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Abstract
Soret–Dufour phenomenon in a Darcy–Maxwell Brownian nanofluid is performed using a macroscopic filtration model, 
suggested by Alishayev (Hydromechanics 3:166–174, 1974). For nanoparticle flux at the boundaries passive management, 
influenced by the management of concentration flux assumed in Stefan’s flow, is considered. Normal mode technique 
is used to analyse the stationary and oscillatory convections under the linear stability theory. The effects of different 
phenomenon are quantified by dimensionless parameters. It is found that the Soret parameter has dual behaviour for 
stationary convection and destabilizing behaviour for oscillatory convection, whereas the Dufour parameter has a stabi-
lizing effect for both stationary and oscillatory convections. Nonlinear stability analysis provides the behaviour of flux of 
heat, salt and nanoparticles in the flow field through Nu , Nu

C
 and Nu� . Steady and unsteady convections are discussed. A 

graphical representation of streamlines, isotherms, isohalines and flow lines of nanoparticles concentrations is presented.

Keywords  Darcy–Maxwell nanofluid · Soret–Dufour-driven convection · Linear and nonlinear instability · Passive 
management of nanoparticle at the boundaries

List of symbols
c	� Nanofluid specific heat at constant pressure
C∗	� Solute concentration
C	� Dimensionless temperature
C∗
c
	� Concentration at the upper wall

C∗
h
	� Concentration at the lower wall

(�c)m	� Effective heat capacity of the medium
(�c)f	� Effective heat capacity of the fluid
(�c)p	� Effective heat capacity of the material con-

stituting nanoparticles
DB	� Brownian diffusion coefficient
DT	� Thermophoretic diffusion coefficient
DS	� Diffusion coefficient
d	� Dimensional layer depth
g	� Gravitational acceleration vector
K 	� Permeability of the porous medium
Le	� Thermosolutal Lewis number
Ln	� Thermo-nanofluid Lewis number

NA	� Modified diffusivity ratio
NB	� Modified particle density increment
NCT	� Soret parameter
NTC	� Dufour parameter
p∗	� Pressure
p	� Dimensionless pressure
Ra	� Thermal Rayleigh–Darcy number
Rm	� Basic density Rayleigh–Darcy number
Rn	� Concentration Rayleigh–Darcy number
Rs	� Solutal Rayleigh number
t∗	� Time
t 	� Dimensionless time
T ∗	� Temperature
T 	� Dimensionless temperature
T ∗
c

	� Temperature at the upper wall
T ∗
h

	� Temperature at the lower wall
(x∗, y∗, z∗)	� Cartesian coordinates
(x, y, z)	� Dimensionless Cartesian coordinates
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�	� Nanofluid velocity
�
∗
D

	� Darcian velocity (= ��)
�D	� Dimensionless Darcy velocity

Greek symbols
�	� Thermal conductivity of the nanofluid
�m	� Effective thermal conductivity of the porous 

medium
�m	� Thermal diffusivity of the porous medium
�T	� Thermal volumetric coefficient
�C	� Solutal volumetric coefficient
σ	� Heat capacity ratio
�	� Porosity
�	� Viscosity of the fluid
�	� Relaxation time
�	� Fluid density
�p	� Nanoparticle mass density
�∗	� Nanoparticle volume fraction
�∗
0
	� Reference value of nanoparticle volume 

fraction
�	� Dimensionless nanoparticle volume fraction
�	� Wave number
�	� Frequency of oscillations
�	� Stream function

Subscripts
b	� Basic solution

Superscripts
*	� Dimensional variable
′	� Perturbation variable

Operators
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1  Introduction

To meet the technical challenges of increased heat loads, 
heat fluxes and pressure drops in the field of photonics, 
microelectronics, metrology, optoelectronics, power manu-
facturing, defence and transportation, nanofluids prove to be 
one of the most promising, exciting and novel class of nano-
technology-based heat transfer fluids. Remarkable researches 
on different types of nanofluids, establishing these as next-
generation smart fluids, have been documented by Eastman 
et al. [2], Das et al. [3], Bianco et al. [4] and Nield and Bejan [5].

Nanofluids introduced by Choi et al. [6] are two-phase 
mixtures composed of nanosized fine particles or fibres 
suspended in the continuous and saturated liquids. In 
nanofluids, migration of nanoparticles is a quintessential 
mechanism affecting the coefficient of convective heat 
transfer and pressure drop and, therefore, serves as an 

interesting alternative for advanced thermal applications. 
Buongiorno [7] made an attempt to include the effect of 
nanoparticle migration in nanofluids and obtained more 
realistic results. He considered a dilute mixture of nano-
particles in an incompressible base fluid with heat transfer 
subjected to thermal equilibrium between nanoparticles 
and base fluid. It was assumed that chemical reactions are 
absent, and external forces, viscous dissipation and radia-
tive heat transfer are negligible. He suggested the conser-
vation equation for nanoparticles as

where �∗ is the volume fraction, �∗ is the velocity, DB is the 
Brownian coefficient and DT is the thermophoretic diffu-
sion coefficient.

