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Abstract
The opto-electrical and magnetic field effects on cobalt phthalocyanine (CoPc) thin film single layer device were explored. 
The root mean square roughness of thin film was 5.8 nm. The mobility was estimated for space charge limited current 
region in the current–voltage characteristics. Magnetic field effect on injection current was studied in terms of organic 
magneto-conductance. The negative magneto-conductance (MC) was observed in CoPc thin film diode at different 
bias voltages. The negative values of MC were found to be 10.05, 8.29, 6.84, 4.98 and 3.13% for applied bias voltages 1, 
2, 3, 4 and 5 V, respectively. The CoPc thin film absorbed the UV–visible wavelength range which were represented by 
two bands of CoPc molecule, B band and Q band. MC study of device under dark and light reveals the formation of trap 
assisted bipolarons and their quenching by the formation of photogenerated excitons. The device was checked for the 
resistive and capacitive behaviour by impedance spectroscopy. The contact resistance is approximately constant ~ 66 Ω 
at all applied bias voltages. The bulk and interface resistance vary from 1.8 to 0.6 kΩ and 50.06 to 1.43 kΩ, respectively. 
Similarly, the bulk and interface capacitance vary from 55.81 to 10.56 nF and 50.47 to 558.09 nF, respectively for applied 
bias voltages.
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1 Introduction

Cobalt phthalocyanine (CoPc) is one of the most stud-
ied organic material due to its excellent opto-electrical 
properties, chemical and thermal stability [1, 2]. CoPc thin 
film is used in organic electronics as a p-type material 
for organic light emitting diode, organic sensor, organic 
field effect transistors and organic photovoltaic [3–7]. 
Metal phthalocyanine compound thin film transistors 
are used for sensing of different volatile chemicals and 
gases. Phthalocyanine compound sensors confirmed fast 
response, high stability and good sensing behaviour [8]. 
Their opto-electrical properties have been discussed a lot 
in the scientific community but nowadays, researchers 
are trying to observe the magnetic field effects (MFEs) of 

organic semiconductor and it has opened a new window 
of research for organic spintronics or molecular spintronics 
[9–11]. It is observed that current of organic semiconduc-
tor devices can be largely tuned by a small perturbation of 
the magnetic field without any ferromagnetic electrodes 
[12]. This response of materials or devices is known as 
magneto-conductance (MC) or magnetoresistance (MR) 
[13, 14]. The sign of organic magnetoresistance (OMAR) or 
organic magneto-conductance (OMC) can be negative and 
positive depending upon the specific nature of the organic 
devices [15, 16]. The approaches of OMAR or OMC focus 
on charge carrier spin dynamics in the organic thin film 
in the MFEs [17]. In organic spintronics, organic thin film 
layer is inserted between two ferromagnetic materials in a 
vertical geometry which acts as a passive spacer. The spin 
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is injected and then transported in the passive spacer [18]. 
But the organic semiconductors show very strong MC even 
without ferromagnetic materials in the device [18]. Due 
to excited states phenomena of organic semiconductors 
the electroluminescent, photolumnescent and photocur-
rent of a device change with magnetic field [18–20]. There 
are several models which are used to explain the general 
behaviour of MC, these are: excitonic (electron–hole pair) 
model, bipolaron model, triplet polaron interaction model, 
traps and trions model etc. [21, 22]. Excitonic model can 
work only for bipolar devices where transport proper-
ties of both charge carriers electrons and holes are taken 
into consideration while bipolaron model enunciated the 
effect on electron and hole only devices or for bipolar 
device as well [10, 13, 15]. Even though, no single model 
can explain the origin of MC clearly so far. However, such 
kind of bipolaron which is two like-charges (either two 
electrons or two holes) located on one occupied site and 
are energetically unstable because of a repulsive coulomb 
force exerted on the pair of like charges and this bipolaron 
mechanism is observed in organic semiconductor [23].

In this paper, we report the investigation of MFEs on 
CoPc thin films with a simple device structure. The trans-
port properties and the MC of the device are discussed 
with the appropriate model.

