
Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

Research Article

Cross‑projects software defect prediction using spotted hyena
optimizer algorithm

M. A. Elsabagh1 · M. S. Farhan2 · M. G. Gafar3,1

Received: 20 August 2019 / Accepted: 23 February 2020 / Published online: 3 March 2020
© Springer Nature Switzerland AG 2020, corrected publication 2022

Abstract
Cross-projects software defect prediction improves the quality of new software projects or projects with a shortage of
historical data. Therefore, various data mining techniques are recommended in this field. The classification accuracy
issue is considered one of the most significant problems due to the shortage and heterogeneous in historical data. To
address this challenge, this research utilizes a spotted hyena optimizer algorithm as a classifier to predict defects through
cross-projects. Confidence and Support are utilized as a multi-objective fitness function to look for the best classification
rules. These classification rules are used to predict defects for new projects or other projects with insufficient data. The
datasets of NASA such as JM1, KC1, and KC2 are used. By applying spotted hyena optimizer algorithm as a classifier on
one dataset and predicting defects in the other two datasets, accuracy is reported 84.6, 92.0, 82.4, 90.7, 86.6 and 81.8 for
JM1, KC1, and KC2 respectively. These accuracy values are better than the most significant data mining techniques in the
field such as Support Vector Machine, Naïve Bayes, Boosting, C4.5, and Bagging. Also, the proposed research discusses
other performance measures such as precision, recall, and f-measure. The conclusion proves that there are many features
of McCabe and Halstead that have a strong impact to generate highly accurate predictors for defects such as McCabe’s
line count of code, McCabe’s cyclomatic complexity, McCabe’s essential complexity, McCabe’s design complexity iv, Hal-
stead’s effort, Halstead’s time estimator, Halstead’s line count, Halstead’s count of line of comments and total operators.

Keywords  Cross-projects · Spotted hyena optimizer · Software metrics · Support · Confidence

1  Introduction

Nowadays, Software Defect Prediction (SDP) is very criti-
cal in software engineering and one of the most helping
activities during the testing phase of the System Develop-
ment Life Cycle (SDLC). However, predicting the defective
modules isn’t a straight forward job [1].

Defects of software are errors, flaws, mistakes, faults
or bugs in software. They may come from the absence of
developer experience, the misconception of requirements
or uncontrollable development phase which will produce
failures or unexpected results [2].

The quality and reliability of the software are demanded
to meet user requirements in constrained timespan by
identifying and predicting defects in the early stage of
SDLC. Therefore, SDP models help teams of quality assur-
ance to allocate resources to the most defective modules
[2–4].

Generally, there are three approaches in SDP models.

•	 With-in project SDP: SDP model is built by gathering
historical data from a project of software (training
phase) and predicts defects in the same project (test-
ing phase) i.e. training and testing phases are applied

 *  M. A. Elsabagh, Mahmoud_Mohsen@fci.kfs.edu.eg; Elsapgh2010@gmail.com | 1Department of Machine Learning and Information
Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr Elsheikh, Egypt. 2Department of Information Systems, Faculty
of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt. 3Department of Computer Science, College of Science
and Humanities in Al‑Sulail, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2320-4&domain=pdf

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

on the same project. However, projects that have no
historical data cannot be applied. Therefore, accuracy
cannot be achieved [5].

•	 Cross-projects SDP for similar datasets: SDP model is
utilized in a mode such that historical data of projects
isn’t presented or insufficient to train and build the SDP
model. The SDP model is trained and developed on one
project and applied for cross projects or other projects.
The drawback here is that it requires projects with the
same features and metrics [5].

•	 Cross-projects SDP for heterogeneous or dissimilar
datasets: SDP model is presented to predict defects
with disparate datasets [5].

Recent researches use data mining methodologies
that depend on machine learning as important models.
Many techniques were used in SDP such as Support Vec-
tor Machine (SVM) [6], Naïve Bayes (NB) [7], Boosting [8],
C4.5 [9] and Bagging [10]. SDP models still suffer from a
very important and challenging issue, which is detecting
accuracy [11, 12].

This research uses an algorithm called Spotted Hyena
Optimizer (SHO) [13] as a classifier model for predicting
software defects in cross projects for similar metrics in
different datasets. SHO is developed and trained on one
project and applied for predicting software defects in
other projects (cross projects) with the same features and
metrics. To locate the most fitness classification rules, the
experiments apply confidence (CONF) and support (SUP)
as a multi-objective function on one project with historical
data to build the SDP model and apply these classification
rules on other projects that don’t have a sufficient histori-
cal data such as new projects. Moreover, it assists software
engineering industries to upgrade quality in limited time
and effort during the development process.

In this research, SHO is used for the first time as a clas-
sifier with a multi-objective fitness function of CONF and
SUP. This algorithm makes accuracy values better than the
most significant data mining techniques in the field. SHO
is utilized as a feasible meta-heuristic algorithm in terms
of complexity and efficiency as compared to other tradi-
tional algorithms. It has been utilized for obtaining the
acceptable solutions for different design problems [13].
In the previous researches, there is a shortage study on
the accuracy of traditional cross-project SDP models for
similar datasets. Therefore, the experiment study uses SHO
as a classifier using (CONF) and (SUP) as a multi-objective
fitness function on one project with historical data to build
the SDP model. The previous step results the most fitness
classification rules used in other projects that don’t have a
sufficient historical data such as new projects.

The rest of this research is composed as follows: Sect. 2
describes recent techniques for predicting software

defects. Section 3 discusses the SHO algorithm and its
mathematical model. Section 4 presents a brief discussion
of the proposed classifier. Section 5 shows the discussion
and experimental study of the proposed algorithm. Finally,
Sect. 6 lists the conclusion and future work.

2 � Literature survey

Manual testing requires 27% of development effort [14]
furthermore; it couldn’t detect all defects of software. Also,
With-in project SDP still suffers from classification accu-
racy because there are new projects without historical
data used to build the SDP model. Hence, cross-projects
SDP is considered one of the most significant activities in
producing defect-free products of software. It reduces the
time and effort of testing teams. This section discusses the
common related work of cross-projects SDP with a similar
dataset.