In Eq. (1), the second term on the left-hand side states 
that nanoparticles move homogeneously with the fluid 
and the terms on the right-hand side predict that the 
nanoparticles simultaneously have a slip velocity relative 
to the fluid due to Brownian diffusion and thermophoresis 
where the second term contributes to the migration of 
nanoparticles due to temperature.

In natural convection of nanofluids, these slip mecha-
nisms do not allow the nanoparticles to accompany fluid 
molecules, resulting in a non-uniform distribution of the 
volume fraction of nanofluids and consecutively creating 
a variable concentration of nanoparticles in a mixture. The 
variability of concentration of nanoparticles induces the 
Dufour effect accommodated in the energy equation as 
follows:

where Eq.  (2) shows that heat may be transported via 
convection (second term on the left-hand side), via con-
duction (first term on the right-hand side), and simulta-
neously via virtue of nanoparticle migration (second and 
third terms on the right-hand side). In fact, Buongiorno’s 
model states that there are thermo-diffusion and diffu-
sion-thermo effects in nanofluids and hence an anomalous 
convective heat transfer is reported. Buongiorno’s model 
plays an incredible role for various researches on different 
aspects of nanofluids [5, 8–15].

Double diffusive convection, first recognized in the 
late 1950s, has established its importance in the fields as 
diverse as geophysics, astrophysics, metallurgy, chemistry 
and obviously in the parent field—ocean physics [5, 16]. 
Exponential research on double diffusive convection in 
nanofluids is continuously portraying the binary nanoflu-
ids as working fluids in the various fields.
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Chamkha et al. [17] presented the numerical as well 
as analytical solutions in a vertical channel for micropo-
lar fluid. Thermosolutal Marangoni convection flow of an 
electrically conducting fluid along a vertical surface with 
magnetic field, heat generation or absorption investigated 
by Al-Mudhaf and Chamkha [18]. Using Brinkman–Forch-
heimer-extended Darcy equations, numerical study of 
mixed convection in a vertical porous channel proposed 
by Umavathi et al. [19]. Further thermosolutal study for 
MHD Marangoni boundary layers problem discussed by 
Magyari and Chamkha [20]. Khedr et al. [21] presented 
the steady, laminar, MHD flow of a micropolar fluid in the 
presence of magnetic field, thermal radiation effects and 
heat generation/absorption phenomenon. Further, Mag-
yari and Chamkha [22] given the full analytical solution 
for micropolar fluid in the presence of heat generation or 
absorption over a uniformly stretched permeable surface. 
In addition, Chamkha et al. [23] investigated the unsteady 
MHD natural convection with Joule heating, chemical 
reaction and radiation effects of micropolar fluid.

In a convective system also, where the motions of 
conventional binary liquids and gases are governed by 
buoyancy, induced by density differences in the constitu-
ents and not suffered by the internal dissipative effects 
like viscous friction and diffusion, the temperature and 
concentration are not independent rather coupled via 
thermo-diffusion and diffusion-thermo mechanism. Such a 
coupled mechanism in chemically non-reacting and misci-
ble binary mixtures is important in bifurcation theory and 
structure formation.

For the first time, diffusion-thermo phenomenon was 
observed in 1873 by the Swiss physicist Dufour [24]. He 
noticed that if two chemically different non-reacting gases 
or liquids, which were initially at the same temperature, 
were allowed to diffuse into each other, then a difference 
of temperatures in the system occurred and the difference 
was retained if a concentration gradient was maintained. 
In gases, the difference can reach several degrees (for 
example, for nitrogen with hydrogen it measures approxi-
mately 103 °C). Ingle and Horne [25] mentioned that the 
effect is of interest in liquids for three important reasons: 
(1) it can be used to verify the heat matter Onsager recip-
rocal relation, (2) the temperature variations could cause 
complications in diffusion experiments, and (3) it has never 
been unambiguously observed. In 1879, a reverse phe-
nomenon of thermo-diffusion in liquids was observed by 
another Swiss Scientist Soret [26]. He performed an experi-
ment with sodium chloride and potassium nitrate in a tube 
by maintaining the top at 800 °C and the bottom end of it 
at room temperature and noticed that in direct diffusion 
in isotropic fluid systems the concentration gradient is 
induced by the driving force of applied temperature gra-
dient until the system reaches the steady-state condition. 

De Groot and Mazur [27] explained the Soret and Dufour 
effects and elaborated the conservation equations for 
concentration and energy accommodating the Soret and 
Dufour parameters.