2  Experimental details

The single layer device of CoPc was prepared on indium 
tin oxide (ITO) coated glass substrate. The patterned ITO 
coated glass substrates were cleaned under ultrasonic 
bath with a solution of detergents, deionized water, ace-
tone and isopropanol in sequence for 15 min and then 
substrates were kept in a vacuum oven at 120 °C for 30 min 
for drying. After careful cleaning, the cleaned substrates 
were transferred in the  N2 filled glove box and followed 
by UV- Ozone treatment. The active device area is 6 mm2. 
The CoPc thin film of 100 nm thickness was deposited by 
thermal evaporation at the rate of ~ 0.2 Å/s under the high 
vacuum of ~ 10−6 mbar. Finally, a 120 nm thick aluminium 
metal electrode was thermally deposited at the rate of 
~ 1–2 Å/s. The device architecture of the single layer was 
ITO/CoPc/Al. The surface morphology of CoPc thin film 
was analyzed by tapping mode of atomic force micros-
copy (AFM) (NT-MDT Solver Pro). Optical properties of the 
device were measured by UV–visible spectroscopy and 
ellipsometry (J. A. Woolam M-2000). Current density–volt-
age (J–V) was measured by Keithley source meter 2420. 
Impedance spectroscopy measured at different DC volt-
ages bias by Solartron, SI 1260 with the slight electrical 
perturbation of 100 mV AC signal. MFE was measured by 
using 10-inch pole diameter DC electromagnet (Bruker) 

where the device was placed after fabrication. The mag-
neto-photocurrent was generated under the light of a 
halogen lamp of power ~ 10 mW/cm2.

3  Results and discussions

The chemical structure of CoPc and device structure of the 
thin film are shown in the Fig. 1a. The CoPc is the neutral 
cobalt centered four-fold symmetry planner molecules. 
The orientation of CoPc thin film is influenced by the struc-
ture and roughness of the substrate that results in the flat 
lying, standing molecules or amorphous for the substrate. 
The CoPc thin film may exist in amorphous and crystalline 
form with polymorph α, β and γ structures. The value of 
HOMO and LUMO may vary from ~ 4.92 to 5.20 and 2.66 
to 3.40, respectively depending upon the nature of the 
thin film [1, 24]. The energy level diagram of the device 
shows that ITO and Al are taken as anode and cathode 
where the energy gap for electron is ~ 0.80 eV (between 
Aluminium and LUMO of CoPc) and for hole, the energy 
gap is ~ 0.10 eV (between ITO and HOMO of CoPc) [25–29]. 
There is very less probability for injection of electron in the 
device due to this large energy gap. Figure 1b shows the 
schematic diagram of the device inside the electromagnet 
and the direction of the magnetic field from the North Pole 
to the South Pole of the electromagnet. The amorphous 
nature of the thin film was observed on the substrate as 
shown in the AFM image of CoPc thin film in Fig. 1c. The 
root mean square (RMS) roughness value of the thin film is 
measured to be 5.85 nm. Although there are some spikes 
on the film but their density is very low and the cause 
for these spikes may be non-uniform deposition and/or 
substrate roughness. The spikes in the thin film may be 
due to the crystallinity of the materials as well [1]. Figure 2 
shows the J–V characteristics at different temperature of 
the device. Clearly, there are two regions in the forward 
bias of the J–V characteristics. At low bias region the J–V 
follows ohms law J α V whereas, at high bias region, it fol-
lows J α  V2. Mobility of the charge carrier is determined in 
the space charge limited current (SCLC) [30] region by the 
following expression:

where ε = 2.75 × 10−11 F/m [31] (experimental value), µ 
and d = 100 nm are dielectric permittivity, mobility and 
thickness of devices, respectively. This expression is lin-
early fitted in slope m ~ 2 to analyze the mobility. It is 
observed that the mobility of the device is in the SCLC 
region at a different temperature 30, 50, 70, 90 and 110 °C 
are found to be 4.07 × 10−5, 5.1 × 10−5, 8.1 × 10−5, 1.5 × 10−4 

(1)J =
9ε�V2

8d3
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and 2.4 × 10−4  cm2/Vs, respectively. Although the current 
voltage characteristics does not show perfect ohmic con-
tact but in the forward bias region the mobility may be 
estimated for comparison. The estimated value of mobil-
ity is very close to the earlier reported true value [32–37]. 
The Arrhenius plot of the calculated thermally activated 

mobility is shown in the inset of the Fig. 2. The Arrhenius 
equation for the mobility follows the equation [38] 

where  Ea is the activation energy and μ0 is the infinite tem-
perature hole mobility, The calculated activation energy is 
1.18 meV and the infinite temperature extrapolation of the 
hole mobility is μ0 = 6.01 × 10−4  cm2/Vs. Figure 3 depicts 
the MC response of the single layer device at room tem-
perature. The MC is the relative change of current for the 
applied magnetic field. The MC is represented as

where J(B) and J(0) terms are used for current density with 
and without magnetic field. The MC response is depend-
ent on the applied electrical bias voltage of the device. The 
negative MC decreases with the increase of bias voltages. 
The maximum negative MC was observed ~ 10.05% at 1 V 
bias with respect to 100 mT magnetic field. At the bias volt-
age of 5 V and the magnetic field of 100 mT, the negative 
MC is 3.13%. The negative MC increases monotonically 
with increase of the magnetic field at all applied bias. The 
shape of the MC may be described by the empirical non-
Lorentzian function