It is commonly favored for SDP to learn utilizing the
locally accessible data of a software project (within–pro-
jects SDP). This local data is obtained from the historical
versions and forms of the project. With-in projects SDP
model is constructed by gathering historical data from a
software (training phase) and predicts defects in the same
software (testing phase). This approach suffers from dif-
ferent challenges such as how to predict defects in new
projects with a shortage in historical data? Therefore, accu-
racy cannot be achieved. Nevertheless, the challenge of
unavailability of the local data faces the organization’s
team. The reasons for unavailability may be due to the
changing of technology or no similar features of projects
previously developed [1]. To overcome this problem, the
cross-project software defect prediction is used. It is uti-
lized in a mode such that historical data of projects isn’t
presented or insufficient to train and build a SDP model.
Therefore, the SDP model is trained and developed on one
project and is applied for cross projects or other projects
provided the projects have the same features and metrics
[5]. The cross-projects SDP is a classification model that is
composed of a set of rules for prediction gathered on the
training phase.

Steffn Herbold [15] presented research that provided a
benchmark of 26 cross-projects software defect prediction
methodologies depended on cost metrics. His benchmark
demonstrated that expecting everything as defective was
on average better than cross-projects software defect pre-
diction under cost considerations. Moreover, the research
demonstrated that the rank of methodologies utilizing
metrics of cost was uncorrelated to the rank depended
on the metrics that don’t utilize costs.

Fei Wu et al. [16] presented a solution that was effec-
tive and unified for both semi-supervised cross-project

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

software defect prediction and semi-supervised with-in
software defect prediction problems. This research pre-
sented a learning technique of semi-supervised technique
and proposed a cost-sensitive kernelized semi-supervised
dictionary learning technique.

Yun Zhang et al. [17] researched seven composite tech-
niques that coordinate several classifiers of machine learn-
ing to enhance cross-projects software defect prediction.
For evaluating the composite algorithms, they applied the
experiments on 10 software systems (open source) from
the PROMISE repository [18]. The research compared the
composite techniques with a combined SDP model where
meta- classification used logistic regression using F-meas-
ure and cost metrics for evaluation. The experiment shows
that the proposed algorithms are better in performance
than the compared algorithm.

Peng He et al. [19] developed TD selector using defects
and similarity as a weighted function. He utilized logistic
regression as a classifier model and analyzed the effects
of several combinations of normalization and similarity of
defects on the performance of prediction. Also, he com-
pared it with the other two methods. The experiments are
applied to 14 projects gathered from public repositories.

Chao Ni et al. [20] proposed a cluster-based strategy
feature extraction utilizing clusters of hybrid-data to ease
the conveyance contrasts. It incorporates two stages. The
strategy of clustering basing on density is used by the fea-
ture clustering stage to cluster features. Also, the strategy
of ranking is used by feature extraction. For cross-project
software defect prediction, the research designed three
several heuristic ranking methods in the second stage. The
experiment is applied to real-world projects.

Thomas Zimmermann et al. [21] studied cross-projects
software defect prediction models on an extensive scale.
For 22 real applications, they ran 622 cross-projects soft-
ware defect prediction. The results demonstrated that
cross-projects software defect prediction didn’t lead to
perfect or accurate predictions.

As indicated by the previous work, there is an expand-
ing requirement for predicting the software defects with a
shortage of historical data. Besides, this detection is required
at the starting time of the software development life cycle
due to the high maintenance cost. Therefore, the proposed
research aims at enhancing cross-projects software defect
prediction that still suffers from different challenges and
drawbacks such as detecting accuracy [12] and solving the
problem of how to predict defects in new projects with a
shortage in historical data? Moreover, the proposed cross-
project software defect prediction model utilizes the SHO
algorithm [13] as a classifier. SHO algorithm was not used
as a classifier before especially in this field. In addition to,
CONF and SUP were not used as multi-objective fitness func-
tions with the SHO algorithm for classification. Therefore, the

performance of the algorithm and accuracy are increased.
The convergence of the SHO in this research converges
around 4% of the all-out number of cycles. Therefore, the
best fit rule is met at less time. The following section explains
the spotted hyena optimizer algorithm.

3 � Spotted hyena optimizer (SHO)

Algorithms of meta-heuristic are summarized into three cat-
egories physical, evolutionary and swarm-based [22]. SHO
[13] is a meta-heuristic algorithm motivated by the behavior
of the spotted hyena. SHO is scored with one unconstrained
and 5 constrained problems of engineering design: loaded
structure displacement, speed reducer, welded beam,
pressure level, compression spring, and element of rolling
bearing [13, 36]. SHO is also used in classification of heart
problem [37]. The principle thought of the SHO is the social
association among hyenas and their conduct. SHO math-
ematically modeled the three stages of spotted hyena’s
behavior: looking for, surrounding and assaulting prey. The
SHO is better in performance over the other meta-heuristic
algorithms. The following subsections summarize the math-
ematical model of encircling, hunting and exploiting the
prey by the spotted hyenas.

3.1 � Encircling the prey

Dhiman et al. [13] mathematically demonstrated the spot-
ted hyenas’ hierarchy. They consider the prese nt best solu-
tion is the objective target which is near the ideal because
of search space not known a priori. The other search hyenas
will attempt to refresh their situations after the best search
solution is characterized. The following equations explain
the model of encircling prey:

where D⃗h describes the partition among the spotted hyena
and prey, x represents the present iteration, B⃗ and E⃗ are
vectors of co-efficient, P⃗p represents the prey position vec-
tor and P⃗ is the position vector of spotted hyena. || shows
the absolute value and × is the multiplication with vector.
The vectors B⃗ and E⃗ are computed as follow:

(1)D⃗h =
||
|
B⃗ × P⃗p(x) − P⃗(x)

||
|

(2)P⃗(x + 1) = P⃗p(x) − E⃗ × D⃗h

(3)B⃗ = 2 × rd⃗1

(4)E⃗ = 2h⃗ × rd⃗2 − h⃗

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

where iteration = 1, 2, 3…, Maxiteration . For legitimate chang-
ing the mode of exploitation and exploration, ��⃗h directly
diminishes from 5: 0 through Maxiteration, rd⃗1, rd⃗2 , are irregu-
lar vectors in [0, 1].