Soret and Dufour effects, being considered as second-
order phenomena on the basis that they are of smaller 
order of magnitude than the effects described by Fourier’s 
and Fick’s laws for energy transport and mass transport, 
respectively, are often neglected. It is a general view that 
in liquid mixtures Soret effect dominates and Dufour effect 
is negligible, while in gaseous mixtures the Dufour cou-
pling becomes more and more important and can change 
the stability behaviour significantly in comparison with liq-
uid mixtures. But there are exceptions; Eckert and Drake 
[28], Nithyadevi and Yang [29] and Weaver and Viskanta 
[30] discovered several cases where the Soret and/or 
Dufour effects cannot be ignored. These effects are often 
encountered in chemical process engineering, in the area 
of reactor safety, in combustion flames, in high-speed 
aerodynamics, in oceanography, in solar collectors and in 
various porous flow regimes occurring in geophysical sys-
tems [25, 28]. Ryskin et al. [31] considered the Soret effect 
in ferromagnetic nanofluid and showed that nanoparticles 
inhibit the stability of the system in comparison with the 
conventional fluid. Kim et al. [32, 33] and Kim and Choi [34] 
studied the thermo-diffusion and diffusion-thermo effects 
on convective instabilities of Newtonian nanofluid. They 
concluded that both the Soret and Dufour effects make 
nanofluid unstable, and the transfer of heat is enhanced 
in a significant amount.

With reference to the heat and mass transfer, a physi-
cally realistic phenomenon is suggested by Stefan, i.e. flux 
of concentration cannot be adjusted at the boundaries 
rather it is zero there [35]. This phenomenon is equally 
valid in nanofluids. Nanoparticle volumetric fraction can-
not be adjusted at the boundaries, and therefore, there will 
be no flux of nanoparticles over there. Nield and Kuznet-
sov [36] discussed the thermal instability of a nanofluid-
saturated porous medium incorporating the phenomenon 
of passive management of nanoparticles and assumed 
no flux of them at the boundaries. Following them, many 
problems have been investigated under passive man-
agement of nanoparticles at the boundaries and others 
already done for active management have been revised 
or reinvestigated.

The phenomenological model for the low Reynold num-
ber Maxwell fluid suggested by Alishayev [1] and general-
ized as the macroscopic filtration model by Khuzayorov 
et al. [37] is valid for a dense porous medium of sufficiently 
large thickness. Few research papers on double diffusive 
convection using this model are reported in the literature. 
Linear stability of double diffusive convection has been 
presented by Wang and Tan [38]. Awad et al. [39] extended 



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:704 | https://doi.org/10.1007/s42452-020-2462-4

the work for cross-diffusion effects. They considered vis-
cous variations in the model suggested by Brinkman and 
showed that the relaxation time and the Soret parameter 
destabilize the system, while Dufour parameter stabilizes 
it. Wang and Tan [40] analysed the linear and nonlinear 
stability of Soret-driven convection and showed that the 
relaxation parameter is responsible for decreasing the heat 
transfer rate, while it increases with increasing the Soret 
parameter (negative or positive). Malashetty and Biradar 
[41] considered velocity variations in the model to discuss 
the cross-diffusion effects. Some of the important results 
obtained by them are that Dufour coefficient advances 
the oscillatory convection, negative Soret coefficient sta-
bilizes the stationary convection and positive Soret con-
vection destabilizes it. Jaimala and Goyal [42] investigated 
the thermosolutal convection with cross-diffusion effects 
under linear stability theory. Narayana et al. [43] widened 
the domain of the work presented by Wang and Tan [40] by 
incorporating the Dufour effect. They showed that the sta-
tionary and oscillatory convections may not occur simulta-
neously. They showed that the Soret effect is to reduce the 
heat transport and to increase the mass transport, while 
the Dufour parameter produces the reverse effects on the 
two transports. Zhao et al. [44] considered the modified 
Darcy–Maxwell model [1] to discuss the triply diffusive 
convection driven by three agencies: heat and two types 
of salts having different diffusive properties. They have 
ignored the cross-diffusion effects. Recently, Chand and 
Rana [45] discussed the cross-diffusion effects under the 
linear stability theory by considering Darcy–Maxwell fluid 
layer in which heat as well as salt is greater on lower plate 
comparative to upper one.

Recognizing various important applications of nanoflu-
ids, the objective of the present paper is to use Alishayev 
model [1] to investigate the double diffusive convection 
of Darcy–Maxwell nanofluid with cross-diffusion effects 
introduced through two pairs of agencies in nanofluids 
(heat and nanoparticles and heat and salt). We confine 
ourselves to the zero flux of nanoparticles at the bounda-
ries. To find the behaviour of different parameters in the 
presence of nanoparticles, a comparison has been made 
with Narayana et al. [43] and Chand and Rana [45], the 
work dedicated to the convection in a Maxwell fluid with 
no nanoparticles.

