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Abstract
A technique for the numerical analysis of the stability problem in chaotic systems via act-and-wait delayed feedback con-
trol is developed and justified. Recently, act-and-wait modification of a delayed feedback control method is proposed to 
stabilize unstable periodic orbits in dynamical systems. To overcome the difficulties in obtaining conditions under which 
the state of closed-loop system converges toward a periodic solution via the act-and-wait scheme, this paper presents 
a high-precision direct integration method for calculating the monodromy matrix corresponding to the closed-loop 
system based on the theory of Peano–Baker series. The capabilities of the proposed schemes in stabilization of unstable 
periodic orbits of chaotic systems are illustrated by numerical examples.
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1  Introduction

Scientists have found that unexpected evolution patterns 
arise frequently in numerous nonlinear systems in physics, 
chemistry, biology, engineering, economics, and so forth. 
The most peculiar aspect of these patterns is their random-
like behavior although the systems are deterministic, ie., 
the deterministic nature of these systems does not make 
them predictable. This behavior is known as chaos which 
is due to sensitive dependence on the initial conditions. 
It has been known that chaotic dynamics [1–10] gener-
ally consists of a motion where the nonlinear system state 
moves for a while in the neighborhood of one of the unsta-
ble periodic orbits(UPOs) and then falls close to a differ-
ent unstable periodic orbit. Based on this fact, Ott et al. 
[11] proposed the first strategy to stabilize UPOs utilizing 
the sensitivity to initial conditions. From then on, chaos 
control has received a great deal of interests among the 
researchers, and a variety of chaotic systems have been 

proven to be able to be stabilized by several different tech-
niques such as delayed feedback control(DFC) [12–19], 
prediction-based control [20–22], robust control [23, 24], 
slide mode control [25–27], adaptive control [28–30], 
energy-based feedback control [31].

Among them, delayed feedback control [12] has gained 
wide acceptance due to that the control input vanishes 
after the stabilization is achieved. Although the DFC is suc-
cessful in various chaotic systems, the stability analysis of 
the closed-loop system often does not have an analytical 
form. One of the reasons is that the dynamics is described 
by a delay differential equation(DDE). Furthermore, some 
researchers have given several analytical results [32, 33], 
showing that the DFC has an odd number limitation. Since 
then, several improved DFC methods including extended 
DFC [8, 34–38], periodic DFC [39–42], and double delayed 
feedback control (DDFC) [43] have been developed to 
make the DFC more applicable. Recently, the DFC has 
been extended to solve practical application problems in 
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engineering. For example, Wu et al. [44] investigated the 
effects of a delayed feedback scheme in the parameter 
space and demonstrated that wave segments can be sta-
bilized. Costa and Savi [45] applied the extended DFC on 
a smart system composed of a pendulum coupled with 
shape-memory alloy elements. Paul and Banerjee [46] 
proposed a nonlocal time-delayed feedback control tech-
nique to control the spatiotemporal patterns in coupled 
map lattice(CML) systems and demonstrated its efficacy in 
a network of coupled digital phase-locked loops which is 
real-world CML system.

Although the delay differential equations usually have 
infinite-dimensional phase spaces, its stability can be 
described by an infinite-dimensional transition matrix 
[47]. The system is considered to be asymptotically stable 
if all the characteristic multipliers of the corresponding 
transition matrix are in modulus less than one. Insper-
ger [48] proposed an act-and-wait control concept for 
continuous-time systems with feedback delay associ-
ated with infinite poles. The control strategy is that the 
feedback input is periodically switched on and off. It has 
been shown that if the waiting duration is larger than the 
feedback delay time, then the system is represented by 
a finite-dimensional monodromy matrix and the stabil-
ity can be described by a finite number of eigenvalues. 
Thus, the infinite-dimensional pole placement problem is 
reduced to a finite-dimensional one.

The act-and-wait control method is an effective tech-
nique to reduce the number of poles for systems with 
large feedback delay, which makes the pole placement 
problem easier. In recent years, act-and-wait concept has 
been further tested through experiments [49] and theoret-
ically extended to discrete-time systems [50], autonomous 
systems [51], non-autonomous dynamical systems [52], 
linear periodic time-varying systems [53, 54], etc. [55–58]. 
Act-and-wait scheme requires to obtain the monodromy 
matrix associated with the closed-loop system. However, 
it is usually hard to find a homogeneous expression of the 
corresponding monodromy matrix, due to the existence 
of the delay term. Based on a high-precision direct integra-
tion algorithm [59, 60], this paper explores the stabilization 
of periodic solutions to chaotic systems with an act-and-
wait-fashioned delayed feedback control framework.

The paper aims to overcome the difficulties in obtaining 
stability conditions of the chaotic systems under the act-
and-wait DFC and presents a high-precision direct integra-
tion method for calculating the monodromy matrix corre-
sponding to the closed-loop system. The rest of the paper 
is organized as follows: Sect. 2 introduces the act-and-wait 
modification of DFC and formulates the condition where 
the controlled system becomes to be finite dimensional. 
Section 3 discusses the linear stability analysis of UPOs 
controlled by act-and-wait delayed feedback control and 

presents a periodically time-varying precise integration 
method for calculating the monodromy matrix corre-
sponding to the closed-loop system. In Sec. 4, it is given 
two illustrative numerical examples to show the effective-
ness of the proposed method. Finally, it is concluded in 
Sect. 5.