3.2 � Hunting the prey

Spotted hyenas commonly live and pursue in gatherings
and depend upon an arrangement of partners and the
ability to see the region of prey. For describing the behav-
ior of spotted hyena mathematically, they consider the
most feasible search agent, which ideally knows the area
of prey. The other individuals make a gathering towards
the perfect individual.

The following equations present the mathematical
model of hunting prey:

where P⃗h is describes as the situation of first feasible hyena,
P⃗k demonstrates the situation of other agents. Here, N rep-
resents the number of hyenas which is expressed as follow:

where M⃗ is an irregular vector in [0.5, 1], nos represents
the number of solutions and C⃗h is a cluster of N number
of ideal solutions.

3.3 � Exploiting the prey

To show the model for attacking the prey, they decrease
the vector ��⃗h value; the variety in the vector E⃗ is also
decreased to change the value in the vector ��⃗h which could
decline from 5 to zero through the iterations. The following
equation represents the model of attacking prey:

where P⃗(x + 1) saves the most feasible and updates the
locations of other agents. The next section explains the
SHO algorithm as a classifier and how it is utilized to opti-
mize the most accurate classification rules in cross-project
SDP for similar datasets.

(5)h⃗ = 5 −
(
iteration ×

(
5 ÷Maxiteration

))

(6)D⃗h =
||
|
B⃗ × P⃗h − P⃗k

||
|

(7)P⃗k = P⃗h − E⃗ × D⃗h

(8)C⃗h = P⃗k + P⃗k+1 +⋯ + P⃗k+N

(9)N = countnos

(
P⃗h, P⃗h+1, P⃗h+2, … ,

(
P⃗h + M⃗

))

(10)P⃗(x + 1) = C⃗h ÷ N

4 � Proposing SHO as a classifier

In new projects, Cross-projects software defect predic-
tion is viewed as a standout amongst the essential tasks
in software engineering due to the shortage in histori-
cal data [23][24]. Also, accuracy can’t be fulfilled and
problems of real-life may increase such as efficiency and
complexity. Detecting accuracy still can’t be achieved
through with-in SDP; especially new projects. Sections 1
and 2 briefly discuss how with-in SDP and cross-projects
SDP would depend on machine learning. Hence, there
is an increasing need to obtain optimal solutions by
meta-heuristic techniques [22].To face this challenge,
this research utilizes the SHO algorithm as a classifier for
predicting defects in a mode such that historical data of
projects isn’t presented or insufficient to train and build
a SDP model.

The following figure demonstrates the flow of data
and essential processes in the SHO classifier through
cross-projects SDP as following:

•	 The instances are built from software archives such
as version control. Each instance represents class, file,
package or method which is defective or not.

•	 This research uses the discretization process for data-
set via RapidMiner 5.3 tool [25] because the exact
matching among instances of datasets and individu-
als of the population is very difficult. Hence, the SUP
and CONF degrees help the multi-objective function
to assess the perfect rules of classification.

•	 The SHO that used as a classifier repeats the search
for the fit rule (classification rules) depending on a
random subset of a dataset of a project (dataset of
training).

•	 For new projects with similar datasets that can’t present
historical data, the classification rules resulted from the
training phase are used to predict the defects (Fig. 1).

•	 According to results, a report of accuracy, F-meas-
ure, specificity, recall, and precision are calculated
for comparing with other techniques of data mining
such as Artificial Neural Network (ANN), Support Vec-
tor Machine, Naïve Bayes, Bagging, Random Forest, K
nearest neighbors (K-NN), and C4.5.

The following subsections explain the multi-objective
fitness function, phases, and flow chart.

4.1 � Multi‑objective fitness function

Objective function [26] evaluates how to find the most
fitness solution of the presented issue. During the

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

experiments, this subsection that explains the confi-
dence and support [27] as a multi-objective function is
utilized to find the perfect rules of classification. First,
SUP of the rule is calculated by how many instances that
fulfill the rule. It can be expressed as follow:

Second, CONF is calculated. It is the proportion of the
number of instances occurrence that satisfies the entire
rule (antecedents and consequences) to the number of
instances occurrence that satisfies only the antecedent. It
can be described as follow:

where COUNT_SS is the number of instances that satisfies
the rule, R is the total number of instances in the dataset
and COUNT_CC is the number of instances that fulfill the
antecedent of the rule.

Finally, the multi-objective fitness function (FT) for each
rule is calculated as follow:

where W1 and W2 are weights given to the SUP and CONF
functions depending on their relative significance.

4.2 � Flowchart and phases of the SHO as a classifier

In this subsection, the phases of the SHO as a classifier
through cross-projects SDP and the multi-objective fitness
function.

As indicated in Fig. 2:

(11)SUP = (COUNT_SS∕R) × 100

(12)CONF = (COUNT_SS∕COUNT_CC) × 100

(13)FT = W1 × SUP +W2 × CONF

•	 Create a population of spotted hyenas and pick the ini-
tial parameters.

•	 Apply the combination of SUP and CONF that used as a
multi-objective function for each individual of the spot-
ted hyenas to assess the desired classification rules.

•	 Then, the position of each hyena is refreshed by
attempting to learn from the spotted hyena with maxi-
mum multi-objective fitness function (SUP and CONF).

•	 After that, the SHO repeats to search for best-spotted
hyena (classification rules) depending on a random
subset of a dataset of a project (training phase). The
resulted classification rules are utilized as input for
prediction and classification processes on other new
projects with a shortage of historical data.