2 � Physical model and mathematical analysis

We consider an incompressible Maxwell viscoelastic 
nanofluid layer in a Darcy porous medium, which is infi-
nitely extended in x- and y-directions. The porous layer 
is isotropic and confined between two impermeable 

parallel planes such that the lower plane is situated at 
z = 0 , whereas the upper plane is situated at z = d . T ∗

h
,C∗

h
 

and T ∗
c
,C∗

c
 are the temperatures and solute concentrations 

at the lower and upper planes, respectively, such that 
T ∗
h
> T ∗

c
 and C∗

h
> C∗

c
 . This system is shown in schematic 

form in Fig. 1. It is assumed that nanoparticles and base 
fluid are in local thermal equilibrium. Following Bungiorno 
[7] external forces, chemical reaction, viscous dissipation 
and radiative heat transfer are negligible and particle-
related effects like particle inertia, Magnus effects, etc., 
have also not been considered.

Following Alishayev [1], Eastman et al. [2], Buongiorno 
[7] and Nield and Kuznetsov [36], continuity equation, 
momentum equation, thermal energy equation, solute 
concentration equation and nanoparticle concentration 
equation, in dimensional form, are taken as

where �∗
�
= (u∗, v∗,w∗) is the Eulerian Darcy velocity, � is 

the Darcian viscosity, p∗ is the pressure, K  is the perme-
ability, �∗ is the nanoparticle concentration, t∗ is the time, 
�∗ is the relaxation time, � is the density of the base fluid, 
�p is the mass density of nanoparticles, �T and �C are the 

(3)∇∗
⋅ �

∗
D
= 0,

(4)

�

K
�
∗
D
=
(
1 + �∗

�

�t∗

)[
−∇∗p∗ +

[
�∗�

p
+ (1 − �∗)

{
�
⟨
1 − �

T
(T ∗ − T ∗

c
) − �

C

(
C∗ − C∗

c

)⟩}]
g
]
,

(5)

(�c)m
�T ∗

�t∗
+ (�c)f�

∗
D
⋅ ∇∗T ∗ = �m∇

∗2T ∗ + �(�c)p[
DB∇

∗�∗
⋅ ∇∗T ∗ + (DT∕T

∗
c
)∇∗T ∗

⋅ ∇∗T ∗
]
+ (�c)fDTC∇

∗2C∗,

(6)
�C∗

�t∗
+

1

�
�
∗
D
⋅ ∇∗C∗ = DSm∇

∗2C∗ + DCT∇
∗2T ∗,

(7)
��∗

�t∗
+

1

�
�
∗
D
⋅ ∇∗�∗ = DB∇

∗2�∗ + (DT∕T
∗
c
)∇∗2T ∗,

Fig. 1   Physical configuration of the problem
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coefficients of thermal and solutal expansions, respec-
tively, T ∗

c
 is the reference temperature, C∗

c
 is the reference 

solutal concentration, g is the gravitational acceleration in 
the negative z-direction, c is the specific heat of nanofluid 
at constant pressure, � is the thermal conductivity of the 

and NCT =
DCT(T

∗
h
−T ∗

c
)

(C∗
h
−C∗

c
)

(Soret parameter).

Here, �m =
�m

(�c)f
 is the thermal diffusivity of the porous 

medium and � =
(�c)m

(�c)f
.

2.1 � Analysis

In this section, the marginal state of the system is dis-
cussed. The locus which separates the two classes of states 
as the stationary state and the oscillatory state defines the 
state of marginal stability of the system. The marginal state 
is mathematically characterized by assuming �r = 0.

2.1.1 � Stationary convection

At the marginal state ( �r = 0 ), if we put �i = 0, the convec-
tion is called the stationary convection. Thermal Rayleigh 
number for stationary convection is obtained as

Ra =
�g�Kd(T ∗

h
− T ∗

c
)

��m
(thermal Rayleigh−Darcy number),

Rn =
�∗
0
gKd(�p − �)

��m
(concentration Rayleigh−Darcy number),

Rm =
gKd

[
�p�

∗
0
+ �(1 − �∗

0
)
]

��m
(basic density Rayleigh−Darcy number),

Rs =
�gKd�C

(
C∗
h
− C∗

c

)
�DS

(solutal Rayleigh−Darcy number),

NA =
DT(T

∗
h
− T ∗

c
)

DBT
∗
c
�∗
0

(modified diffusivity ratio),

NB =
��∗

0
(�c)p

(�c)f
(modified particle density increment),

Le =
�m

DB

(thermo-nanofluid Lewis number),

Ln =
�m

DS

(thermo-solutal Lewis number),

NTC =
DTC(C

∗
h
− C∗

c
)

(T ∗
h
− T ∗

c
)

(Dufour parameter)

fluid, �m is the effective thermal conductivity of the porous 
medium and is equal to �� , (�c)m, (�c)f and (�c)p are the 
effective heat capacity of the medium, the fluid and the 
material constituting nanoparticles, � is the porosity, DSm is 
the diffusion coefficient of salt, DTC is the Dufour coefficient 
and DCT is the Soret coefficient of salt, DB is the Brownian 
diffusion coefficient and DT is the thermophoretic diffusion 
coefficient.

