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Abstract
Steel-tube-confined concrete (STCC) targets show excellent anti-penetration performance as a result of confinement 
effect of steel tube on in-filled concrete. A dynamic finite cylindrical cavity-expansion (FCCE) model with elastic radial 
spring was developed to analyze the confinement effect and predict the depth of penetration (DOP) of STCC targets 
normally penetrated by rigid sharp-nosed projectiles. Firstly, steady responses of the dynamic FCCE approximation model 
were obtained on the basis of the assumption of incompressibility of target concrete and failure of comminuted zone 
with the Heok–Brown criterion. Then, based on the dynamic FCCE approximation model, a DOP model for STCC targets 
impacted by rigid projectiles was proposed. Lastly, the penetration tests of STCC targets normally penetrated by 12.7 mm 
armor piecing projectile (APP) were taken as examples to validate the applicability of the dynamic FCCE approximation 
model and DOP model. The results show that in comparisons with the results based on the dynamic spherical cavity-
expansion (FSCE) model, the DOP model based on the dynamic FCCE model in this paper is more applicable to predict 
the DOP of STCC targets penetrated by rigid conical or other sharp-nosed projectiles with a proper value of empirical 
constant m in the Heok–Brown criterion.

Keywords  Penetration mechanics · Steel-tube-confined concrete (STCC) · Depth of penetration (DOP) · Dynamic 
cylindrical cavity-expansion · Finite targets

1  Introduction

With the rapid development of weapons and ammunition, 
a variety of concrete structures and protective facilities are 
facing more and more serious threat of projectile impact, 
such as the concrete protective walls of nuclear power 
plant and concrete shelters of protective engineering [1, 
2]. As concrete is easy to crack or fracture under projectile 
impact, it has been a critical issue to improve the strength, 
ductility and toughness of concrete under impact loading 
[3], in which steel-tube-confined concrete (STCC) is one 
of the effective ways [4, 5]. STCC targets show excellent 
penetration resistance in comparisons with unconfined 

concrete targets. The penetration tests performed by Wan 
et al. [4] revealed that steel tube could restrict the radial 
displacement of the in-filled concrete and development 
of radial cracks, and the concrete damage was restrained 
within the steel tube of STCC targets when impacted by 
projectiles; the depth of penetration (DOP) of STCC targets 
can be reduced by 10–20% than that of semi-infinite tar-
gets. Therefore, proposing an appropriate DOP model for 
STCC targets is of significant importance to conveniently 
and efficiently expand the application of STCC to protec-
tive structures.

DOP models based on spherical or cylindrical cavity-
expansion approximation model have been extensively 
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used [6, 7]. The spherical cavity-expansion (SCE) approxi-
mation model is shown to be suitable to deep penetration 
problems of semi-infinite targets impacted by ogival nose 
rigid projectiles [8, 9], while the cylindrical cavity-expan-
sion (CCE) approximation model is more applicable to 
perforation problems with ductile hole-growth and deep 
penetration problems of semi-infinite targets impacted by 
rigid conical or other sharp-nosed projectiles or [10–12]. 
The CCE approximation model has been employed to 
solve the penetration problems of dry porous rock [13, 
14], soil [15] and concrete [16–18] targets. Mastilovic and 
Krajcinovic [19] proposed CCE approximation model for 
semi-infinite targets on the assumption that the target is 
divided into elastic, process (damaged), crushed (commi-
nuted) and cavity zones, and material in crushed (com-
minuted) zone yields according to the Mohr–Coulomb 
criterion. Forrestal and Tzou [20] also used the Mohr–Cou-
lomb criterion to capture the mechanical performance of 
concrete in the comminuted zone.

Macek and Duffey [21] regarded the targets as incom-
pressible materials, and proposed a finite SCE approxima-
tion model for the analysis of rigid ogival-nose projectiles 
obliquely penetrating into geological medium to consider 
the effect of free surface at the initial stage. On the basis 
of incompressible Mohr–Coulomb material and the SCE 
approximation model for semi-infinite targets proposed 
by Forrestal and Tzou [20], Warren et al. [22, 23] proposed 
a dynamic finite spherical cavity-expansion (FSCE) approxi-
mation model for the targets obliquely impacted by pro-
jectiles. With targets treated as incompressible Mohr–Cou-
lomb material, Fang et al. [24] constructed a decay function 
to include the free-surface effect for geological targets by 
assuming that plastic-cracked-elastic response region 
exists during the cavity-expansion process. Chen et al. [25] 
proposed a fast algorithm to predict penetration trajectory 
in simulation of a rigid steel projectile obliquely penetrat-
ing into a limestone target and the effect of cratering and 
free surface, and separation-reattachment phenomenon 
were involved. However, the models mentioned above 
do not include the influence of lateral free boundary and 
also do not account for the confinement effect of restraints 
imposed on the target material. Zhen et al. [26] established 
a finite cylindrical cavity-expansion (FCCE) approximation 
model for perfect elastic–plastic compressible and incom-
pressible materials with the inclusion of the influence of 
the lateral free boundary. On the basis of assumptions of 
incompressible material and the Modified-Griffith criterion 
[27, 28], which shows the same form with the Hoek–Brown 
criterion [29, 30], Meng et al. [31] proposed a dynamic 
FSCE approximation model and DOP model for confined 
concrete targets normally impacted by rigid projectile. 
The results showed that under high confinement, the 
empirical constant m in the Modified-Griffith criterion 