This research bases on the steps indicated in algo-
rithm 1 to explain the stages of the SHO as a classifier
through cross-projects SDP. Moreover, this research
answers the question of how to predict instances (defec-
tive or not) of new projects and projects that have a short-
age in historical data (cross-projects SDP) using SUP and
CONF concepts as a multi-objective fitness function.

First, the SHO classifier calculates the initial param-
eters as indicated in algorithm 1 where parameters are
adjusted and initialized (pop = population size = 500,
F = number of features or metrics = 22 and MaxIter = max-
imum number of iterations = 50). Then for each agent of
spotted hyena, the multi-objective fitness function is cal-
culated. During the optimization process, SUP and CONF
of classification rules are utilized as indicated in Eqs. 11,
12, 13. It helps SHO to be used as a classifier by look-
ing for the suitable classification rules between initially

Fig. 1   Cross-projects SDP model utilizing SHO as a classifier

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

spotted hyenas (random rules). SHO repeats to find the
best classification rules. After that, the best solutions
are clustered. Then, the position of the spotted hyena is
updated via checking if any agent goes past the farthest
point and change it. The values of new parameters and
the multi-objective fitness function of the updated agent
are calculated again. Finally, the SHO returns the best
classification rules that are used for predicting defects
in new projects or projects with a shortage of historical
data. Therefore, this is called cross-projects SDP.

5 � Experimental study

This section discusses the study of SHO as a classifier
through a cross-projects approach in the SDP field utiliz-
ing SUP and CONF as a multi-objective fitness function.Fig. 2   Flow chart of the SHO classifier through cross-projects SDP

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

5.1 � Experiment setup

This research experiments utilized the following tools and
features:

•	 RapidMiner 5 tool [25] is used for the discretization pro-
cess.

•	 The simulation tool of MATLAB [28] is utilized during
the implementation process.

•	 PROMISE [18] and OPENML[29] websites of open-
source datasets.

•	 WEKA 3.6 tool [30] for comparisons.
•	 PC with CPU Intel(R) Core (TM) i5 and RAM (4 GB).

KC1, JM1, and KC2 are datasets of NASA metrics related
to defects of data program. They are for receiving and
processing management of data storage [29]. They are
included various features that are utilized through experi-
ments from the archive of OPENML [29] and PROMISE [18].
Table 1 indicates various dataset parameters where soft-
ware components, software features, number of defects
and percentage of defects. Common metrics of datasets
are indicated in Table 2. These metrics are useful since it
can generate a predictor with high accuracy for defects,
easy to use as they can be gathered and collected cheaply
and automatically such as lines of code (LOC) and widely
used as many researchers utilize static features for guiding
quality of software prediction [18, 29, 33, 34]. By utilizing
these datasets, SHO that used as a classifier is trained to
extract suitable classification rules for predicting defects
through new projects or projects that don’t have sufficient
historical data (cross-projects SDP). Accuracy of classifica-
tion and precision are the most popular measurements
compared with other techniques in WEKA 3.6 tool data
mining.

The matrix that the experiment depends on is called a
confusion matrix [31]. As is shown in Table 3, it is a table
that is routinely used to describe the performance of the
classification model. It has the value of predicted and
actual class labels. In Table 3, there are 4 possible out-
comes of SHO classifier:

•	 True Positives (TP):- defective modules are classified
correctly as defective.

•	 False Positives (FP):- non-defective modules are classi-
fied incorrectly as defective.

•	 True Negatives (TN):- non-defective modules are clas-
sified correctly as non-defective.

•	 False Negatives (FN):- defective modules are classified
incorrectly as non-defective.

Different measurements that belong to data mining
techniques such as F-measure, sensitivity (S), recall, preci-
sion (P), specificity (SP), and accuracy (ACC) [2] are calcu-
lated using the confusion matrix.

Another measurement is specificity (SP) which is expressed
as follow:

(14)ACC = (TP + TN)∕(TP + TN + FP + FN)

Table 1   Details of datasets that used through cross-projects SDP

Dataset Component Features Defects Defect (%)

KC1 2109 22 326 15.5
KC2 522 22 107 20.5
JM1 10885 22 2106 19.34

Table 2   Features details of datasets used through cross-projects
SDP

Features Description

Loc # lines (McCabe)
v(g) Complexity cyclomatic measurements

(McCabe)
ev(g) Essential McCabe complexity
iv(g) Complexity McCabe design
n Total Halstead operands + Halstead

operators
v Volume of Halstead
l Program Halstead length
d Difficulty of Halstead
i Intelligence of Halstead
e Effort Halstead measure
b Effort Halstead estimation
t Time Halstead estimator
lOCode line Halstead count
lOComment # comments Halstead lines
lOBlank # blank Halstead line
lOCodeAndComment Total #comments + code line
uniq_Op total #unique operators
uniq_Opnd total #unique operands
total_Op Total# operators
total_Opnd Total #operands
branchCount Total # the stream graph
Defects Defective − not

Table 3   confusion matrix model

Actual label Predicted label

Not-defective defective

Not-defective (TN) (FP)
Defective (FN) (TP)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

The next measurement is sensitivity (S). It can be expressed
as follow:

Then the precision (P) is calculated and expressed as
follow:

F-measure (F_M) is calculated as follow:

Finally, calculating the weighted average (W_A) of each
measurement is expressed similar to the following
equation:

where F_Mc1 and F_Mc2 are F-measure for class1 and 2
respectively. Also Nc1 and Nc2 are a number of instances
in class1 and 2. Nc1+c2 is the total number of instances in
the dataset.

Convergence rate [32] is also another common measure
of the optimization algorithm (SHO). Convergence charac-
terizes solutions sequence got through the cycles until it
meets a suitable point at less time.

5.2 � Experimental results

This section depicts the precision and accuracy classifica-
tion of the SHO through cross-projects SDP.

•	 SHO algorithm is applied and trained as a classifier on
one dataset to extract the best classification rules.

•	 SHO algorithm is executed 15 runs using a percentage
split technique on a trained dataset (60%) and random
instances of the other datasets for testing.

•	 Predict cross-projects SDP (other datasets mentioned
above) by using classification rules extracted from the
previous step.