In analogy with the Stephan’s flow [32], it is assumed 
that at the boundaries, the flux of nanoparticles is zero 
[33]. Thus, the boundary conditions are considered as

Following Singh et al. [46], under linear stability analy-
sis, the Galerkin-type weighted residual method has been 
used for a steady state which is perturbed from its initial 
state of rest. Perturbations in the velocity, temperature, 
concentration and volume fraction of nanoparticles are 
decomposed into periodic disturbances given by

where l and m are horizontal dimensionless wave num-
bers in x- and y-directions, respectively, and s = �r + i�i 
is a complex quantity predicting the growth rate of 
perturbations.

In non-dimensional form, the equation governing the 
flow is obtained as
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It provides the critical Rayleigh number as

where � = � is the critical wave number.
In Eq. (12), if Rn = 0, NA = 0 and Le = 0 , we get a Ray-

leigh number for a thermosolutal convection of a fluid 
without nanoparticles. It is observed that if it is soluted 
from below (Rs > 0), the result given by Chand and Rana 
[45] and, for being soluted from above (Rs < 0) , the result 
by Narayana et al. [43] are recovered.

In the absence of Dufour parameter (NTC= 0), Eq. (13) 
provides

which is the same as obtained by Singh et al. [46],
which further reduces to

for no Soret effect (NCT= 0) presented in the system, which 
is a critical Rayleigh number discussed by Jaimala et al. 
[47].

For monodiffusive convection, Eq. (16) gives a critical 
Rayleigh number:

which is in confirmation with the one obtained by Jaimala 
et al. [48].

It is clear that for a system soluted from below, salt 
becomes a cause of earlier convection. The numerical 
analysis of Eq. (14) predicts that though the presence of 
thermo-diffusion suppresses the convection produced 
by the salt still double-diffusion convection occurs earlier 
than the monodiffusion convection.

2.1.2 � Oscillatory convection

At the marginal state if �i ≠ 0 , the perturbations decay 
or grow in oscillatory mode. The corresponding Rayleigh 
number is obtained as
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)
− ��2Le

}
,

U =
[
�4�3

(
N
TC
Ln − �

)
+ �2�

{
��2

(
Le� + Ln� − LeLnN

TC

)
+ �LeLn

}]
,

V =
[
��2�LnLe + �2�2

(
NTCLn��

2 + NTCLeLn − �Le − ���2 − �Ln
)]
.

(18)

(P1P2 + P3P4)�
4 + (P1P5 + P2P6 + P3P7 + P4P8)�

2

+ (P5P6 + P7P8) = 0,

P
1
= �4�(�Ln + �Le + LeLn)

− �2RnN
A

{
�LeLn + ��2(�Le + �Ln + LeLn)

}
− �2

Rs
{
��2

(
Le + � − LeN

CT
�
)
+ �Le

}
,
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3 � Nonlinear stability analysis

To get the information about the amplitude of motion and 
the behaviour of heat, salt and mass transfer, nonlinear 
stability theory is implemented and we obtain the non-
dimensional eigenvalue problem in the form of stream 
function (u = ��∕�z,w = −��∕�x ) as

Following Singh et al. [46], nonlinear stability analy-
sis is performed using the Fourier expansion method. 
� , T , C and � are assumed as

P2 = −��LeLn,

P3 = Le
[
�2�Ln − �2�

(
RnNALn − Rs

)]
,

P4 = �
{
�2�

(
�Le + �Ln − LeLnNTC

)
+ �LeLn

}
,

P5 = �2�2
(
��2 + Le

)(
NTCLn − �

)
,

P
6
= −�6��2

(
1 + LnN

CT
N
TC

)
+ �2�4�⟨{

RnN
A
�
[
� + Le − N

TC
Ln

(
1 + LeN

CT

)]}
+ RsLn

(
1 − N

CT
�
)⟩

,

P7 = �4�3
(
NTCLn − �

)
,

P8 = �2�

[
�2RnNA

{
�4��

(
� + Le − NTCLn

(
1 + LeNCT

))
+ �Le + �Ln + LeLn

}
− �4�

{
��2(� + Le + Ln) + LnLeNCTNTC

}
+ �2Rs

{
�Ln�2

(
1 − NCT�

)(
Le + �2�

)
+ �Ln�2

}
]
.

(19)∇2
1
� =

(
1 +

�

�

�

�t

)[
−Ra

�T

�x
+ Rn

��

�x
−

Rs

Ln

�C

�x

]
,

(20)
�T

�t
+

��

�x
= ∇2

1
T +

�(� , T )

�(x, z)
+ NTC∇

2
1
C ,

(21)
1

�

�C

�t
+

1

�

(
��

�x

)
=

1

Ln
∇2

1
C +

1

�

�(� ,C)

�(x, z)
+ NCT∇

2
1
T ,

(22)
1

�

��

�t
−

NA

�

(
��

�x

)
=

1

Le
∇2

1
� +

NA

Le
∇2

1
T +

1

�

�(� ,�)

�(x, z)
.

