layer, d alpha, e 
constant of transfer function—hidden layer, f constant of transfer function—output layer, and g bias value
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Fig. 4  Parameter study of RNN: MSE versus a no. of hidden neurons, b learning rate—hidden layer, c learning rate—output layer, d alpha, e 
constant of transfer function—hidden layer, f constant of transfer function—output layer, g bias value, and h feedback weights
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rate. Response-wise range of percent deviation for each 
model is summarized in Table 4. Response-wise percent 
deviation for all models are presented in Fig. 8. It is inter-
esting to note that the pattern of deviation is found similar 
for all models. Average absolute percent deviation values 
for all responses obtained through BPNN, RNN, GA-NN and 
ABC-NN in forward modelling is presented in Table 5. It is 
to be noted that, maximum value of average absolute per-
cent deviation among all neural network models is found 
to be equal to 10.91 by GA-NN for response cylindricity 
error. However, the neural network based RNN has resulted 
in a minimum value of average absolute percent deviation 
for all responses. This indicates that, all predictions made 
by different models are within the acceptable range for 
machining industries.

The grand average absolute percent deviation values 
in prediction, obtained for all responses by CCD, ABC-NN, 
BPNN, RNN and GA-NN models are presented in Fig. 9. The 
model RNN has outperformed other models (BPNN, ABC-NN, 

GA-NN and CCD) in making predictions. The better perfor-
mance of RNN as compared to other NN models might be 
due to to the presence of feedback mechanism. The com-
puted mean squared error value of the trained neural net-
work is found equal to 0.000201 for RNN, 0.000347 for BPNN, 
0.000642 for GA-NN, 0.000508 for ABC-NN, respectively. The 
ABC-NN performance is found to be better than GA-NN. 
This might be due to better balance in conducting a local 
and global search by the bees (onlooker, scout, employed). 
However, GA uses mutation which simply provides a variety 
of solutions to the population after updating solutions. Thus, 
it may be concluded that feedback units of recurrent neural 
network urged as the best prediction model compared to 
other NN models. Therefore, meta-heuristic algorithms (GA 
and ABC) may not guarantee the better prediction always 
in a multi-modal and multi-variable problems. However, 
the performance purely depends on the capability of the 
algorithm to hit global minima solutions (i.e. nature of error 
surface or minimum mean squared error).

Fig. 5  Parameter study of GA-NN: MSE versus a no. of hidden neurons, b probability of mutation, c population size, d no. of generations
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4.3  Reverse mapping

Reverse modelling aims to predict the input param-
eters for the desired machining quality attributes. In 
reverse modelling, the prediction performances of 
neural network models (BPNN, GA-NN, ABC-NN, and 
RNN) are compared among themselves. Note that, the 
network structure remains similar to that used in for-
warding mapping, except the machining quality char-
acteristics are treated as inputs and cutting param-
eters as outputs to the network. Also, training and test 
data used are the same in both forward and reverse 
modelling. The four ANNs model parameters are kept 
same as that forward mapping network parameters 
and their operating range are varied with incremental 
step size.

4.3.1  Parameter study results in reverse mapping

The BPNN architecture, in reverse modelling is shown 
in Fig. 2. The parameter study has been carried out to 
modify and alter the weights to a minimize the mean 

squared error during training. The optimised network 
parameters at the end of training for both BPNN and 
RNN are carried out and the results are presented in 
Table 6.

The parametric study for GA tuned neural network and 
ABC-NN is also carried-out and the results obtained are 
presented in Table 7.