was recommended to be above 15 on the basis of triaxial 
experiments. However, in the practical application to cal-
culation of DOP for armor piercing projectile (APP) with 
conical core normally penetrating into STCC targets in Ref. 
[4], the calculated results with m ranged between 6 and 8 
agree well with the test results, i.e., the value of m in Ref. 
[31] is lower than the recommended values. The reason is 
that under conditions that there is no coarse aggregate 
within concrete of the targets in Ref. [4] and the penetra-
tion resistance is overestimated by the FSCE approxima-
tion model. Moreover, the geometric shape of an STCC 
target with finite lateral dimensions and tunneling cavity 
response is approximately cylindrical when the STCC tar-
get is normally penetrated by rigid conical or other sharp-
nosed projectiles, which is close to the basic assumptions 
of the FCCE models.

On the basis of the above backgrounds and problems, 
a dynamic FCCE approximation model is proposed to ana-
lyze the stress distribution during the penetration process 
and predict the DOP of STCC targets normally impacted 
by rigid conical or other sharp-nosed projectiles. Firstly, 
a dynamic FCCE approximation model is established for 
STCC targets with the Hoek–Brown criterion and incom-
pressible material, and the equations of stresses and dis-
placements in STCC targets are also proposed. Moreover, 
formula of the DOP for STCC targets based on the dynamic 
FCCE approximation model is developed. Lastly, the rel-
evant penetration tests of STCC targets are employed to 
validate the proposed DOP model.

2 � Dynamic FCCE model for STCC targets

2.1 � Simplification of penetration problems

The penetration process of projectiles into STCC targets 
includes the cratering and tunneling stages [4], as shown 
in Fig. 1a. Generally, the DOP in the cratering stage (H1) 
is based on empirical formula according to experimental 
results, while the DOP in the tunneling stage (H2) is usually 
calculated by analytical models based on cavity-expansion 
approximation models. Like the results of cavity-expansion 
approximation model for semi-infinite targets [8–12], FCCE 
approximation model is expected to be more applicable 
to analyze the penetration problem of STCC targets nor-
mally penetrated by rigid conical or other sharp-nosed 
projectiles.

For FCCE approximation model, the STCC targets can be 
idealized as infinitely thin layers normal to the impacting 
direction and particles of the target material move in a 
radial direction during the penetration process shown in 
Fig. 1a. Therefore, the penetration analysis can be simpli-
fied to one dimensional problem, as shown in Fig. 1b.
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Like the dynamic FSCE approximation model for con-
fined concrete targets proposed by Meng et  al. [31], 
some assumptions are further employed to establish the 
dynamic FCCE approximation model for STCC targets.

(1) Target concrete is a fully incompressible material 
with Poisson’s ratio υ = 0.5. By ignoring the compressibil-
ity and strain-softening of concrete, the cavity-expansion 
pressure would be overestimated; and if shear dilatancy, 
strain-rate, strain-hardening of concrete are not included, 
the cavity-expansion pressure would be underestimated. 
Therefore, under low and medium penetration velocity, 
the above effects of concrete material generally offset 
each other, which indicates the incompressible material 
assumption of target concrete is reasonable [31–33]. Addi-
tionally, incompressible material assumption excludes the 
effect of stress wave and thus greatly simplifies the prob-
lem with possible analytical solutions.

(2) Confinement effect of steel tube to concrete is 
equivalent to a series of linear radial springs with stiffness 
(K) shown in Fig. 1b. As for the circular STCC targets, the 
equivalent confining stiffness (K) is shown in Eq. (1) [4].

where Es, δ and r0 are the elastic modulus, thickness and 
internal radius of steel tube, respectively.

(3) Finite cavity-expansion is assumed as a concen-
tric cylindrical cavity expanding at a constant velocity ṙc 
from initial radius zero to the radius of r0. Under low and 
medium penetration velocity, elastic, cracked and com-
minuted regions generally appear in the STCC targets [31]. 
A typical finite cavity-expansion process includes three 

(1)K =
Es�

r2
0

phases, i.e., “elastic-cracked-comminuted”, “cracked- com-
minuted” and “completely comminuted” phases, as shown 
in Fig. 2. In Fig. 2, rc, rcr and rp are the cavity radius, radius of 
the interface between the elastic and cracked zones and 
radius of the interface between the cracked and commi-
nuted zones, respectively.