(23)

� =
�2�

�z2
= 0, T = 0, C = 0,

��

�z
+ NA

�T

�z
= 0 at z = 0, 1.

where A11(t), B11(t), B02(t), C11(t) , C02(t) , D11(t) and D02(t) 
are time-dependent amplitudes of the system obtained as

Equations (28)–(34) represent a nonlinear autonomous 
system of simultaneous ordinary differential equations. 
For the unsteady state, the equations are solved numeri-
cally using the Runge–Kutta–Gill method. The steady state 
is characterized by

(24)� = A11(t) sin(�x) sin(�z),

(25)T = B11(t) cos(�x) sin(�z) + B02(t) sin(2�z),

(26)� = −NAC11(t) cos(�x) sin(�z) − NAC02(t) sin(2�z),

(27)C = D11(t) cos(�x) sin(�z) + D02(t) sin(2�z),

(28)

A
11

= −
�

�2

[
RaB

11
+ RnN

A
C
11
+

Rs

Ln
D
11

+
�

�

dB
11

dt
Ra +

�

�

dC
11

dt
RnN

A
+

�

�

dD
11

dt

Rs

Ln

]
,

(29)
dB11

dt
= −

[
�2B11 + �A11 + ��A11B02 + �2D11NTC

]
,

(30)
dB02

dt
=

1

2

[
��A11B11 − 8�2

(
B02 + D02NTC

)]
,

(31)
dC11

dt
= −

�

�

[
��A11C02 + �A11 +

�2

Le

(
C11 − B11

)]
,

(32)
dC02

dt
=

�

2�

[
��A11C11 −

8�2

Le

(
C02 − B02

)]
,

(33)

dD11

dt
= −

�

�

[
��

�
A11D02 +

�

�
A11 +

�2

Ln
D11 + �2NCTB11

]
,

(34)
dD02

dt
=

�

2�

[
��

�
A11D11 − 8�2

(
D02

Ln
+ B02NCT

)]
.
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w h e r e  x =
(
A2
11
∕8

)
 ,  Q = �2NTCNCT  ,  Y = �2 + �2x  , 

Z = Y − LnQ.

3.1 � Heat, salt and nanoparticles transport

The thermal Nusselt number, solutal concentration Nusselt 
number and nanoparticles concentration Nusselt num-
ber providing the heat, salt and nanoparticle transport, 
respectively, are obtained as

(35)B11 =
�A11

Y

[
�2xNTCNCT +

NTC

{
�2xLn2(Y + Q�) − �2�Ln

}{
�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

}
{
�2xLn2

(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

} − 1

]
,

(36)

B02 =
�2x

�Y

⎡
⎢⎢⎢⎢⎣

1 −
�2

Z
LnNCTNTC − NTC�

2Ln(LnY + LnQ� + �Z)
�

�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
�
Y2 + 2YQ� + Q2�2

�
+ �2�2Z2

�
⎤
⎥⎥⎥⎥⎦
,

(37)

C11 =
��A11{

�2�2 + �2xLe2
}
YZ

[
�2xLnQ(Le + �) − �2(Le + �)Z

]

+
�A11�Ln{

�2�2 + �2xLe2
}
YZ

[
�Z

(
�2xLe − �2�

)
+ �2xLnY(Le + �)

]

×

[
�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

]
,

(38)

C02 =
�2xLe{

�2�2 + �2xLe2
}
YZ

[
�2xLnQ(Le + �) − �2(Le + �)Z

]
+

�2xLnLe{
�2�2 + �2xLe2

}
YZ

×
[
�Z

(
�2xLe − �2�

)
+ �2xLnY(Le + �)

][ �2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

]

+
�2x

�Y

[
1 −

�2

Z
LnNCTNTC − NTC�

2Ln(LnY + LnQ� + �Z)

{
�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

}]
,

(39)

D11 = �A11�Ln

[
�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

]
,

(40)D02 =
�2xLn

�Z

[
NCT + Ln(Y + Q�)

{
�2NCT�Z − �2xLnNCT(Y + Q�) − YZ

�2xLn2
(
Y2 + 2YQ� + Q2�2

)
+ �2�2Z2

}]
,

(41)Nu(t) = 1 − 2�B02(t),

(42)NuC(t) = 1 − 2�D02(t) + NCT

(
1 − 2�B02(t)

)
,

It is clear that the heat, salt and nanoparticles are trans-
ferred through diffusion as well as convection governed 
by the Soret as well as Dufour effect.

