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Abstract
In this work, a new method for the simultaneous determination of tryptophan (Trp) and tyrosine (Tyr) in milk has been 
reported. Trp and Tyr are essential amino acids in human nutrition, but their electrochemical signal overlapped. For solve 
this problem, we developed modified Screen Printed Carbon Electrode (SPCE) with Graphene Oxide–COOH/Chitosan 
(GO–COOH/Chitosan) electro-deposition. The morphology and electrochemical performance of modified electrode 
were characterized by scanning electron microscopy, energy dispersive spectrometry, FT-IR, electrochemical imped-
ance spectroscopy and cyclic voltammetry. The electrochemical simultaneous determination of Trp and Tyr has been 
investigated by using differential pulse voltammetry. The carboxylic acid functionalized GO modified SPCE was utilized 
to catalyze the oxidation of Trp and Tyr. Compared with SPCE/GO/Chitosan and SPCE/Chitosan sensor, the new sensor 
has enhanced sensitivity, low detection limit and high selectivity. In addition, the SPCE/GO–COOH–Chitosan sensor 
enhanced separation of the oxidation peak of Tyr and Trp and showed a remarkable increase in peak current for electro-
active compounds, thus, it can be used for simultaneous voltammetric determination. Under the optimized experimental 
conditions, a linear correlation between oxidation peak current and concentration of Tyr and Trp in the ranges 0.1–60 µM 
and 0.4–40 µM with a detection limit of 0.05 µM (S/N = 3) and 0.1 µM (S/N = 3) were achieved, respectively. Finally, the 
proposed electrochemical sensor was applied for quantification of Tyr and Trp in milk samples, where standard solutions 
were spiked to the milk samples and recoveries were obtained.
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1  Introduction

Trp has to exist in human nutrition owing to be an essen-
tial amino acid and keeping the nitrogen level balanced in 
human beings [1]. However, the high intake or improper 
metabolism of Trp can result in waste products in the 
brain causing hallucinations, delusions,and schizophrenia 
[2]. Therefore, developing a convenient, rapid, and inex-
pensive method with high selectivity and sensitivity for 
the determination of Trp would be desirable in a variety 
of fields such as food processing, biochemistry, pharma-
ceutical industry, and clinical analysis [3, 4]. In contrast, 
Tyr is synthesizable in the body from another amino acid, 
phenylalanine. Tyr is a constituent of many proteins in 
the body and is a precursor to many neurotransmitters, 
including, serotonin, dopamine, norepinephrine and epi-
nephrine [5]. Because of the coexisting of these two amino 
acids in the pharmaceutical industry, food processing, and 
biological samples, strategies have been developed for 
selective determination of them in the presence of one 
another. More importantly, with the aim of maintaining a 
healthy lifestyle, analytical methods have been applied in 
determining the amino acids in foodstuffs. In particular, 
there have been some reports on the determination of Trp 
and Tyr in milk [6–8].

There are several reported methods for the determina-
tion of amino acids including, chromatographic methods 
[9], gas chromatography-mass spectrometry [10], chemilu-
minescence [11], capillary electrophoresis [12], LC–MS/MS 
[13]and electrochemical methods [14–17]. Among these, 
electrochemical techniques have attracted considerable 
attention for the determination of amino acids due to its 
high sensitivity, precision, ease of operation, low costs 
and short analysis times. However, the electrochemical 
response is not pleasing because there is a heterogene-
ous and slow transferring of electron at the electrode sur-
face and consequently, high over potentials of the elec-
trochemical oxidation [18, 19]. Chemical modification of 
electrodes with suitable materials could solve these prob-
lems. Commonly, many nano structure materials such as 
polymer a nanocomposite [20–25], metal nanoparticles 
[26–28], and graphene nanocomposite[15, 29–35] have 
been introduced to enhance the electrode performance.

Graphene has aroused an explosive interest in recent 
decades due to its high stability [36], flexible structure, 
low manufacturing cost and large surface area [37]. Par-
ticularly, graphene has turned to an ideal electrochemi-
cal platform [38] because it fits electrically supreme con-
ductivity [39] (550 S cm−1), and a substantial amount of 
electrochemically desired edge carbons per mass of 
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graphene to facilitate a low over potential transfer of elec-
tron between molecules to an electrode [41, 42]. Chemical 
functionalization of GO is of a major concern in order to 
improve the GO properties while preserving the chemical 
structure of carbon framework [32, 43]. The GO analytical 
performance can be enhanced by controlled immobiliza-
tion of various electro-active materials on existing active 
sites for developing electrochemical sensors and biosen-
sors [44–47]. One of the most common functionalization 
is utilizing nanoparticles as a promising way to make 
nanoscale composite electrodes [21, 48]. By enhancing 
properties of these host material, they are applicable in 
catalysis, opto- electronic materials, surface enhanced 
Raman Scattering, and biomedical fields [27, 31, 49, 50]. It 
is worth noting that the modification of GO with carboxyl 
groups enhances both selectivity and sensitivity for elec-
trochemical determination of Trp and Tyr.