For “elastic-cracked-comminuted” phase shown in 
Fig. 2a, the elastic zone is surrounded by the radius r0 of 
core concrete as the outer boundary. When the cracked 
zone expands to the outer boundary of core concrete 
(rcr= r0), the elastic zone disappears; and the first phase 
comes to end (rc= rc1, rc1 is a critical cavity radius).

For “cracked-comminuted” phase shown in Fig. 2b, the 
cracked zone takes the radius r0 of core concrete as the 
outer boundary, i.e., rcr≡ r0; when the comminuted zone 
reaches the outer boundary of the core concrete, the 
cracked zone disappears, then the second phase ends 
(rp= r0, rc= rc2, rc2 is another critical cavity radius and larger 
than rc1).

For “completely comminuted” phase shown in Fig. 2c, 
the external radius of the comminuted zone is r0, i.e., rp≡ r0; 
and the third phase ends when the elastic constraint fails.

Moreover, in cracked zone, the radial stress of the 
incompressible target concrete is continuous with the 
circumferential stress σθ= 0, and the radial stress gets to 
equal the uniaxial compressive strength (σu) at the inter-
face between the comminuted and cracked zones. In elas-
tic zone, the circumferential stress is equal to the uniaxial 
tensile strength (σt) at the elastic-cracked interface.

(4) As strength performance of confined concrete 
is similar to that of the surrounding rock, the nonlinear 
Hoek–Brown criterion is used to describe the confined 
concrete in comminuted region under triaxial compression 

(a) Penetration process of STCC target
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(b) Diagram for process of cavity expansion
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rc r0 r0

Fig. 1   Schematic diagram for FCCE models
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[31]. The equation of the Hoek–Brown criterion is Eq. (2) for 
intact rock [29, 30].

where σu, σ1 and σ3 are the uniaxial compressive strength, 
first and third principal stresses respectively, measured 
positive in compression; and m is an empirical constant.

(2)
�1

�u
=

�3

�u
+

√
m
�3

�u
+ 1

For cylindrical coordinate system, equilibrium equa-
tion of axial stress (σz) is shown in Eq. (3) and further 
simplified according to assumption (1) (υ = 0.5).

where σz, σr and σθ are the axial, radial and circumferential 
stresses, respectively, and taken positive in compression.

Generally, the three principal stresses in cylindrical coor-
dinate system meet relationship of Eq. (4).

Transforming Eq. (2) into the function of σr can give Eq. (5).

where n = m2/4 + 1.

2.2 � Basic equations

For solutions of FCCE approximation model, as the density 
of concrete keeps constant according to assumption (1), the 
equations of momentum and mass conservation and the 
relations between particle velocity and displacement in the 
cylindrical coordinates are as follows [12].

 where u and v are displacement and velocity of particle, 
respectively, with outward motion considered positive; ρ 
is the density of material.

The particle velocity can be obtained by time derivative 
of the particle displacement.

At cavity wall (r = rc), the particle displacement (u) is equal 
to the cavity radius (r = rc), and integral of Eq. (7) would get

Derivation of time from Eq. (9) gets

At the interface between concrete and steel tube ( r = r0 ), 
the boundary conditions can be expressed as
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Fig. 2   Schematic diagram of a typical cavity-expansion process
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According to assumption (3) about the elastic-cracked 
and cracked-comminuted interfaces, the stresses at the 
interfaces are

On the basis of assumption (3) with a constant cavity-
expansion velocity ( ̇rc ), integrating Eq. (10) with Eq. (6) 
obtains

Furthermore, when compressibility of concrete is 
ignored according to assumption (1), the continuous con-
ditions at interface are obtained as follows [19].

Where figure subscripts (1 and 2) represent the front 
and rear of the interfaces, respectively.

2.3 � Solutions of dynamic responses of concrete

2.3.1 � Elastic‑cracked‑comminuted phase (rc< rc1)

In the elastic region (rcr≤ r≤r0, rc≪ r), relationships between 
strain and displacement can be described with Eq. (16) 
under the conditions of small deformation.
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Derivative of r for Eq.  (9) and in combination with 
Eq. (16) could gain the relationship between strain and 
displacement.

Using the Hooke law with assumption (1) (υ = 0.5) and 
ignoring the high-order terms of Eq. (17) get

At the elastic-cracked interface (r = rcr), substituting 
Eq. (12) into Eq. (18) gets

Combining Eq. (14) with Eq. (18) can obtain

Integral of Eq. (20) with the boundary conditions of 
Eq. (11) gains the radial stress (σr).

The circumferential stress (σθ) in elastic region is gotten 
by combining Eq. (21) and Eq. (18).

Combining Eq. (21) with Eq. (19) can gain the equation 
of interface radius (rcr).

The critical cavity radius rc1 is gained by definition of 
rcr = r0 in Eq. (23). The “elastic-cracked-comminuted” phase 
would come to end if rcr= r0, and then Eq. (23) can be fur-
ther simplified as
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It can be seen from Eq. (24) that rc1/r0 is only related to 
the parameters of the targets (Kr0/σu,|σt|/σu and E/σu) but 
independent of the cavity-expansion velocity.