4 � Results and discussion

A comparison of the stationary convection with the 
one for a Darcy–Maxwell fluid without nanoparti-
cles [45] is made in Fig. 2. It is clear that for specified 
values of the parameters Rs = 5, Le = 10, Rn = 0.5 , 
� = 0.4, Ln = 10,NA = 1, NCT = 0.1 and NTC = 0.01, the 

presence of nanoparticles enhances the convection, which 
is physically realistic due to the Brownian motion.

Figure 3 represents a comparison of the convections 
in monodiffusion, double diffusion, diffusion with Soret 

effect and diffusion in the presence of both the Soret and 
Dufour effects. The graphs confirm that the salt sets the 
convection earlier which is delayed to some extent if Soret 
effect is also present but not to the level of monodiffusion 
convection. It is clear that among the four types of con-
vections the critical Rayleigh number is maximum for the 
convection with cross-diffusion effects, indicating that the 
simultaneous presence of Soret and Dufour parameters 
enhances the stability by delaying the convection.

In Fig. 4a–c, we draw the linear stability curves for ther-
mosolutal Lewis number, Soret parameter and Dufour 
parameter by varying one of the parameters and assign-
ing fixed values to other relevant parameters.

On taking the thermosolutal Lewis number Ln > 1 , the 
diffusion of heat is more than the diffusion of salt and on 

(43)Nu�(t) = 1 + 2�
(
B02(t) − C02(t)

)
.
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increment of Ln ; hence, Fig. 4a shows that as the ther-
mosolutal Lewis number increases the Rayleigh number 
also increases that makes the system stable. Notably, the 
dual behaviour of the parameter in a regular Maxwell 
fluid [45] changes to stabilizing parameter in a nanofluid. 
Figure 4b, c exposes the effects of Soret parameter and 
Dufour parameter, respectively. It can be seen that Soret 
parameter still has a dual character as it has for a fluid with-
out nanoparticles [45], but the dual behaviour of Dufour 
parameter NTC does not persist in the presence of nano-
particles and converts to an agent bringing the stability 
to the system.

Marginal state oscillatory convection is portrayed 
through Fig.  5a–j. The graphs are drawn for fixed val-
ues Rn = 0.1, Rs = 2 , Le = 10, � = 0.5, Ln = 10,NA = 2 , 
NCT = 1.1 , NTC = 0.1, � = 0.01 and � = 0.8 with variations 
in one of the parameters. Clearly, the parameters Rs, Rn, 
ε, NA, � and NCT hasten the onset of convection and also 
to enlarge the size of convection cells (Fig. 5a, b, d, f, h, i), 
while Fig. 5c, e, g illustrates the dual nature of thermo-
nanofluid Lewis number Le , the thermosolutal Lewis 
number Ln and � . The effect of Dufour parameter NTC is 
illustrated in Fig. 5j proving it to be the stabilizing agent 
for oscillatory convection.

For the steady state, Fig. 6a–h describes the compari-
son of the rate of transfer of heat, salt and nanoparticles 
together with their individual behaviour with respect to 
different parameters. It is to be noticed that independ-
ent of the behaviour of any parameter, the rate of transfer 
of heat is the lowest, while the salt is transferred at the 

highest rate. Comparing the transfer of heat with that in a 
regular fluid [41], it is seen that it is increased in the pres-
ence of nanoparticles. The result is also true on physical 
grounds as nanoparticles are proved to enhance ther-
mal conductivity of the fluid. It is also observed that for 
large values of Rayleigh number, the transfer of heat, salt 
and mass attains a constant rate. In Fig. 6a, the effect of 
solutal Rayleigh number Rs is shown. It is clear that as Rs 
increases, NuC and Nu� increase, but Nu decreases. Thus, 
the parameter Rs enhances the salt transfer and mass 
transfer but suppresses the heat transfer. The same behav-
iour is observed for the parameters Rn and NA (Fig. 6b, c). 
The behaviour of the parameters ε, Ln, NTC, Le and NCT is 
shown in Fig. 6d–h. As ε increases, the transfer of heat is 
increased, but it decreases the transfer of mass and salt. Ln 
and NTC enhance the transfer of heat and salt but decrease 
the transfer of mass. Figure 6g illustrates that Le is respon-
sible to enhance the transfer of heat and mass while the 
transfer of salt is suppressed. From Fig. 6h, we find that on 
increasing the Soret parameter NCT, the transfer of salt is 
increased, while the transfer of heat and nanoparticles is 
decreased.

Figure  7 shows the time-independent patterns of 
� , T ,� and C at different values of Ra. It is observed that 
the strength of streamlines increases with greater Ra 
(Fig. 7a, b). The streamlines move alternately identical in 
the subsequent cells but move in the directions opposite 
to each other. It indicates the symmetrical formation of the 
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convective cells. It is seen that as Ra increases the convec-
tive mode of heat transfer becomes stronger (Fig. 7c, d). 
Similarly, the isonanoconcentrations and isohalines occur 
in slightly increased form with increased Ra (Fig. 7e–h).