Recently, the electrodeposition technique has received 
much attention due to their wide use in the manufacture 
of sensors and biosensors. Chitosan is one of the most 
widely used materials for electrodeposition. Owing to 
its pH-responsive deposition properties, chitosan can be 
electrodeposited as a nanocomposite film on the cathode 
with other substance through consummation of H+ at the 
surface of cathode [51].

Herein, we have designed a novel electrochemical 
approach for simultaneous determination of Trp and Tyr 
in milk via applying electrodeposition of GO–COOH/Chi-
tosan nanocomposite on SPCE. For this purpose, GO was 
functionalized with carboxylic groups to increase selectiv-
ity and sensitivity of the resultant electrode. This modifica-
tion allows the electrochemical reaction to occur at a lower 
potential range.

2 � Experimental

2.1 � Material and reagent

Graphite powder, potassium permanganate (KMnO4), 
hydrochloric acid (HCl), Chitosan,H2SO4, Tyrosine and Tryp-
tophan were purchased from Sigma-Aldrich.

2.2 � Apparatus

The electrochemical measurements were carried out on 
potentiostat/galvanostat (Autolab PGSTAT-204NGPES 
and FRA software, Eco-Chemie, Utrecht, Netherlands) in a 
cell equipped with a three-electrode system contained a 
working Screen printed electrode (SCEs), a platinum wire 
as a counter electrode and a Ag/AgCl (3 M) as a reference 
electrode.

2.3 � Nanocomposite synthesis

GO was obtained by using modified Hummers method 
from pure graphite powder [52, 53]. To be precise, at first, 
graphite powder (1.0 g) was poured into 23 mL concen-
trated H2SO4 and stirred for several minutes. The tem-
perature was kept below 5 °C by ice bath. Then, 3.0 g of 
potassium permanganate (KMnO4) was slowly added into 
the mixture under continuous stirring until the solution 
became dark green. Then, 184 mL ultra-pure water was 
gradually added and stirred at 35 °C for 2 h. In the next 
step, the mixture is kept in a reflux system at 95 °C for 
15 min. Finally, the reaction was completed by addition 
of 30 mL H2O2 and 140 mL distilled water by which color 
changes to bright yellow. The solid product was washed 
with 10% HCl and deionized (DI) water several times. The 
washed GO was dried in a vacuum oven at 60 °C for 48 h to 
obtain the powder of GO. Following that, for carboxylation 
of GO, 200 mL of GO (1 mg/mL) was dissolved in purified 
water under bath sonicated for 1 h. In the following step 
50 g NaOH was added to the mixture solution and stirred. 
Then, to change the OH group with COOH at surface of GO 
nanocomposite, chloroacetic acid was added to the GO 
suspension and then sonicated for 3 h. The last product 
(GO–COOH) was collected and washed three times with 
ultrapure water and then dried in an oven at 60 °C. For 
sensor preparation, the Surface of SPCEs was modified by 
nanocomposite. Firstly, nanocomposite was prepared by 
mixing of GO–COOH (2 mg/mL) and Chitosan (0.2% w/w) 
and sonicated for 30 min and stirring for 2 h. Then, the 
modified electrode was prepared by choronoamprometry 
electrode position of the nanocomposite on the SPCE sur-
face at constant potentials − 1.5 V and different electrode 
position times (10–200 s) [42].

2.4 � Electrochemical measurement

The electrocatalytic properties of modified electrode were 
investigated by using cyclic voltammetry (CV) and Elec-
trochemical Impedance spectroscopy (EIS). Simultaneous 
determination of l-tryptophan and l-tyrosine were per-
formed by differential pulse voltammetry (DPV).

3 � Results and discussion

3.1 � Surface characterization of the modified screen 
printed electrode

Prior to the electrochemistry determination of amino 
acids, characterization of nanocomposite and modified 
electrode can be carried out by FT-IR, FE-SEM, CV and EIS.
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Surface morphology of the modified screen printed 
electrode was examined with the help of FE-SEM. FE-SEM 
has been used to study the surface morphology of bare 
SPCE (1a) and SPCE/GOX–COOH/Chitosan (1b). Figure 1 
shows the FE-SEM images of electrodeposition process of 
chitosan/GO–COOH nanocomposite on SPCEs bare elec-
trode, which is confirming the successful electrodeposion 
of nanocomposite on the surface of SPCEs.