In the cracked region (rp≤ r≤rcr), according to assump-
tion (3), there is no circumferential stress, i.e., σθ= 0, and 
then integral of Eq. (14) gains

where C is the integral constant.
Moreover, on the basis of the continuous conditions of 

the radial stress (σr) related to Eq. (15), substituting Eq. (19) 
into Eq. (25) can provide C as

The integral constant (C) can be further simplified by sub-
stituting Eq. (13) into Eq. (25).

Integration of Eqs. (26) and (27) gains the relationship 
between rp and rcr, as shown in Eq. (28).

Interface radii rcr and rp can be solved by combining 
Eq. (23) and Eq. (28).

If the cracked zone is absent during the FCCE process, 
by definition of rcr= rp in Eq. (28), it gets

Integration of Eqs. (23) and (29) can gain the cavity-
expansion velocity ( ̇rc,max ) for response mode exchange, 
i.e., ṙc,max is the maximum cavity-expansion velocity for 
the “elastic-cracked- comminuted” phase during the FCCE 
process; and there is no cracked zone in targets at initial 
expansion if cavity-expansion velocity exceeds ṙc,max , 
which belongs to hypervelocity penetration problems.
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It can be seen from Eq. (30) that ṙc,max is related to the 
geometric and mechanical parameters of the targets.

Then, combining Eq. (25) with Eq. (26) gets

In the comminuted region (rc≤ r≤rp), transformation of 
Eq. (5) gives

Combining Eq. (32) with Eq. (14) provides

Equation (33) is a nonlinear ordinary differential equa-
tion, and could be solved by Runge–Kutta method with 
the boundary conditions of Eq. (13).

2.3.2 � Cracked‑comminuted phase (rc1 ≤ rc< rc2)

In the cracked region (rp≤ r≤r0), radial stress (σr) can still be 
obtained by Eqs. (25) and (27). The equation of boundary 
conditions is still Eq. (11) at r = r0, and then the integral 
constant C in Eq. (25) can be gained by combination of 
Eqs. (25) and (11).

The radial stress (σr) can be gained by substituting 
Eq. (34) into Eq. (25).

In the comminuted region (rc≤ r≤rp), the solution pro-
cedure of the control equation Eq. (33) with the bound-
ary conditions of Eq. (13) is similar to that in the “elastic-
cracked-comminuted” phase.
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At the cracked-comminuted interface, the Eq. (36) is 
gotten by integrating Eqs. (27) with (34).

When the “cracked-comminuted” phase ends, the com-
minuted region has just reached the outer boundary of the 
targets. Therefore, the critical cavity radius (rc2) is obtained 
by definition of rp= r0, and then Eq. (36) can be transformed 
into

(36)
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It is shown in Eq. (37) that rc2/r0 is correlated closely 

with dimensionless confinement stiffness Kr0/σu, which 
can reflect the confinement effect of the outer tube to 
concrete to a certain degree. The applicable maximum 
confinement (Kr0)max can be obtained by the substitution 
of the critical condition rc1 = rc2 into Eqs. (24) and (37).

(37)
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Fig. 3   Flowchart and steps for calculation of pressure at cavity wall
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There will be no “cracked-comminuted” phase if 
Kr0 > (Kr0)max, and the cavity-expansion process just 
includes “elastic-cracked-comminuted” and “completely 
comminuted” phases.

2.3.3 � Completely comminuted phase (rc≥ rc2)

In the completely comminuted phase, the comminuted 
zone has reached the outer boundary of the targets, i.e., 
rp≡ r0. The boundary conditions and control equation 
would be Eqs. (11) and (33) respectively, and the solution 
procedure of radial stress σr is also similar to the “elastic-
cracked-comminuted” phase.

As equations of stresses for the three possible phases 
of FCCE models are complex, numerical solutions of 
the radial stress and circumferential stress at the cav-
ity wall can be solved by Runge–Kutta method accord-
ing to a standardized and classified procedure shown in 
Fig. 3, which is similar to the procedure for FSCE models 
reported by Meng et al. [31]. The procedure generally 
includes five steps: (1) Collecting and defining the ini-
tial conditions; (2) Discussing the applicability of the 
dynamic FCCE model; (3) Calculating the two critical 
cavity radii; (4) Determination of the response phases; 
(5) Solving the stresses at cavity wall at different phases, 
as shown in Fig. 3.

3 � DOP model of STCC targets penetrated 
by rigid projectiles

3.1 � DOP formula of STCC targets

The penetration process of the STCC targets normally 
penetrated by rigid projectiles includes the cratering and 
tunneling stages [4] and the formula of total DOP (H) is

where H1 is the DOP of the cratering stage with H1 = kd, k 
is an empirical constant and d is the diameter of projectile; 
H2 is the DOP of the tunneling stage obtained by the FCCE 
model.