•	 The convergence of the SHO in finding the classification
model characterizes the relationship between the itera-
tions and values of the multi-objective fitness function.

5.2.1 � Training case 1: KC1

“KC1” contains 2109 instances, 22 attributes and 326
defects where 15.5% is defective. The SHO algorithm
as a classifier is applied for training to extract the best

(15)SP = TN∕(TN + FP)

(16)S = TP∕(TP + FN)

(17)P = TP∕(TP + FP)

(18)F_M = (2 × P × S)∕(P + S)

(19)
W_AofF_M =

((
F_Mc1 × Nc1

)
+
(
F_Mc2 × Nc2

))
∕Nc1+c2

classification rules by using SUP and CONF as multi-
objective fitness functions. Then, classification rules are
utilized to predict software defects of random instances
in other projects (JM1, KC2) datasets (cross-projects).
Here, the confusion matrix is extracted for predicting
random instances of JM1 and KC2 datasets as shown
in Tables 4 and 5 respectively. These tables discuss the
performance of the SHO algorithm as a classifier which
trained on the KC1 dataset and test by random instances
of other datasets (JM1, KC2). Then, the weighted aver-
age for each performance measure is calculated such as
precision and accuracy.

These measurements of SHO as a classifier are com-
pared with other data mining techniques as indicated
in Tables 6 and 7 such as SVM, NB, ANN, C4.5, principle
component analysis algorithm (PCA) for reducing fea-
tures followed by ANN, K-NN and random forest via
WEKA 3.6 tool.

According to Tables 6 and 7, values of SHO classifier
such as the weighted average of accuracy, specificity,
precision, recall, false-positive rate, and f-measure are
resulted from Tables 4 and 5 using equations from 14 to
19. Also, these values that belong to Tables 6 and 7 are
resulted by training the SHO algorithm as a classifier and
applying the resulted best classification rules on random
instances of JM1 and KC2 datasets respectively.

Figure 3 and 4 show the comparison results for preci-
sion and accuracy. They indicate the SHO algorithm as
classifier used through training in KC1 and applying the
resulted classification rules on JM1 and KC2 datasets
respectively. The results report the values of precision
using the SHO as a classifier (82.2 and 91.6) and values
of accuracy (82.4 and 90.7) for JM1 and KC2 respectively.
Therefore, the SHO algorithm as a classifier is the best in
terms of precision and accuracy through cross-projects
SDP. The SHO algorithm converges and meets a suitable
point (best rule) after 30% of cycles.

Table 4   Confusion matrix of training KC1 and predict in JM1

Actual class Predicted class

Non-defective Defective

Not-defective 3544 10
Defective 757 44

Table 5   Confusion matrix of training KC1 and predict in KC2

Actual class Predicted class

Non-defective Defective

Not-defective 1200 0
Defective 14 16

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

5.2.2 � Training case 2: JM1

“JM 1” contains10885 instances, 22 attributes, and 2106
defects where 19.34% is defective. Tables 8 and 9 indicate
the confusion matrix resulted from training the SHO algo-
rithm as a classifier on the JM1 dataset and applying the
resulted classification rules on KC1 and KC2 respectively.

Also, the confusion matrix for KC1 and KC2 datasets
are given in Tables 8 and 9 which lead to Tables 10 and
11 respectively. These tables and Fig. 5 and 6 indicate
the results of the performance measure explained above.

Table 6   Performance measure
of SHO classifier and other
techniques (train KC1, predict
JM1)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE (S) (TPR) (%) F-M (%) ACC (%)

ANN 77.7 27.8 72.8 81.8 76.5 81.8
ANN + PCA 77.7 28.7 71.3 81.8 77.0 81.8
NB 77.3 36.0 64.0 80.9 78.1 80.9
Bagging 77.3 34.7 65.3 81.1 78.0 81.1
K-NN 75.5 42.0 57.6 76.0 75.7 76.0
C4.5 76.2 35.4 64.6 79.9 77.3 79.9
Random forest 76.3 33.4 66.6 80.4 77.2 80.4
SVM 82.1 19.0 81.0 81.5 73.3 81.5
SHO classifier 82.2 22.8 77.2 82.4 75.6 82.4

Table 7   Performance measure
of SHO classifier and other
techniques (train KC1, predict
KC2)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE (S) (TPR) (%) F-M (%) ACC (%)

ANN 83.0 29.6 70.4 86.2 83.3 86.2
ANN + PCA 81.6 25.9 74.1 85.6 82.2 85.6
NB 84.6 50.9 49.1 84.8 84.7 84.8
Bagging 83.6 39.1 60.9 85.8 84.3 85.8
K-NN 84.3 49.7 50.3 84.6 84.5 84.6
C4.5 84.3 45.0 55.0 85.6 84.8 85.6
Random forest 83.8 42.6 57.4 85.4 84.4 85.4
SVM 84.9 24.9 75.1 87.0 82.9 87.0
SHO classifier 91.6 62.7 37.3 90.7 89.5 90.7

Fig. 3   Comparison between SHO classifier and other techniques
(train KC1, predict JM1)

Fig. 4   Comparison between SHO classifier and other techniques
(train KC1, predict KC2)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

These report the values of precision using the SHO as
classifier (87.0 and 92.7) and values of accuracy (84.6 and
92.0) for KC1 and KC2 respectively when trained on JM1.
Therefore, the SHO algorithm as a classifier is the best in
terms of precision and accuracy through cross-projects
SDP. The SHO converges after around 8% of the cycles
that is a considerably high rate to meet the best fit rules.