The chemical composition of the SPCE/GOX–COOH/
Chitosan was analyzed using an energy dispersive 

spectrometry (EDS). The EDS spectrum show elements 
that appear are N, C, O and Ag (Fig. 1c).

FT-IR is a common instrument for determination of dif-
ferent oxygen-containing functional groups in the GO and 
GO–COOH. The functionalization of GO by carboxylic acid 
groups was showed by FT-IR spectra. Figure 2 displays the 

Fig. 1   a FE-SEM images of Bare SPCEs, b FE-SEM images of SPCEs/GOX–COOH/Chitosan and c EDS spectrum of SPCEs/GOX–COOH/Chitosan
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Fig. 2   FT-IR spectra of a GO and b GO–COOH
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Fig. 3   Nyquist diagrams for the electrochemical impedance meas-
urements of a Bare SPCEs and b SPCEs/GOX–COOH/chitosan elec-
trode, electrochemical species: 5  mM K4/Fe(CN)5/K3Fe(CN)6. 0.1  M 
KCl biasing potential: 0.25  V amplitude: 5  mV. Frequency range: 
0.1 Hz–10 kHz



Vol.:(0123456789)

SN Applied Sciences (2020) 2:527 | https://doi.org/10.1007/s42452-020-2332-0	 Research Article

FT-IR spectra of the GO(a) and GO–COOH(b). As expected, 
in the spectrum of GO, the broadband centered about 
3425 cm−1 is recognized to the stretching vibrations of 
O–H.

The band at 1730 cm−1 and 1627 cm−1 can be assigned 
to the vibrations of C=O and aromatic C=C.

After carboxylation of GO, the FT-IR spectra of 
GO–COOH underwent two changes: one was the peak of 
C–O–C groups at 1249 cm−1 which converted into COOH 
under carboxylation procedure, and the other was the thin 
vibration of C=C at 1627 cm−1 shifted to 1600 cm−1.

EIS is an efficient tool used for characterization of elec-
trical properties of materials and their interfacial regions 

with electrodes. In addition, it gives information about 
surface coverage, existing holes/defects on the surfaces, 
and the mechanism and kinetics of film formation proce-
dures. Figure 3 shows EIS measurements of two electrodes 
including bare SPCEs (a) and SPCEs/GOX–COOH/Chitosan 
electrode. Nyquist plots have been utilized to study the 
change in charge transfer resistance (Rct) at sensor solution 
interfaces with electrode surface modification.

The semicircle of SPCEs/GOX–COOH/Chitosan (b) was 
obviously smaller than that of the bare SPCEs (a). It meant 
that the use of GOX–COOH/Chitosan in the modified elec-
trode provided excellent binder between the electrode 
and electrolyte, leading to an improvement of the elec-
tron transfer rate. EIS measurements were carried out in 
the solution containing a mixture of. 0.1 M KCl 5 mM K4/
Fe(CN)5/K3Fe(CN)6 as a redox probe.

Cyclic voltammetry (CV) is an effective and conveni-
ent method for the probing feature of the modified 
electrode surface. In this study, electrochemical redox 
behavior of theSPCEs/GOX–COOH/Chitosan electrode 
was investigated with cyclic voltammetryby using a 
solution of 0.1  M  KCl and 5  mM Fe[(CN)6]3−/4− redox 
probe at scan rate of 0.05 V s−1. After the bare electrode 
modified with nano-composite, the anodic and cathodic 
peak current was increased. Thus, this result proved that 
the electron transfer rate was improved with GO–COOH 
electro-deposition (Fig. 4).

3.2 � Electrochemical determination of Trp and Tyr

Electrochemical determination of Trp and Tyr was per-
formed with the modified GO–CCOH/Chitosan electrode 
at different concentration by using DPV.
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Fig. 4   The cyclic voltammetry curves of a Bare SPCEs and b SPCEs/
GOX–COOH/chitosan electrode into 5  mM[Fe(CN)6]3−/4−. 0.1  M KCl 
at 50 mV/s

Fig. 5   a Differential pulse 
voltammetry of Tyr (20 µM) in 
different pH values (2 → 9), b 
differential pulse voltammetry 
of Trp (20 µM) in different pH 
values (2 → 9)
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3.3 � Optimization of the experimental conditions

3.3.1 � GO/COOH/chitosan electrodeposition condition

The thickness film of nanocomposite on SPCE has effect 
on DPV current. Thus, the relationship between of DPV 
current peak (Ip) of Trp and Tyr with potential and elec-
tro-deposition time was investigated. The Ip of the com-
ponents increased when the time was increased within 
the range from 10 to 100 s and response had decreased 
thereafter. Higher responses and more acceptable cali-
bration curves were achieved with electro-deposition 
potential at − 1.5 V.