For the confined concrete targets, the tunneling stage 
DOP (H2) can be calculated by Eq. (40) according to Ref. 
[31]

where N is the shape factor of the projectile nose [34, 35]; 
V1 is the velocity of projectile at beginning of the tun-
neling stage, which is equal to the impact velocity of pro-
jectile (V0) for APP [31]; A and B are constants, obtained 
by curve-fitting of the numerical solutions of the dynamic 
FCCE governing equations with Eq. (41) between a series 
of σrc and the given ṙc.

where σrc is calculated with the FCCE model described 
above. Therefore, the total DOP (H) is the sum of H1 and H2.

3.2 � Validation of the DOP model

Penetration tests of STCC targets in Ref. [36] were selected 
to validate the DOP model in the Sect. 3.1. In Ref. [36], 9 
specimens were designed, as shown in Table 1. All the 
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Table 1   Damage parameters of targets in Ref. [36]

“–” denotes the unmeasured data; “*” signifies the perforation or the abnormal cases of the concrete or projectiles, which would be consid-
ered as invalid during the penetration-depth analysis

Speci-
mens 
number

Diameter/thickness 
of steel tube (mm)

V0 (m/s) Δd (mm) Δd/r0 (%) VL (mL) H1 = kd (mm) H (mm) Average 
value of k

Notes

C140-1 140/3.5 – – – – – 142* 4 Perforation of steel tube
C140-2 140/3.5 820.7 6.4 9.1 270 42.0 173.0
C140-3 140/3.5 829.9 13.0 18.6 252 45.5 181.0
C140-8 140/3.5 – 3.0 4.3 290 45.0 172.1* Unmeasured velocity
C140-6 140/3.5 703.0 4.0 5.7 235 40.0 126.8 3
C140-7 140/3.5 710.5 3.0 4.3 190 34.0 129.2
C140-4 140/3.5 603.0 0 0 195 36.0 92.0 2
C140-5 140/3.5 599.3 4.0 5.7 84 29.0 80.6* Unseperated steel sleeve
C140-9 140/3.5 611.8 2.0 2.9 172 26 93.5
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tubes of the targets had the same dimension and the 
diameter, wall thickness and length of the tubes were 
140 mm, 3.5 mm and 350 mm, respectively. Self-compact-
ing concrete was filled in the steel tube and the uncon-
fined compressive strength and splitting tensile strength 
of the standard specimens at the time of test (age 35 d) 
were 56.3 MPa and 5.66 MPa, respectively.

The test set-ups, procedures and methods were also 
the same as those in Ref. [4]. The damage parameters of 
the STCC targets were are summarized in Table 1. Where, 
Δd is the distance from the center of ballistic crater to 
the center of target, r0 is the radius of confined concrete, 
as shown in Fig. 1; VL is the volume of the crater volume, 
which is measured by sand-filling method; H is the total 
DOP; H1 is the depth of the funneled crater and corre-
lated with the diameter of projectile. Based on the tested 

H1, the empirical constant k is deduced by rounding the 
numbers of the averaged values according to the designed 
penetration velocity range. The results show that for the 
12.7 mm APP, k is related closely to the impact velocity 
V0, approximately, k = 4 for V0 = 820 m/s–830 m/s, k = 3 for 
V0 = 700 m/s–710 m/s and k = 2 for V0 = 600 m/s–610 m/s.

The hard core of 12.7  mm APP is considered to be 
rigid during the penetration process and the velocity loss 
of hard core during the cratering stage is neglected [4, 
36]. Therefore, the parameters of projectile of the DOP 
model is replaced by those of the hard core during the 
tunneling stage, i.e., d = dw and V1 = V0 in Eq. (40), where 
dw is the diameter of hard core. The relevant parameters 
of the 12.7 mm APP and STCC targets in Ref. [36] are as 
follows: d = 12.7 mm, dw= 7.5 mm, M = 19.8 g, N = 0.26; 
Es= 198 GPa; Kr0∕�u = 192, � = 3.5  mm, r0 = 66.5  mm, 
rc= dw/2 = 3.75  mm, σu= 54.3  MPa, ||�t|| = 5.66  MPa, 

Table 2   Resistance coefficient 
and DOP of FCCE model for 
STCC targets

r0/δ (mm) σu (MPa) rc/r0 Kr0/σu m A B k V0 (m/s) Tested 
DOP 
(mm)

Calculated 
DOP (mm)

Relative 
error (%)

66.5/3.5 54.3 0.056 192 10 4.53 7.21 4 825.4 177.0 188.6 6.6
3 706.7 128.0 160.5 25.4
2 607.4 92.8 133.2 43.6

15 4.75 8.18 4 825.4 177.0 175.9 − 0.6
3 706.7 128.0 149.4 16.7
2 607.4 92.8 123.7 33.4

20 4.88 8.89 4 825.4 177.0 168.2 − 4.9
3 706.7 128.0 142.8 11.5
2 607.4 92.8 118.1 27.3

25 4.96 9.44 4 825.4 177.0 163.1 − 7.9
3 706.7 128.0 138.3 8.1
2 607.4 92.8 114.2 23.1

Fig. 4   Curve-fitting of coefficients A and B (m = 25)

Fig. 5   Comparison between the predicted models and tested 
results in Ref. [36]
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E = 3375 ×
√
�u = 24869.9 MPa, ρ = 2420 kg/m3; the con-

stant of k is valued according to the deduced results in 
Table 2.