4.3.2  Comparison of neural network model prediction 
performances in reverse mapping

In reverse mapping, the prediction of cutting parameters 
by neural network (BPNN, GA-NN, RNN, ABC-NN) models 
is made. The same ten test cases used in forward map-
ping are employed to test the performances of all neural 
network (BPNN, RNN, GA-NN, ABC-NN) in reverse model-
ling also. The percent deviation in predicting all inputs 
parameters (variables) is presented in Fig. 10. It is to be 
noted that pattern of deviation is found to be similar for 
all neural network models. The percent deviation values 
found to lie on both sides of zero reference line for all 
parameters and neural network models. The maximum 

Fig. 6  Parameter study of ABC-NN: MSE versus a no. of hidden neurons, b swarm size, and c no. of iterations
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percent deviation in prediction of input parameters on 
both positive and negative side are presented in Table 8. 
Most of the maximum percent deviation values are found 
to lie within ± 20%, indicating the predictions are within 
acceptable range for machining process.

The performances of NN models is compared response-
wise in terms of average absolute percent deviation and 
the results are presented in Table 9. The performance of 

ABC-NN is found better for the parameters, cutting speed, 
depth of cut and nose radius, whereas RNN has shown bet-
ter results for the parameter feed rate. The grand average 
absolute per cent deviation in making prediction of cut-
ting parameters is computed and presented in Fig. 11. It 
has been observed from Fig. 11 that the ABC-NN has out-
performed all other NN models in reverse modelling. Few 
test sample results of cylindricity error and circularity error 

Fig. 7  Scatter plots representing experimental cylindricity error with model predicted cylindricity error: a CCD, b BPNN, c RNN, d GA-NN, 
and e ABC-NN
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are presented in Fig. 12. The better performance of ABC-
NN might be due to better balance achieved while con-
ducting a local and global search by the bees (onlooker, 
scout, employed). However, the performance purely 
depends on the capability of the algorithm to hit global 
minima solutions (i.e. nature of error surface or minimum 
mean squared error). The MSE obtained at the end of train-
ing (1000 data points) is found equal to 0.00604, 0.00708, 
0.0153 and 0.0488 for ABC-NN, RNN, GANN, BP-NN, respec-
tively. Although input–output data used to develop for-
ward and reverse models viz. neural networks are same, 
but prediction accuracy varies to a larger extent. Low 
prediction accuracy was observed in reverse modelling 
might be due to the multi-modal nature of input–output 

Fig. 8  PD in prediction by different models for the responses (machining quality characteristics): a cylindricity error, b circularity error, c sur-
face roughness, and d material removal rate

Table 4  Summary results of 
predicted ranges (lower and 
upper limit) by the models

Models Cylindricity error (%) Circularity error (%) Surface roughness (%) Material removal rate (%)

CCD − 21.43 to + 20.00 − 13.39 to + 16.50 − 13.56 to + 21.74 − 6.04 to + 6.68
RNN − 10.71 to + 12.42 − 12.24 to + 09.82 − 13.56 to + 17.11 − 6.04 to + 6.19
BPNN − 14.29 to + 13.73 − 12.13 to + 10.12 − 18.64 to + 22.46 − 3.83 to + 6.99
GA-NN − 17.86 to + 14.86 − 15.61 to + 08.51 − 20.34 to + 15.87 − 8.55 to + 5.82
ABC-NN − 10.71 to + 20.00 − 10.55 to + 10.44 − 13.91 to + 18.84 − 3.07 to + 6.99

Table 5  Summary of forward modelling neural network prediction 
results of the responses

Models Average absolute PD in the prediction of responses

Cylindricity 
error (%)

Circularity 
error (%)

Surface 
roughness 
(%)

Material 
removal rate 
(%)

CCD 10.78 8.23 11.81 3.78
RNN 08.24 7.20 09.97 3.25
BPNN 08.95 8.00 10.69 3.39
GA-NN 10.91 8.13 09.88 3.48
ABC-NN 10.38 7.90 09.98 3.46
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of a turning process. In other words, for the set of desired 
output, there is multiple combinations of inputs due to 
multi- values modal nature of the input–output system 
(i.e. low values of one input and high of another input and 
vice versa could result in same output value).