(2)μ(T) = �0exp
(
−Ea∕kBT

)

(3)MC (B) =
J(B) − J(0)
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Fig. 1  a Chemical structure of CoPc and Energy level diagram of the devices, b schematic structure of device position in magnetic field, c 
AFM image of cobalt phthalocyanine thin film of 100 nm thickness
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Fig. 2  Current density–voltage (J–V) characteristics of device at dif-
ferent temperature and (inset figure) Arrhenius plot of estimated 
mobility at different temperature
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where  B0 is the full width at half maxima (FWHM) and the 
 MC∞ is MC at infinity magnetic field. The FWHM depends 
on the full range of magnetic field because the MC is not 
saturated. The inset of Fig. 3 shows that FWHM is increased 
with applied bias voltage. The estimated FWHM value for 
low applied bias is ~ 14 mT and increased up to ~ 32 mT 
almost double at the high bias 5 V. The FWHM has a clear 
effect of bias voltages and may be correlated to the charge 
dynamics of the device. In general, the spin precession and 
electronic spin–spin interaction may be the origin of MC. 

(4)MC(B) = MC∞
B2

(
B0 + |B|

)2

Figure 4a shows the UV–Visible optical absorption spectra 
of CoPc thin film in the wavelength range of 300–900 nm. 
There is a B band in the ultraviolet region due to d → П * 
transitions involving the central cobalt atom and Q band 
in the visible region due to П → П* transitions, respec-
tively. The Q-band is highly localized on the phthalocya-
nine ring, and deeply related to the surrounding of the 
phthalocyanine molecule of the conjugated macrocycle 
of 18π-electrons [1, 24]. Maximum absorption peak in the 
ultraviolet and visible region are observed at ~ 322.61 and 
~ 610.82 nm. Figure 4b shows the refractive index and 
extinction coefficient behavior of thin film for the wave-
length range 250–900 nm. Refractive index varies from 
~ 1.5 to ~ 2.2 and extinction coefficient varies from ~ 0.3 
to ~ 0.5 in the studied wavelength range. The nature of 
extinction coefficient over the wavelength range from 300 
to 700 nm is almost same as reported earlier [1]. Negative 
extinction coefficient is also observed in the wavelength 
range of 700–1000 nm which may be due to high reflec-
tion of optical incident wave [39, 40]. The CoPc thin film 
shows broad absorption of light that may generate pho-
tocurrent. The photocurrent will affect the nature of MC. 
The MC of any devices or materials show the change of 
electrical response to an external magnetic field depend-
ing upon the spin-dependent scattering at the interface 
and spin-polarized carrier transport in the spacer [41]. 
Figure 5a shows the semi log current–voltage character-
istics of the device in light and dark. Both the dark and 
light current response of the device are almost same, only 
there is an increase of current in the mid and high value of 
applied bias under light. Both the curve have ohmic and 
SCLC region as already discussed in the Fig. 2. Figure 5b–d 
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Fig. 3  Magneto-conductance (MC) versus magnetic field at dif-
ferent bias voltages and (inset figure) variation of FWHM  (B0) with 
applied bias

Fig. 4  a Absorption spectrum of CoPc thin film versus wavelength, b Refractive index and Extinction coefficient of CoPc thin films versus 
wavelength
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show the MC comparison in dark and under the light of the 
devices at applied bias of 1, 3 and 5 V, respectively. Under 
light, the current of the devices is contributed from electri-
cally injected carriers (Ii) and photogenerated charges (Ip)     

The injected current (Ii) is due to leakage at low voltages 
and from regular transport near or above built in voltages. 
The MC under light is influenced by the space charge and 
traps. Since the MC either in dark or under light is negative; 
the physical process may be the trap assisted bipolaron 
formation [6]. The trap assisted bipolarons formation open 
the transport path and assist carrier to hop in the absence 
of an external magnetic field. At the same time when there 
is an external magnetic field, the bipolaron is spin blocked 
because the same field may be experienced by the spin 
of the positive polarons. Hence the bipolaron path may 
be blocked for hole hopping that results in reduced cur-
rent or negative MC. The increase in bias voltage reduces 