As m between 8 and 26 is recommended in Ref. [31], 
m = 10, 15, 20 and 25 are tentatively selected and the cor-
responding constant coefficients A and B were fitted with 
Eq. (41) as described in Sect. 3.1. One of the fitted results 
for m = 25 is shown in Fig. 4, and the fitted parameters A 
and B are 4.96 and 9.44, respectively, with the correlation 
coefficient (R2) 0.998. And then, the tested DOP (the DOP 
and impact velocity are averaged for the specimens with 
valid measured results) and calculated DOP are compared 
as shown in Table 2. The results in Table 2 show that the 
relative error decreases with the increasing values of m, 
and the optimal values are gained with m = 25 where the 
relative error is about 8% except that of the targets with 
the impact velocity about 600 m/s (The possible reason is 
that the projectiles do not completely normally impact the 
STCC targets under the lower impact velocity [36]).

The comparisons of several DOP models for STCC tar-
gets including Li–Chen model [34, 35], FSCE model [31] 
and FCCE model in this paper, are shown in Fig.  5. As 
for Li–Chen model, in cratering stage, H1 = 2d, and d is 
replaced with dw in tunneling stage; H2 is calculated by 
Eq. (40) with V1 = V0, B = 1, σu= fc, A = S and S = 72fc

−0.5. For 
FSCE model and FCCE model, m = 25 is selected.

As shown in Fig. 5, the results of DOP calculated by 
Li–Chen model are much larger than those of tests with 
the relative error as high as 23.7–57.5%, while the results 
of DOP calculated by FSCE model are smaller than those 
of tests with the relative error of 5.9–25.1%. However, the 
relative error between the results calculated by Eq. (42) 
in this paper and the tested data is less than 8% except 
that the targets with the impact velocity about 600 m/s. 
Generally, it is shown that the DOP of STCC targets cal-
culated by engineering model based on the Hoek–Brown 
criterion and FCCE model is obviously superior to that of 
the Li–Chen model. It is because that the constraint effect 

of the steel tube on concrete is not considered in Li–Chen 
model. It should point out that all the DOP of the engineer-
ing models are discrete with the impact velocity about 
600 m/s, which may be due to the oblique penetration of 
the projectiles [36].

In order to further testify the applicability of the DOP 
model in this paper, Table  3 presents the comparison 
between the DOP model based on FCCE model and 
the tests in Ref. [4]. The parameters of penetrators, i.e., 
12.7 mm APP, are identical to those in Ref. [36]. The param-
eters of STCC targets in Ref. [4] are as follows: �u = 35.8 
MPa, ||�t|| = 5.9 MPa, Es = 198 GPa, � = 3.5 mm (4.5 mm) 
and r0 = 53.5 mm (52.5 mm). Since the in-filled concrete of 
targets was designed without coarse aggregate, the value 
of m should be smaller than that of concrete with coarse 
aggregate in Ref. [36]. Therefore, m (10, 15 and 20) is ten-
tatively selected for that concrete without coarse aggre-
gate in Ref. [4]. The tested (the DOP and impact veloc-
ity are averaged for the specimens with valid measured 

Table 3   Resistance coefficients and DOP for STCC targets in Ref. [4]

r0/δ (mm) σu (MPa) rc/r0 Kr0/σu A B m k V0 (m/s) Tested DOP 
(mm)

Calculated 
DOP (mm)

Relative error (%)

53.5/3.5 35.8 0.070 362 8.07 4.78 10 4 825.9 197.4 216.4 9.6
8.81 5.44 15 199.0 0.8
9.33 5.94 20 188.3 − 4.6

52.5/4.5 0.071 474 9.69 4.43 10 820.7 189.8 208.9 10.0
10.74 5.02 15 191.7 1.0
11.48 5.49 20 181.1 − 4.6

66.5/3.5 0.056 291 6.15 6.32 10 819.0 211.1 206.0 − 2.4
6.56 7.23 15 190.0 − 10.0
6.87 7.92 20 179.9 − 14.8
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Fig. 6   Comparison of the predicted models with tested results in 
Ref. [4]
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results) and calculated DOP data are compared as shown 
in Table 3.

It can be seen from Table 3 that when m = 15, the calcu-
lated results of the FCCE model are generally consistent 
with the experimental data in Ref. [4], with the maximum 
disparity of 10.0%. And the comparison results further 
shows that the DOP model based on the dynamic FCCE 
models can predict the DOP of the STCC targets normally 
impacted by rigid conical nosed projectile.