5  Conclusions

In the present work, neural network based intelligent 
modelling is applied to Al 7075 turning process. The cut-
ting parameters, namely cutting speed, feed rate, depth 
of cut and nose radius are considered as input, whereas 
machining quality characteristics, such as metal removal 
rate, surface roughness, cylindricity error and circularity 
error are treated as the output of machining process. For-
ward and reverse modelling is carried out by developing 
NN based BPNN, RNN, GA-NN and ABC-NN models. The 

Fig. 9  Grand average absolute percent deviation in the prediction 
of machining quality characteristics of the turning process by the 
developed models

Table 6  Summary of reverse 
modelling parameter study 
results of BPNN and RNN

Details Optimized values

BPNN Minimum MSE RNN Minimum MSE

Hidden neurons 12 0.0995 14 0.01589
Learning rate 0.099 0.0902 0.544 0.01453
Alpha 0.277 0.0788 0.3215 0.00950
Constant of activation 

function—hidden 
layer

4.6 0.0781 5.5 0.00950

Constant of activation 
function—output 
layer

3.7 0.0634 2.35 0.00854

Bias 0.000001 0.0543 0.0000505 0.00784
Feedback weight NA 0.0488 0.4 0.00708

Table 7  Summary of results of 
a parametric study of ABCNN 
and GA-NN

GA-NN ABC-NN

Details Optimized value Minimum MSE Details Opti-
mized 
value

Minimum MSE

Hidden neurons 24 0.0208 Hidden neurons 14 0.01843
Probability of mutation 0.0001242 0.0194 Swarm size 90 0.00960
Population size 274 0.0168 Number of cycles 500 0.00604
Number of generations 500 0.0153
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Fig. 10  PD in prediction by different models for the responses (cutting parameters): a cutting speed, b feed rate, c depth of cut and d nose 
radius

Table 8  Summary of reverse 
models predicted ranges 
(lower & upper limit) for 
cutting factors

Models Cutting speed (%) Feed rate (%) Depth of cut (%) Nose radius (%)

RNN − 18.54 to + 14.13 − 09.09 to + 15.30 − 17.86 to + 13.10 − 22.5 to + 08.33
BPNN − 20.44 to + 23.69 − 15.00 to + 20.00 − 23.93 to + 19.59 − 30.0 to + 15.00
GA-NN − 23.94 to + 18.53 − 09.13 to + 15.30 − 21.83 to + 23.36 − 25.0 to + 11.67
ABC-NN − 17.19 to + 11.68 − 12.50 to + 18.00 − 14.29 to + 12.37 − 20.0 to + 07.50

Table 9  Summary of results of neural network prediction of differ-
ent cutting factors

Models Mean absolute percent deviation in the prediction of 
cutting factors

Cutting 
speed 
(%)

Feed rate (%) Depth of cut 
(%)

Nose radius (%)

RNN 9.45 7.08 10.42 11.08
BPNN 12.07 9.69 12.26 14.00
GA-NN 10.75 7.69 11.53 12.71
ABC-NN 9.27 7.62 9.36 09.33

Fig. 11  Grand average absolute percent deviation in prediction of 
cutting parameters of turning process by the developed models
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following conclusions can be drawn from the present 
work-

1. BPNN, GA-NN, RNN and ABC-NN tools are applied in 
both forward and reverse modelling of turning pro-
cess. The ANNs structure and parameters are opti-
mized by utilizing 1000 dataset obtained through 
regression equations. Further systematic study is car-
ried out for all NN models (BPNN, GA-NN, RNN and 
ABC-NN). Batch mode of training is employed with an 
objective to minimize mean squared error.