2 � Problem formulation

Consider an nth-order nonlinear system which shows a 
chaotic behavior described by an n-dimensional first-order 
vector differential equation as follows:

where � ∈ ℜn is the state vector, �̇ denotes the deriva-
tive of � with respect to the time variable t, u ∈ ℜm is the 
control input, f (⋅) is an n-dimensional nonlinear vector 
function and assumed to be continuously differentiable. 
Suppose that the uncontrolled system has a T-periodic 
solution �(t) = �(t) = �(t + T ) that satisfies the equation 
𝜉̇(t) = f (𝜉(t), 0) and in a chaotic state. The task is to design 
a control law to suppress the chaotic behavior and make 
a more regular motion which may be a periodic motion. 
Many nonlinear dynamical systems in engineering science 
can be described by the above general set of differential 
equation, such as pendulum, mass-spring mechanical sys-
tem, oscillator, microbeams. [1, 40, 61, 62].

The delayed feedback control (DFC) [34] is given by

where K is the gain matrix of the controller. In the delayed 
feedback control method, since the control input u(t) is 
computed based on the difference between the current 
state and the delayed state, u(t) vanishes after the UPO is 
stabilized. Although DFC can be relatively simply imple-
mented in experiments, its theory is rather difficult, since 
the time-delay dynamics takes place in infinite-dimen-
sional phase spaces. Generally, it is difficult to determine 
the feedback gain with which the desired UPO is stabilized.

As shown in Fig. 1, the act-and-wait controller is intro-
duced as follows:

where s(t) is a T-periodic function that switches the con-
troller on and off alternately at every integer multiples of 
the period T defined as

(1)�̇(t) = f (�(t), u(t)),

(2)u(t) = K (�(t) − �(t − T )),

(3)u(t) = s(t)K (�(t) − �(t − T )),

(4)s(t) =

{
0 if 0 ≤ (tmod2T ) < T ,

1 if T ≤ (tmod2T ) < 2T .



Vol.:(0123456789)

SN Applied Sciences (2020) 2:521 | https://doi.org/10.1007/s42452-020-2310-6	 Research Article

The act-and-wait control method is originally used for 
n-dimensional continuous-time control systems with feed-
back delay. It has been shown that the infinite-dimensional 
pole placement problem of the delayed system can be 
reduced to an n-dimensional one, if the feedback is peri-
odically switched off and on. The point is that the switched 
system can be described by a monodromy matrix, conse-
quently, stability properties are described by n eigenvalues.

3 � Stability analysis of act‑and‑wait DFC

The closed-loop system is linearized around the UPO,�(t):

where ��(t) ∶= �(t) − �(t) is the deviation of the solution 
from the target UPO, and ��(t − T ) is its T-delayed version. 
The T-periodic matrixes A(t), B(t) are the Jacobian matrixes 
of the system evaluated on the UPO such that,

Here, note that the linearized version of the closed-loop 
system (5) is locally asymptotically stable at the UPO. 
Moveover, system (5) is similar to a linear periodic time-
varying system such that [54]

where x(t) ∈ ℜn is the state vector. From Eqs. (7) and (4), 
if t ∈ [2kT , 2kT + T ), k = 0, 1, 2,… , then

while if t ∈ [2kT + T , 2kT + 2T ), k = 0, 1, 2,… , then

(5)

{
𝛿�̇(t) = A(t)𝛿�(t) + B(t)u(t),

u(t) = s(t)K (𝛿�(t) − 𝛿�(t − T )),

(6)
A(t) ≜ �f (�(t), u(t))

��
|
�=�(t),u(t)=0,

B(t) ≜ �f (�(t), u(t))

�u
|
�=�(t),u(t)=0.

(7)ẋ(t) = (A(t) + B(t)s(t)K )x(t) − B(t)s(t)Kx(t − T ),

(8)ẋ(t) = A(t)x(t),

(9)ẋ(t) = (A(t) + B(t)K )x(t) − B(t)Kx(t − T ).

3.1 � Monodromy matrix of the closed‑loop system

If we define the state-transition matrix of system (8) 
to be M(⋅) , the monodromy matrix associated with 
the T-periodic system can be given by M(T , 0) ∈ ℜn×n . 
Moreover, define Γ(⋅) as the state-transition matrix for 
the periodic system

It is obvious that

Therefore, substituting Eq.  (11) into Eq.  (9), it can be 
obtained

By left multiplying matrices Γ−1(t, 2kT + T ) on both sides 
of Eq. (12) and formulation derivation, it is obtained

Setting t̂ = t̄ − 2kT  yields

S i n c e  Γ(t, t̂ + 2kT ) = Γ(t − 2KT , t̂),M(t̂ + 2kT − T , 2kT )

= M(t̂ − T , 0) and B(t̂ + 2kT ) = B(t̂) , it is obtained from 
Eq. (14)

Then, it follows from Eqs. (13) and (15) that

where

(10)ẋ(t) = (A(t) + B(t)K )x(t).