Furthermore, the comparisons of DOP models based 
on the dynamic FSCE model [31] and FCCE model (m = 15) 
for STCC targets with r0 = 53.5 mm and δ = 3.5 mm in Ref. 
[4] normally impacted by 12.7  mm APP ranging from 
600 m/s to 830 m/s are shown in Fig. 6. It is shown that 
the DOP obtained by FCCE model are 26%–29% higher 
than that obtained by FSCE model with impact velocity 
ranging from 600 m/s to 830 m/s. Especially, for the tested 
STCC targets (D6#, D7#) in Ref. [4] normally impacted by 
12.7 mm APP ranging from 822.7 m/s to 829.1 m/s, the 
DOP obtained by FCCE model agrees well with tested 
results with the maximum relative error about 1%, while 
the relative error between tested results and the DOP 
obtained by FSCE model is about -25%. Therefore, the DOP 
model based the dynamic FCCE model is more applicable 
to predict the DOP of STCC targets penetrated by rigid 
conical projectiles with a proper value of m.

4 � Conclusions

Based on the assumptions of incompressibility and H-B cri-
terion, a dynamic FCCE model has been developed to ana-
lyze the penetrating process and stresses at cavity wall of 
the STCC targets, followed by a DOP model of STCC targets 
normally penetrated by rigid sharp-nosed projectiles. And 
the relevant penetration tests of STCC targets by 12.7 mm 
APP were used to validate the DOP model based on the 
FCCE model. The results of DOP for the STCC targets based 
on the dynamic FCCE model show the optimal consistence 
with those of the relevant penetration experiments in 
comparisons with the results based on the dynamic FSCE 
and Li–Chen models. It is shown that under the conditions 
of a proper m, the DOP model based on the dynamic FCCE 
model is more applicable to predict the DOP of STCC tar-
gets penetrated by rigid conical or other sharp-nosed pro-
jectiles with an impact velocity below 830 m/s.

Funding  This study was funded by the Natural Science Foundation 
of Hunan Province, China (No. 2018JJ2470) and National Natural Sci-
ence Foundation of China (No. 51308539).

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Kamal IM, Eltehewy EM (2012) Projectile penetration of rein-
forced concrete blocks: test and analysis. Theor Appl Fract Mech 
60:31–37

	 2.	 Bruhl JC, Varma AH, Johnson WH (2015) Design of composite 
SC wall to prevent perforation from missile impact. Int J Impact 
Eng 75:75–87

	 3.	 Tai YS (2009) Flat ended projectile penetrating ultra-high 
strength concrete plate target. Theor Appl Fract Mech 
51:117–128

	 4.	 Wan F, Jiang ZG, Tan QH, Cao YYY (2016) Response of steel-tube-
confined concrete targets to projectile impact. Int J Impact Eng 
94:50–59

	 5.	 Jiang ZG, Wan F, Tan QH, Liu F (2016) Mult-hit experiments of 
steel-tube-confined concrete targets. J Natl Univ Def Technol 
38(3):117–123 (In Chinese)

	 6.	 Ben-Dor G, Dubinsky A, Elperin T (2015) Analytical engineering 
models for predicting high speed penetration of hard projectiles 
into concrete shields: a review. Int J Damage Mech 24(1):76–94

	 7.	 Anderson CE (2017) Analytical models for penetration mechan-
ics: a review. Int J Impact Eng 108:3–26

	 8.	 Forrestal MJ, Warren TL (2008) Penetration equations for ogive-
nose rods into aluminum targets. Int J Impact Eng 35:727–730

	 9.	 Kong XZ, Wu H, Fang Q, Ren GM (2016) Analyses of rigid pro-
jectile penetration into UHPCC target based on an improved 
dynamic cavity expansion model. Constr Build Mater 
126:759–767

	10.	 Forrestal MJ, Warren TL (2009) Perforation equations for coni-
cal and ogival nose rigid projectiles into aluminum plate tar-
gets. Int J Impact Eng 36:220–225

	11.	 Forrestal MJ, Luk VK, Brar NS (1990) Perforation of aluminum 
armor plates with conical-nose projectiles. Mech Mater 
10:97–105

	12.	 Johnsen J, Holmen JK, Warren TL, Børvik T (2017) Cylindrical 
cavity expansion approximations using different constitutive 
models for the target material. Int J Protect Struct. https​://doi.
org/10.1177/20414​19617​7413

	13.	 Forrestal MJ, Longcope DB, Norwood FR (1981) A model to 
estimate forces on conical penetrators into dry porous rock. J 
Appl Mech Trans ASME 48(1):25–29

	14.	 Forrestal MJ (1986) Penetration into dry porous rock. Int J Sol-
ids Struct 22(12):1485–1500

	15.	 Forrestal MJ, Luk VK (1992) Penetration into soil targets. Int J 
Impact Eng 21:427–444

	16.	 Guo XJ, He T, Wen HM (2013) Cylindrical cavity expansion pen-
etration model for concrete targets with shear dilatancy. J Eng 
Mech ASCE 139(9):1260–1267