3.3.2 � Effect of pH

Amino acids depending on the pH solution can have dif-
ferent forms. In the acidic environment, the amino group 
gets protonated and changed to NH3

+. In contrast, in the 

basic environment, the carboxylic acid gets deproto-
nated and changed to COO−. Since pH plays a vital role, 
the effect of pH solution variation on the electrochemi-
cal oxidation of Trp and Tyr at the electrode was investi-
gated. The maximum Ip of Trp and Tyr were obtained at 
pH 2.0. Moreover, Ep had shifted to a negative potential 
as the pH increased linearly with a slope of 37 mv/pH 
and 22 mv/pH for Trp and Tyr, respectively (Fig. 5a, b).

3.3.3 � Effects of accumulation potential and accumulation 
time

The effects of accumulation potential on the DPV current 
of Trp and Tyr at the SPCEs/GO–COOH/Chitosan were 
investigated over the range of − 0.6 to 0.4 V. The results 
indicated Ip of Trp and Tyr are increased as the potentials 
shifted negatively. However, to achieve the best signal-to- 
noise, the accumulation potential 0.00 V was selected for 
future experiments. Moreover, the effect of accumulation 

Fig. 6   a DPVs for increas-
ing concentration of Tyr at 
SPCE/GO–COOH/Chitosan 
sensor in buffer solution 
(pH = 2.0). (Inset) correspond-
ing calibration graph. b DPVs 
for increasing concentration 
of Trpat SPCE/GO–COOH/Chi-
tosan sensor in buffer solution 
(pH = 2.0). (Inset) correspond-
ing calibration graph

Table 1   Comparison of the 
performances of some Trp and 
Tyr electrochemical sensors

SWCNT single-walled carbon nanotubes, GCE glassy carbon electrode, MSNs mesoporous  silica nano-
particles, ERG electrochemically reduced graphene oxide, POM polyoxometalate, rGO reduce grapheme 
oxide, BDD boron-doped diamond

Electrode modification LOD for Trp (µM) Linear 
range for 
Trp (µM)

LOD for Tyr (µM) Linear 
range for 
Tyr (µM)

Refs.

ERGO/GCE 0.1 0.2–40.0 0.2 0.5–80.0 [1]
SWCNHs/GCE 0.05 0.5–50 0.4 2.0–30 [8]
POM-rGO/GCE 2.0 10–1000 2 10–1000 [15]
MSNs/CPE 0.034 0.05–400 0.150 0.5–600 [25]
BDD 10 400–3000 1 100–700 [28]
Nafion/TiO2-graphene/GCE 0.7 5–140 2.3 10–160 [35]
GO–COOH/Chitosan/SPCE 0.1 0.4–40 0.05 0.1–60 This study
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time was investigated. Initially, the Ip increased at the 60 s 
and then the peak currents reach a plateau.

3.4 � Linear range, detection limit 
and reproducibility of the method

The linear range and detection limit of Trp and Tyr at 
the optimum conditions were determined by using DPV 
technique. DPV waves and the corresponding calibration 
curves obtained for various concentrations of Tyr and Trp 

at SPCE/GO–COOH/Chitosan in 0.01 M HCl (pH 2.0) as sup-
porting electrolyte (Fig. 6). By drawing the anodic current 
signal versus the concentration, a linear dynamic range 
from 0.1–60 µM with a limit of detection (LOD) of 0.05 µM 
(S/N = 3) was obtained for Tyr (Fig. 6a) and for Trpa linear 
relationship was found over the range of 0.4–40 µM with a 
limit of detection (LOD) of 0.1 µM (S/N = 3) (Fig. 6b).

To evaluate the electrode-to-electrode reproducibil-
ity, five fabricated electrode used for determinations of 
Tyr (5 µM) and Trp (5 µM) by DPV technique. The relative 
standard deviations (RSD) of 3.2% and 2.8% for Tyr and 
Trp were obtained, respectively. The repeatability of the 
analytical signals was studied by ten successive determina-
tions of Tyr (5 µM) and Trp (5 µM) and RSD of 1.2 and 1.1% 
were obtained, respectively.

The comparison of SPCE/GO–COOH/Chitosan sensor 
with other modified electrodes for determination of Tyr 
and Trp were shown in Table 1. It can be seen that the 
GO–COOH/Chitosan indicated a wider linear range and a 
lower detection limit for Trp and Tyr than some previous 
works. In addition, an important advantage of this method 
is the best resolution for the voltammetric peaks of Tyr 
and Trp. Thus, it is suitable and effective for simultaneous 
determination of two amino acids.