2. Forward modelling is carried out to predict the dif-
ferent machining quality characteristics, which are 
conflicting in nature (i.e. minimize: SR, CE and Ce and 

maximize: MRR). Neural network model (BPNN, GA-NN, 
RNN, and ABC-NN) prediction performances are com-
pared among themselves and with that of regression 
equations obtained through CCD and DOE. RNN per-
formance is found to be comparable with that of BPNN 
and much better as compared to GA-NN and ABC-NN. 
RNN uses self-feedback loop (i.e. feedback weights) to 
dynamically adjust the network parameters to mini-
mize error. BPNN has outperformed both GA-NN and 
ABC-NN, regarding prediction accuracy in forwarding 
modelling. This might be due to nature of error sur-
face. Thus, meta-heuristic algorithms (ABC and GA) 
may not guarantee better prediction always, as their 
performance depends on initialized and optimized 

Fig. 12  Few tested samples of a cylindricity error and b circularity error
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weights, nature of error surface and optimized net-
work parameters. All ANN models are tested for their 
performance by utilizing ten test cases (that is com-
parison with experimental results). It is to be noted 
that, all ANN models are capable to make prediction 
of machining quality characteristics (responses) within 
acceptable range of machining practices. The grand 
average absolute percent deviation values are found 
to be equal to 7.93, 7.76, 7.16 and 8.10 for ABC-NN, 
BPNN, RNN and GA-NN respectively.

3. NN base BPNN, RNN, GA-NN and ABC-NN are devel-
oped in reverse modelling to predict cutting parame-
ters from a set of known machining quality characteris-
tics. The same 1000 dataset used in forward modelling 
is utilized in reverse modelling also. ABC-NN made 
marginally better prediction than RNN and far better 
compared to GA-NN and BPNN. RNN predictions are 
found better due to the embedded dynamic feedback 
system. ABC uses unique search mechanism which 
updates only in two phases, thus achieve better bal-
ance while conducting a local and global search by the 
bees (onlooker, scout, and employed) as compared to 
GA. Unlike GA, ABC uses few tuning algorithm-specific 
parameters and capable to hit global minima. GA-NN 
predictions are better than BPNN which might be due 
to local minima problem associated with BPNN. The 
grand average absolute percent deviation in model-
ling is found to be equal to 12.0, 10.67, 9.51 and 8.9 for 
BPNN, GA-NN, RNN and ABC-NN.

4. The prediction accuracies in forward modelling are 
found to be much better than reverse modelling. It is 
to be noted that, for the set of desired output, there is 
multiple combinations of inputs due to multi-modal 
nature of the input-output system (i.e. low values of 
one input and high values of another input and vice 
versa could result in same output value). These reverse 
modelling tools are very-much useful in online moni-
toring process.

5. The present research work will be very-much useful 
for the machining industries, where the industry per-
sonnel are interested to know the cutting parameters, 
resulting in best quality of machining. The methodol-
ogy and results may be referred by the industries to 
set machining parameters and obtain good quality 
of machined part (specially for precision machining). 
Moreover, the reverse modelling may be employed to 
on-line monitoring and dynamically vary the cutting 
parameters.
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Appendix

Summary of experimental results of the random test cases

Test 
case

Input variables Experimental values of 
responses

CS, 
m/
min

FR, 
mm/
rev

DOC, 
mm

NR, 
mm

MRR, 
 cm3/
min

SR, 
µm

Ce, 
µm

CE, µm

1 202 0.17 0.97 0.40 24.82 1.51 7.80 1.32
2 278 0.18 0.7 0.80 30.76 1.38 7.21 0.74
3 118 0.18 0.98 1.20 18.36 0.76 9.14 2.34
4 188 0.15 0.64 1.20 19.02 0.63 4.74 0.62
5 159 0.15 0.46 0.80 12.58 0.82 5.84 1.23
6 217 0.12 0.57 0.40 15.96 0.93 3.12 0.28
7 117 0.16 0.88 1.20 17.45 0.62 7.74 1.53
8 245 0.13 0.56 0.80 18.24 0.59 5.94 0.79
9 281 0.11 0.84 0.40 24.74 0.59 3.24 0.18
10 123 0.14 0.50 0.80 9.94 0.64 4.78 0.68
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