5.2.3 � Training case 3: KC2

“KC2” contains 522 instances, 22 attributes, and 107
defects where 20.5% is defective. Tables 12 and 13 indi-
cate the confusion matrix resulted from training the
SHO algorithm as a classifier on the KC2 dataset and

Table 8   Confusion matrix of training JM1 and predict in KC1

Actual class Predicted class

Non-defective Defective

Not-defective 708 0
Defective 130 5

Table 9   Confusion matrix of training JM1 and predict in KC2

Actual class Predicted class

Non-defective Defective Defective

Not-defective 120 0
Defective 12 18

Table 10   Performance
measure of SHO classifier and
other techniques (train JM1,
predict KC1)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE (S) (TPR) (%) F-M (%) ACC (%)

ANN 80.5 21.7 78.3 82.7 76.0 82.7
ANN + PCA 77.9 26.5 73.5 82.3 77.4 82.3
NB 77.8 33.2 66.9 81.7 78.6 81.7
Bagging 78.7 31.4 68.6 82.5 78.7 82.5
K-NN 77.0 43.7 56.3 77.3 77.2 77.3
C4.5 77.6 36.0 64.0 81.0 78.6 81.0
Random forest 78.5 34.5 65.5 82.1 79.1 82.1
SVM 85.4 18.0 82.0 82.3 74.4 82.3
SHO classifier 87.0 19.1 80.9 84.6 78.1 84.6

Table 11   Performance
measure of SHO classifier and
other techniques (train JM1,
predict KC2)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE(S) (TPR) (%) F-M (%) ACC (%)

ANN 83.2 26.0 74.0 83.2 77.2 83.2
ANN + PCA 80.4 36.5 63.5 83.2 80.0 83.2
NB 80.3 40.2 59.8 83.0 80.5 83.0
Bagging 81.0 40.0 60.4 83.5 80.8 83.5
K-NN 78.6 47.6 52.4 79.5 79.0 79.5
C4.5 80.0 38.7 61.4 82.8 80.1 82.8
Random forest 80.0 40.9 59.2 82.6 80.4 82.6
SVM 85.2 19.0 81.0 81.9 74.0 81.9
SHO classifier 92.7 68.0 32.0 92.0 91.2 92.0

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

applying the resulted classification rules on KC1 and
KM1 respectively.

Similarly, Tables 14, 15 and Figs. 7, 8 indicate the
results of performance measures. These report the values
of precision using the SHO as a classifier (84.8 and 85.1)
and values of accuracy (86.6 and 81.8) for KC1 and JM1
respectively when trained on KC2. Therefore, the SHO
algorithm as a classifier is the best in terms of precision
and accuracy through cross-projects SDP. The conver-
gence of the SHO achieved around 8% of the cycles.
Therefore, the best fit rule is met at less time.

The next table presents the descriptive statistics of
the SHO as a classifier in terms of accuracy. SHO algo-
rithm is executed around 15 times using a percentage
split technique on a trained dataset (60%) and random
instances of the other datasets for testing (Table 16).

Table 17 represents the standard deviation for each
algorithm. The lowest error is the SHO algorithm as a clas-
sifier most of the time. If there is a tie in two algorithms in
terms of accuracy, the error rate will help to break the tie.
The lower the error is the higher the accuracy.

5.3 � Experimental discussion

According to the previous section, the features of datasets
utilized in this research are extracted from:-

•	 McCabe feature extractor of source code which argues
that code with complicated pathways is more error-
prone. Therefore his metrics reflect the pathways within
a code module [33].

•	 Halstead feature extractor of source code which argues
that code that is hard to read is more likely to be fault-
prone. It estimates reading complexity by counting the
number of concepts in a module e.g. number of unique
operators [34].

These features describe code features that are related
to the quality of the software. The McCabe and Halstead
measures are module based (Function or Method) where
is the smallest unit of functionality [35]. These features are
studied since they are useful, easy to use, and widely used.

The experiments (Case 1, 2 and 3) prove, there are many
features of McCabe and Halstead that have a strong impact
to generate highly accurate predictors for defects such as
McCabe’s line count of code (LOC), McCabe’s cyclomatic
complexity v(g), McCabe’s essential complexity ev(g),
McCabe’s design complexity iv(g), Halstead’s effort (e), Hal-
stead’s time estimator (t), Halstead’s line count (LOCode),
Halstead’s count of line of comments (LOComment) and
total operators (Total_op). The other features don’t have

Fig. 5   Comparison between SHO classifier and other techniques
(train JM1, predict KC1)

Fig. 6   Comparison between SHO classifier and other techniques
(train JM1, predict KC2)

Table 12   Confusion matrix of training KC2 and predict in KC1

Actual class Predicted class

Non-defective Defective

Not-defective 685 23
Defective 90 45

Table 13   Confusion matrix of training KC2 and predict in JM1

Actual class Predicted class

Non-defective Defective

Not-defective 3554 0
Defective 795 6

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

the same impact degree in generating highly accurate
predictors for defects such as Halstead’s volume (v), total
operands (total_opnd), unique operators (unique_op) and
unique operands (unique_opnd).

The experiments (Case 1, 2 and 3) prove that the SHO
classifier through cross-projects SDP is better than other
techniques in terms of precision and accuracy with an
average 87.3 and 86.4 respectively.

Table 14   Performance
measure of SHO classifier and
other techniques (train KC2,
predict KC1)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE (S) (TPR) (%) F-M (%) ACC (%)

ANN 80.9 36.8 63.2 83.8 81.6 83.8
ANN + PCA 81.6 45.3 54.7 83.1 82.2 83.1
NB 82.0 50.4 49.6 82.4 82.2 82.4
Bagging 81.7 43.2 56.8 83.7 82.4 83.7
K-NN 80.7 53.6 46.4 81.3 81.0 81.3
C4.5 81.1 44.4 55.6 82.5 81.7 82.5
Random forest 80.8 40.0 60.0 83.2 81.6 83.2
SVM 83.2 30.9 69.1 85.4 81.7 85.4
SHO classifier 84.8 43.5 56.5 86.6 84.7 86.6

Table 15   Performance
measure of SHO classifier and
other techniques (train KC2,
predict JM1)

Technique/
weighted average

P (%) SP (%) (FPR) (PF) (%) RE (S) (TPR) (%) F-M (%) ACC (%)