(5)I = Ii + Ip

the number of traps by filling them. So the number of 
bipolarons are increased at high bias voltages. Hence the 
negative MC is proportional to the applied bias as already 
discussed in FWHM nature of Fig. 3. The possibility of bipo-
laron quenching at high applied bias is due to the injection 
of electrons from other electrodes. Under light, there are 
photo excited state excitons or electron–hole pairs in the 
devices. These excitons may affect the bipolaron forma-
tion on the trap sites. The dissociation of excitons increases 
the current in the devices. The comparison of MC under 
light and dark have been shown by Fig. 5b–d. At low volt-
ages, the MC is enlarged. At low bias voltages, the traps 
are being filled that promote bipolaron formation on the 
trap sites. At high voltages the MC decreases under light, 
this may be attributed to the interaction of traps with pho-
togenerated excitons. The exciton can react with trap sites 
occupied by the holes. The reaction will result in charge 
excitons like metastable pairs that reduce the bipolaron 
formation at trap sites. Hence under light, the negative 
MC decreases.

Fig. 5  a Current Voltage characteristics under light and dark b comparison of dark and under light magneto-conductance (MC) at applied 
bias 1 V c at applied bias 3 V d at applied bias 5 V
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Figure 6a, b show the real and imaginary form of the 
AC impedance of CoPc thin film device. The sum of the 
real and imaginary part of impedance can be written in 
complex form as [42]

where  Rs and  R1 represent contact and bulk resistance 
of the device, respectively and  C1 represents the bulk 
capacitance. The Eq. (6) represents the equivalent circuit 
parameters for one semicircle of Cole–Cole plot. Similarly, 
for two semicircles one more component of interface 
resistance and capacitance part are added to Eq. (6). The 
flat frequency independent region of ReZ corresponds to 
bulk resistance and contact resistance; in low and high 
frequency part of Fig. 6a. The ReZ is frequency dependent 
in the middle part of the frequency range (~ 102–105 Hz). 
From the Fig. 6a, it is observed that the value of bulk resist-
ance is decreasing when the bias voltage increases due to 
efficient charge transport towards the electrodes in the 
device [43]. Figure 6b shows the peak value of ImZ with 
respect to frequency. The peak of ImZ (f ) is proportional to 
bulk resistance given by the following equation:

The peak value of ImZ is decreased and shifted to a higher 
frequency with the increase of bias voltage [44]. The fre-
quency at which the value of ImZ is maximum called the 
relaxation frequency and the time corresponds to relax-
ation time (τ) [45]. So the relaxation time of the charge 

(6)

Z(f) = ReZ (f) + ImZ (f) =

[
Rs +

R1

1 + ω2R2
1
C2
1

]
−

[
ωR2

1
C1

1 + ω2R2
1
C2
1

]

(7)ImZ = R1

[
ωτ(

1 + ω2τ2
)

]

carrier is decreased with an increase of bias voltage. Fig-
ure 7 shows two semicircles in the Cole–Cole plot of the 
device at a different bias. The low frequency and high 
frequency semicircles are due to the interfacial and bulk 
traps [46]. It can be modelled as a two electrical parallel 
RC circuit in series, one for bulk resistance and another 
one may be interfacial resistance. The contact resistance 
 (Rs) is approximately constant 66 Ω. Bulk resistance  (R1) 
and interface resistance  (R2) vary from 1.8 to 0.6 k Ω and 
50.06 to 1.43 k Ω, respectively. Bulk capacitance  (C1) and 
interface capacitance  (C2) vary from 55.81 to 10.56 nF and 
50.47 to 558.09 nF, respectively with respect to under stud-
ied bias voltage. The calculated values of different resist-
ance and capacitance at different bias voltages are listed 
in Table 1.  

Fig. 6  Variation of impedance a real and b imaginary part of single layer device with frequency for different applied bias voltages
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4  Conclusions

The investigation of negative MC in the single layer 
CoPc thin film device was discussed. The CoPc thin film 
has the RMS roughness of 5.85 nm. The estimated SCLC 
mobility of CoPc thin film is 4.07 × 10−5  cm2/Vs. The esti-
mated mobility at different temperature follows the 
general Arrhenius equation. The absorption spectra of 
thin film show B-band and Q-band in ultraviolet and vis-
ible wavelength region. The maximum value of negative 
MC decreases with applied bias. The negative MC may 
be due to the formation of trap assisted bipolaron. The 
negative MC effect and bipolaron formation have been 
supported by the MC under light. The exciton formation 
and their contribution for reducing the negative MC is 
confirmed. The device impedance and the Cole–Cole 
plot show the relaxation phenomena and electrical cir-
cuit design of the device. The device is modelled by the 
two RC circuits in series, one for bulk and other for inter-
face at the metal contact.
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