	17.	 Yankelevsky DZ, Feldgun VR, Karinski YS (2017) Rigid projec-
tile penetrationinto a concrete medium: a new model. Int J 
Protect Struct 8(3):204141961772154

	18.	 Cao YYY, Tan QH, Jiang ZG, Brouwers HJH, Yu QL (2020) A non-
linear rate-dependent model for predicting the penetration 
depth in UHPFRC. Cement Concr Compos 106:103451

	19.	 Mastilovic S, Krajcinovic D (1999) High-velocity expansion 
of the cavity within a brittle material. J Mech Phys Solids 
47:577–610

https://doi.org/10.1177/20414196177413
https://doi.org/10.1177/20414196177413


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:613 | https://doi.org/10.1007/s42452-020-2356-5

	20.	 Forrestal MJ, Tzou DY (1997) A spherical cavity-expansion 
penetration model for concrete targets. Int J Solids Struct 
34:4127–4146

	21.	 Macek RW, Duffey AD (2000) Finite cavity expansion method for 
near-surface effects and layering during earth penetration. Int J 
Impact Eng 24:239–258

	22.	 Warren TL, Poormon KL (2001) Penetration of 6061-T6511 alu-
minumtargets by ogive-nosed VAR 4340 steel projectiles at 
oblique angles: experiments and simulations. Int J Impact Eng 
25:993–1022

	23.	 Warren TL, Hanchak SJ, Poormon KL (2004) Penetration of 
limestonetargets by ogive-nosed VAR 4340 steel projectiles at 
oblique angles: experiments and simulations. Int J Impact Eng 
30:1307–1331

	24.	 Fang Q, Kong XZ, Hong J, Wu H (2014) Prediction of projectile 
penetration and perforation by finite cavity expansion method 
with the free-surface effect. Acta Mech Solida Sin 27:597–611

	25.	 Chen XG, Zhang D, Yao SJ, Lu FY (2017) Fast algorithm for simula-
tion of normal and oblique penetration into limestone targets. 
Appl Math Mech Engl Ed 38(5):671–688

	26.	 Zhen M, Jiang ZG, Song DY, Liu F (2014) Analytical solutions 
for finite cylindrical dynamic cavity expansion in compressible 
elastic–plastic materials. Appl Math Mech Engl Ed 35:1039–1050

	27.	 Zuo JP, Li HT, Xie HP, Peng SP (2008) A nonlinear strength crite-
rion for rock-like materials based on fracture mechanics. Int J 
Rock Mech Min Sci 45(4):594–599

	28.	 Zuo JP, Liu HH, Li HT (2015) A theoretical derivation of the Hoek-
Brown failure criterion for rock materials. J Rock Mech Geotech 
Eng 7:361–366

	29.	 Eberhardt E (2012) The Hoek–Brown failure criterion. Rock Mech 
Rock Eng 45(6):981–988

	30.	 Hoek E, Martin CD (2014) Fracture initiation and propagation in 
intact rock-a review. J Rock Mech Geotech Eng 6:287–300

	31.	 Meng CM, Tan QH, Jiang ZG, Song DY, Liu F (2018) Approximate 
solutions of finite dynamic spherical cavity-expansion models 
for penetration into elastically confined concrete targets. Int J 
Impact Eng 114:182–193

	32.	 Warren TL, Forrestal MJ (1998) Effect of strain hardening and 
strain-rate sensitivity on the penetration of aluminum targets 
with spherical-nosed rods. Int J Solids Struct 35:3737–3753

	33.	 He T, Wen HM, Guo XJ (2011) A spherical cavity expansion model 
for penetration of ogival-nosed projectiles into concrete targets 
with shear-dilatancy. Acta Mech Solida Sin 27(6):1001–1012

	34.	 Chen XW, Li QM (2002) Deep penetration of a non-deformable 
projectile with different geometrical characteristics. Int J Impact 
Eng 27:619–637

	35.	 Li QM, Chen XW (2003) Dimensionless formula for penetration 
depth of concrete target impacted by a non-deformable pro-
jectile. Int J Impact Eng 28:93–116

	36.	 Meng CM, Song DY, Jiang ZG, Liu F, Tan QH (2018) Experimental 
research on anti-penetration performance of polygonal steel-
tube-confined concrete targets. J Vib Shock 37(13):3–9 (In 
Chinese)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Depth of penetration of steel-tube-confined concrete targets based on dynamic finite cylindrical cavity-expansion models
	Abstract
	1 Introduction
	2 Dynamic FCCE model for STCC targets
	2.1 Simplification of penetration problems
	2.2 Basic equations
	2.3 Solutions of dynamic responses of concrete
	2.3.1 Elastic-cracked-comminuted phase (rc< rc1)
	2.3.2 Cracked-comminuted phase (rc1 ≤ rc< rc2)
	2.3.3 Completely comminuted phase (rc≥ rc2)


	3 DOP model of STCC targets penetrated by rigid projectiles
	3.1 DOP formula of STCC targets
	3.2 Validation of the DOP model

	4 Conclusions
	References