ANN 76.6 25.0 75.0 80.8 74.3 80.8
ANN + PCA 75.4 27.7 72.3 80.4 75.0 80.4
NB 76.1 32.5 67.5 80.3 76.4 80.3
Bagging 77.5 26.6 73.4 81.1 75.0 81.1
K-NN 73.7 40.0 60.0 75.1 74.3 75.1
C4.5 76.8 26.1 73.9 80.9 74.7 80.9
Random forest 74.4 30.3 69.7 79.5 75.3 79.5
SVM 84.4 20.0 80.1 80.6 72.1 80.6
SHO classifier 85.1 19.0 81.0 81.8 73.7 81.8

Fig. 7   Comparison between SHO classifier and other techniques
(train KC2, predict KC1)

Fig. 8   Comparison between SHO classifier and other techniques
(train KC2, predict JM1)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

General limitations of meta-heuristic search algo-
rithms are the convergence speed and long computa-
tional time. SHO proved its ability to overcome these
limitations. Figure 9 is the convergence of the SHO
algorithm in finding the SDP classification model. The
figure characterizes the relationship between the algo-
rithm iterations and values of the multi-objective fitness
function during one run from the experiments. The SHO
algorithm converges after 4 iterations out of 50 itera-
tions which is a very fast convergence rate i.e. it meets

a suitable point (best rule) at less time. SHO algorithm
is executed 15 runs using a percentage split technique
on a trained dataset (60%) and random instances of the
other datasets for testing.

6 � Conclusion and future work

Recently, SDP is introduced as an emergent issue in
software engineering industries. Various techniques are
presented for enhancing SDP. The enhancement faced
the issue of shortage in historical data. This research pro-
posed a feasible solution for cross-projects SDP using the
SHO algorithm as a classifier. The classification accuracy
is determined by training the SHO algorithm as a classi-
fier on one dataset of projects and applying the resulted
classification rules on different projects. SUP and CONF
are utilized as a multi-objective fitness function to iden-
tify suitable classification rules. Experimental results
indicate that the SHO classifier is better than other
techniques with an average accuracy of 86.4%. Moreo-
ver, precision, specificity, sensitivity, F-measure, and
recall are calculated for the SHO algorithm classifier and
compared with the other techniques in WEKA 3.6. These
experiments demonstrate that the SHO classifier has

Table 16   Descriptive statistics
of the SHO as a classifier in
term of accuracy

Descriptive statistics (SHO) Datasets

KC1 JM1 KC2

JM1 KC2 KC1 KC2 KC1 JM1

Optimal 82.4 90.7 84.6 92.0 86.6 81.8
Worst 82.2 90.4 84.2 91.6 86.0 81.3
Mean 82.4 90.6 84.5 91.9 86.5 81.7
Standard deviation 0.04 0.08 0.07 0.08 0.05 0.03

Table 17   Standard deviation
for algorithms’ accuracy

Algorithms Datasets

KC1 JM1 KC2

JM1 KC2 KC1 KC2 KC1 JM1

ANN 0.056 0.079 0.071 0.089 0.073 0.040
ANN + PCA 0.054 0.079 0.072 0.088 0.078 0.041
NB 0.064 0.082 0.082 0.088 0.084 0.043
Bagging 0.063 0.080 0.071 0.084 0.080 0.035
K-NN 0.075 0.083 0.091 0.091 0.092 0.053
C4.5 0.073 0.081 0.084 0.081 0.084 0.037
Random forest 0.058 0.080 0.073 0.082 0.083 0.052
SVM 0.061 0.078 0.071 0.079 0.061 0.041
SHO classifier 0.041 0.080 0.071 0.081 0.051 0.032

Fig. 9   The convergence rate of SHO

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4

an efficient ability to predict software defects through
cross-projects.

In the future, algorithms for reducing features would
be utilized before applying the SHO classifier. The feature
reduction algorithms will extract and select the most sig-
nificant features leading to enhance the classification
process. Moreover, using the classifier on cross-projects
SDP for heterogeneous or dissimilar Dataset is a fascinat-
ing point. Although SHO overcomes some of the meta-
heuristic algorithms limitation, more investigation is
required for other issues like trapping into local optima,
tuning many parameters, difficult encoding scheme and
having good performance only in real or binary search
spaces.

Funding  There is no funding provided and this research is submitted
for Partial Fulfillment of the Requirements for the M.Sc. Degree in
software engineering at Faculty of Computers and Artificial Intel-
ligence, Helwan University, Egypt.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest. They work at different Government Universities. Their aim
purpose is only Scientific and academic research.

References

	 1.	 Arora I, Tetarwal V, Saha A (2015) Open issues in software defect
prediction. Proc Comput Sci 46:906–912

	 2.	 Nam J (2014) Survey on software defect prediction. Department
of Compter Science and Engineerning, The Hong Kong Univer-
sity of Science and Technology, Tech Rep

	 3.	 Li Z, Jing X-Y, Zhu X (2018) Progress on approaches to software
defect prediction. IET Softw 12:161–175

	 4.	 Wei H, Hu C, Chen S, Xue Y, Zhang Q (2019) Establishing a soft-
ware defect prediction model via effective dimension reduction.
Inf Sci 477:399–409

	 5.	 Kalaivani N, Beena R (2018) Overview of Software Defect Predic-
tion using Machine Learning Algorithms. Int J Pure Appl Math
118:3863–3873

	 6.	 Shan C, Chen B, Hu C, et al (2014) Software defect prediction
model based on LLE and SVM, Communications Security Confer-
ence (CSC 2014)

	 7.	 Okutan A, Yıldız OT (2014) Software defect prediction using
Bayesian networks. Empir Softw Eng 19:154–181

	 8.	 Aljamaan HI, Elish MO (2009) An empirical study of bagging
and boosting ensembles for identifying faulty classes in object-
oriented software. In: 2009 IEEE symposium on computational
intelligence and data mining. IEEE, pp 187–194

	 9.	 Koru AG, Liu H (2005) Building effective defect-prediction mod-
els in practice. IEEE Softw 22:23–29

	10.	 Kuncheva LI, Skurichina M, Duin RPW (2002) An experimental
study on diversity for bagging and boosting with linear classi-
fiers. Inf Fusion 3:245–258