In order to describe about the utilization of the pre-
pared modified electrodes for simultaneous voltammet-
ric detection of Tyr and Trp, differential pulse voltammo-
gram was recorded for; SPCE/Chitosan (dash-dotted), 
SPCE/GO/Chitosan (dotted line) and SPCEs/GO–COOH/
Chitosan (solid line) in a mixture solution of Tyr and Trp 
(each 5 µM) in 0.01 M HCl solution (pH 2.0) as shown in 
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Fig. 7   DPVs of; SPCE/Chitosan (dotted), SPCEs/GO/Chitosan (dash- 
line) and SPCEs/GO–COOH/Chitosan(solid line) in a mixture solu-
tion of Tyr and Trp (each 5 µM) in 0.01 M HCl solution (pH 2.0)

Table 2   Maximum tolerable concentration of interfering species

Interfering species Interference con-
centration (µM)

Tyr recov-
ery (%)

Trp recov-
ery (%)

Interfering species Interference con-
centration (µM)

Tyr recov-
ery (%)

Trp 
recovery 
(%)

Ascorbic acid 200 92 95 Citric acid 1000 95 96
Uric acid 200 95 98 Lactic acid 1000 93 92
Dopamine 100 95 105 PO4

3− 500 94 98
Cysteine 100 96 93 CO3

2− 500 94 93
Aspartic acid 200 95 95 Cl− 500 102 99
Glutamine 1000 91 96 SO4

2− 500 97 96
Threonine 200 92 93 Mn2+ 200 95 91
Proline 1000 95 95 Fe2+ 200 93 99
Histidine 1000 96 97 Zn2+ 1000 98 94
Valine 1000 95 96 Ca2+ 2000 99 102
Serine 1000 99 98 Mg2+ 500 98 95
lucine 1000 100 97 Na+ 500 100 99
Arginine 200 100 96 K+ 2000 95 97
Methionine 200 100 98 Cu2+ 100 99 100
Phenylalanine 200 93 95 Cr3+ 100 96 95
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Fig. 7. As seen, the DPVs wave of SPCE/Chitosan, applica-
tion of GO–COOH, results in the increase of the peak cur-
rent and obtained good anodic peak resolution of Tyr and 
Trp, therefore this electrode is suitable for simultaneous 
voltammetric determination of Tyr and Trp.

3.5 � Interference studies

The influences of matrixes on sensor response were 
also investigated in the solutions containing a mixture 
of 5 µM of Tyr and 5 µM of Trp in the present of various 
interferences such as aspartic acid, ascorbic acid, uric acid, 
dopamine, threonine, cysteine, glycine, lysine,glutamine, 
glycine, histidine, proline, valine, serine, lucine, arginine, 
methionine, phenylalanine, citric acid, lactic acid, PO4

3−, 
CO3

2−, Cl−, SO4
2−, Mn2+, Fe2+, Zn2+, Ca2+, Mg2+, Na+, K+, Cu2+ 

and Cr3+(Table 2).
The results show that the concentration of the interfer-

ing species did not cause any interference.

3.6 � Simultaneous determination of Tyr and Trp 
in milk samples

Applicability of the SPCE/GO–COOH/Chitosan sensor was 
examined for determination of Tyr and Trp content in milk. 
At first, the milk samples were diluted 500 times with HCl 
(0.01 M) solution and transferred to the voltammetric cell, 
and then sample analysis was investigated by standard 
addition of both amino acids in milk by using DPV method. 
The results are summarized in Table 3. The good recovery 
values show good efficiency of the sensor for selective 
determination of two amino acids in milk samples.

4 � Conclusion

The present study demonstrates a new modified SPCE 
based on GO–COOH/Chitosan and its application for the 
simultaneous determination of Tyr and Trp. According to 

the results, the sensor obtained by GO–COOH/Chitosan 
electrode-position shows high sensitivity, good reproduc-
ibility and enhanced separation of the oxidation peak of 
Tyr and Trp with respect to the sensors prepared based on 
GO/Chitosan and Chitosan.

Moreover, GO–COOH/Chitosan nanocomposite exhib-
ited excellent electro-activity and linear voltammetric 
response towards of Tyr and Trp. The method was success-
fully applied to the determination of Tyr and Trp in Cow 
and Goat milk. In particular, the proposed method offers 
advantages such as simplicity, sensitivity, and stability in 
Tyr and Trp detections from spiked milk samples.
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