In the unsteady state of motion, the transient behav-
iour of Nu , NuC and Nu� is plotted with respect to time for 
given values of Rn = 4, � = 0.4, Rs = 5, Ln = 10,NA = 2 , 
Le = 10, � = 0.8, � = 0.5,NCT = 0.1,NTC = 0.01 by varying 
any one of these parameters. It is observed that initially 
(t = 0) heat, salt and mass are transferred at a high rate 
through conduction/diffusion and then attaining vigor-
ous oscillations for a while these approach to a stationary 
state. Figure 8b, f, g predicts that on increasing Rn, NA and 

σ, transfer of heat is suppressed, while it is enhanced for ε 
(Fig. 8d). Since thermo-nanofluid Lewis number Le is the 
ratio of thermal to Brownian coefficient; hence, on increas-
ing its value it results in weaker Brownian diffusivity which 
simply represents lower nanoparticle concentration [15]. 
On taking Le > 1, it enhances the amount heat transfer 
(Fig. 8c).

Figure 9 shows that none of the parameters except the 
Dufour parameter NTC has a significant effect on the trans-
fer of salt. NTC initially increases the salt transport but after 
a certain time transport is decayed and attains a constant 
value.
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Figure 10 states that the transfer of nanoparticles is not 
affected by changing any of the parameters, concluding 
that the presence of salt together with cross-diffusion 
effect does not change the pattern and amount of the 
transfer of nanoparticles.

Graphs for the streamlines, isotherms, isonanocon-
centrations and isohalines for the given values of Rn= 4, 
ε = 0.4, Rs= 5, Ln= 10, NA= 2, σ = 0.8, λ = 0.5, Le= 10, NCT= 0.1 
and NTC= 0.01 at two different times, t = 0.02 and t = 2, are 
shown in Fig. 11. It is to be noted from Fig. 11a, b that 
the same symmetrical formation of the convective cells 

of motion of streamlines is formed in a steady case, but 
the strength of stream function reduces with time. Fig-
ure 11c, d predicts that with the time the convective mode 
of heat transfer becomes weak and conduction is seen in 
the middle of layers. Figure 11e, f shows that the mass of 
nanoparticles initially transfers through strong convection, 
but with the time it loses its evenness and strong diffu-
sion occurs. The same type of behaviour is noticed for the 
transfer of salt (Fig. 11g, h).
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5 � Conclusion

The cross-diffusion effects in a Darcy porous layer satu-
rated with a binary viscoelastic Maxwell nanofluid have 
been investigated numerically and graphically. It is 
observed that the stationary convection is supported and 
enhanced by the presence of nanoparticles. The stability 
of the stationary convection is maintained by the porosity, 
the thermosolutal Lewis number and the Soret and Dufour 
parameters, while the parameters Rs, Rn, Le and NA inter-
rupt the stability and advance the convection. Further, it 

is noted that though nanoparticles advance the station-
ary convection it is suppressed by the presence of cross-
diffusion effects. Oscillatory convection is enhanced by 
the parameters Rs, Rn, ε, Ln, NA and NCT, but Le, λ and NTC 
suppress it. A dual effect of the parameter σ is observed. 
Initially, it delays the convection up to a certain value of α, 
but beyond that it advances the convection.

The nonlinear theory predicts that in comparison with 
the heat and nanoparticles, transfer of salt is maximum. 
The parameters ε, Ln, NCT and Le increase the transfer of 
heat, whereas the parameters Rs, Rn, NA and NTC decrease 
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it. Rs, Rn and NA are responsible for increasing the transfer 
of salt and nanoparticles. Ln enhances the transfer of salt 
but delays the transfer of nanoparticles. Le supports the 
mass transfer and opposes the salt transfer. The param-
eters NCT and NTC slow down the speed of the transfer of 
mass and enhance the salt transfer. The porosity parameter 
ε opposes the transfer of salt and nanoparticles.

In the steady state, the magnitude of stream function 
increases with an increased Ra, while in the unsteady 
state it is decreased with time. Isotherms, isonanocon-
centrations and isohalines occur completely in the form 
of convection in the steady state. In the unsteady motion, 
convective mode of transfer of salt and nanoparticle con-
centrations completely changes to conduction/diffusion 
mode as the time passes.
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Fig. 8   Nu versus t for a Rs, b Rn, c Le, d ε, e Ln, f NA, g σ, h λ, i NCT, j NTC
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Fig. 9   NuC versus t for a Rs, b Rn, c Le, d ε, e Ln, f NA, g σ, h λ, i NCT, j NTC
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Fig. 10   Nuф versus t for a Rs, b Rn, c Le, d ε, e Ln, f NA, g σ, h λ, i NCT, j NTC
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Fig. 11   Streamlines, isotherms, isonanoconcentration and isohalines in the unsteady state
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