	11.	 Jayanthi R, Florence L (2019) Software defect prediction tech-
niques using metrics based on neural network classifier. Cluster
Comput 22:77–88

	12.	 Kaur R, Sharma ES (2018) Various techniques to detect and pre-
dict faults in software system: survey. Int J Futur Revolut Comput
Sci Commun Eng (IJFRSCE) 4:330–336

	13.	 Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel
bio-inspired based metaheuristic technique for engineering
applications. Adv Eng Softw 114:48–70

	14.	 Raukas H. Some approaches for software defect prediction,
Bachelor’s Thesis (9ECTS), Institute of Computer Science Com-
puter Science Curriculum, University of TARTU

	15.	 Herbold S (2018) Benchmarking cross-project defect prediction
approaches with costs metrics. arXiv Prepr arXiv180104107

	16.	 Wu F, Jing X-Y, Sun Y et al (2018) Cross-project and within-project
semisupervised software defect prediction: a unified approach.
IEEE Trans Reliab 67:581–597

	17.	 Zhang Y, Lo D, Xia X, Sun J (2018) Combined classifier for cross-
project defect prediction: an extended empirical study. Front
Comput Sci 12:280–296

	18.	 Tera-PROMISE Home. http://promi​se.site.uotta​wa.ca/SERep​osito​
ry/datae​tspag​e.html. Accessed 26 Feb 2018

	19.	 He P, He Y, Yu L, Li B (2018) An improved method for cross-pro-
ject defect prediction by simplifying training data. Math Probl
Eng. https​://doi.org/10.1155/2018/26504​15

	20.	 Ni C, Liu W-S, Chen X et al (2017) A cluster based feature selec-
tion method for cross-project software defect prediction. J Com-
put Sci Technol 32:1090–1107

	21.	 Zimmermann T, Nagappan N, Gall H, et al (2009) Cross-project
defect prediction: a large scale experiment on data vs. domain
vs. process. In: Proceedings of the 7th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering. ACM,
pp 91–100

	22.	 Ren J, Qin K, Ma Y, Luo G (2014) On software defect pre-
diction using machine learning. J Appl Math. https​://doi.
org/10.1155/2014/78543​5

	23.	 Qing H, Biwen L, Beijun S, Xia Y (2015) Cross-project software
defect prediction using feature-based transfer learning. In: Pro-
ceedings of the 7th Asia-Pacific symposium on internetware.
ACM, pp 74–82

	24.	 Bal PR, Kumar S (2018) Cross project software defect prediction
using extreme learning machine: an ensemble based study. In:
ICSOFT, pp 354–361

	25.	 Download Rapidminer Studio|RapidMiner. https​://rapid​miner​
.com/get-start​ed/. Accessed 9 Nov 2019

	26.	 Deb K (2014) Multi-objective optimization. In: Search method-
ologies. Springer, pp 403–449

	27.	 Qodmanan HR, Nasiri M, Minaei-Bidgoli B (2011) Multi objective
association rule mining with genetic algorithm without specify-
ing minimum support and minimum confidence. Expert Syst
Appl 38:288–298

	28.	 Download MATLAB, Simulink, Stateflow, and Other MathWorks
Products. https​://www.mathw​orks.com/downl​oads/web_downl​
oads/?s_tid=sp_ban_dl. Accessed 9 Nov 2019

	29.	 OpenML. https​://www.openm​l.org/searc​h?type=data. Accessed
9 Nov 2019

	30.	 Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann

	31.	 Sammut C, Webb GI (2011) Encyclopedia of machine learning.
Springer, New York

	32.	 Cartis C, Scheinberg K (2018) Global convergence rate analysis
of unconstrained optimization methods based on probabilistic
models. Math Program 169:337–375

	33.	 McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng
SE-2(4):308–320

	34.	 Halstead MH (1977) Elements of software science. Elsevier, New
York

http://promise.site.uottawa.ca/SERepository/dataetspage.html
http://promise.site.uottawa.ca/SERepository/dataetspage.html
https://doi.org/10.1155/2018/2650415
https://doi.org/10.1155/2014/785435
https://doi.org/10.1155/2014/785435
https://rapidminer.com/get-started/
https://rapidminer.com/get-started/
https://www.mathworks.com/downloads/web_downloads/%3fs_tid%3dsp_ban_dl
https://www.mathworks.com/downloads/web_downloads/%3fs_tid%3dsp_ban_dl
https://www.openml.org/search?type=data

Vol.:(0123456789)

SN Applied Sciences (2020) 2:538 | https://doi.org/10.1007/s42452-020-2320-4	 Research Article

	35.	 Runeson P (2006) A survey of unit testing practices. IEEE Softw
23:22–29

	36.	 Dhiman G, Kumar V (2019) Spotted hyena optimizer for solving
complex and non-linear constrained engineering problems BT.
In: Yadav N, Yadav A, Bansal JC et al (eds) Harmony search and
nature inspired optimization algorithms. Springer, Singapore,
pp 857–867

	37.	 Li J, Luo Q, Liao L, Zhou Y (2018) Using spotted hyena optimizer
for training feedforward neural networks. In: International con-
ference on intelligent computing. Springer, pp 828–833

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Cross-projects software defect prediction using spotted hyena optimizer algorithm
	Abstract
	1 Introduction
	2 Literature survey
	3 Spotted hyena optimizer (SHO)
	3.1 Encircling the prey
	3.2 Hunting the prey
	3.3 Exploiting the prey

	4 Proposing SHO as a classifier
	4.1 Multi-objective fitness function
	4.2 Flowchart and phases of the SHO as a classifier

	5 Experimental study
	5.1 Experiment setup
	5.2 Experimental results
	5.2.1 Training case 1: KC1
	5.2.2 Training case 2: JM1
	5.2.3 Training case 3: KC2

	5.3 Experimental discussion

	6 Conclusion and future work
	References