(11)
ẋ(t − T ) = M(t − T , 2kT )x(2kT ),

t ∈ [2kT + T , 2kT + 2T ).

(12)
ẋ(t) = (A(t) + B(t)K )x(t)

− B(t)KM(t − T , 2kT )x(2kT ).

(13)

x(t) = {Γ(t − 2kT − T , 0)M(T , 0)

−∫
t

2KT+T

Γ(t, t̄)B(t̄)KM(t̄ − T , 2kT )dt̄

}
⋅ x(2kT ),

t ∈ [2kT + T , 2kT + 2T ), t̄ ∈ [2kT + T , t].

(14)

∫
t

2KT+T

Γ(t, t̄)B(t̄)KM(t̄ − T , 2kT )dt̄

= ∫
t−2KT

T

Γ(t, t̂ + 2kT )B(t̂ + 2kT )KM(t̂

+ 2kT − T , 2kT )dt̂,

t ∈ [2kT + T , 2kT + 2T ).

(15)
∫

t

2KT+T

Γ(t, t̄)B(t̄)KM(t̄ − T , 2kT )dt̄

= ∫
t−2KT

T

Γ(t − 2kT , t̂)B(t̂)KM(t̂ − T , 0)dt̂.

(16)x(t) = � (t) ⋅ x(2kT ), t ∈ [2kT + T , 2kT + 2T ),

Fig. 1   Block diagram of a chaotic system under the act-and-wait 
DFC
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By setting t = 2kT + 2T  , Eq. (17) becomes

Equation  (18) constructs a monodromy matrix for the 
closed-loop system (7) with the doubled period 2T such 
that

Therefore, the stability of the closed-loop system is consid-
ered to be decided by the eigenvalues of the matrix � (2T ).

3.2 � The high‑precision direct integration method

Let initial state of system (8) be x(t0) = x0 . If we define a 
sequence of vectors xi(t) ∈ ℜn(i = [0,∞)) on the closed 
interval [t0, t] as

then, xi(t) can be rewritten as a sum of terms involving 
integrals of the matrix A(t).

Assume the isometric division of time domain [t0, tf ] to be

Define M(t, t0) which is a function of two variables to be 
the transition matrix of system (8). It is obvious that there 
exists

The transition matrix M(t, t0) can be expressed in the gen-
eralized Peano–Baker series as [63]

(17)

𝛹 (t) = Γ(t − 2kT − T , 0)M(T , 0)

− ∫
t−2kT

T

Γ(t − 2kT , t̂)B(t̂)KM(t̂ − T , 0)dt̂.

(18)

𝛹 (2T ) = Γ(T , 0)M(T , 0)

− ∫
2T

T

Γ(2T , t̂)B(t̂)KM(t̂ − T , 0)dt̂.

(19)x(2kT + 2T ) = � (2T ) ⋅ x(2kT ), k = 0, 1, 2,… .

(20)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0(t) = x0,

x1(t) = x0 + ∫ t

t0
A(s1)x0(s1)ds1,

x2(t) = x0 + ∫ t

t0
A(s1)x1(s1)ds1,

⋮

xi(t) = x0 + ∫ t

t0
A(s1)xi−1(s1)ds1,

(21)

xi(t) = x0 + ∫
t

t0

A(s1)x0ds1

+ ∫
t

t0

A(s1)∫
s1

t0

A(s2)x0ds2ds1 +…

+ ∫
t

t0

A(s1)∫
t

t0

A(s2)⋯∫
si−1

t0

A(si)x0dsi ⋯ds1.

(22)ti+1 − ti = � ≡ T∕N ∈ [t0, tf ], i = 0, 1, 2,… .

(23)x(ti+1) = M(ti+1, ti)x(ti).

Then, a high-precision direct integration algorithm, named 
as HPDI algorithm, for calculating the transition matrix 
M(tk+1, tk) is established as follows. 

Step 1:	� Finely divide the interval of [tk , tk+1] into 

 where m = 2Q  .  Here,  Q  is  a f ine parameter, 
tk
j+1

− tk
j
= �∕m, j = 0, 1,… ,m − 1.

Step 2:	� Compute, respectively, A(tk
j
) , A((tk

j
+ tk

j+1
)∕2) and 

A(tk
j+1

) based on Eq. (6). Here, the periodic solu-
tions �(t) are calculated numerically by fourth-
order Runge–kutta method.

Step 3:	� From the properties of transfer matrix, it is obvi-
ous that 

 Each transition matrix needs to be taken its third-order 
approximation of the following Peano–Baker series. 

 If we define 

 then M̃(tk+1, tk) is the approximation of the transition 
matrix M(tk+1, tk).
Step 4:	� Calculate M̃(tk+1, tk) . 

 For i = 1 to Q

(24)

M(t, t0) = I + ∫
t

t0

A(s1)ds1

+ ∫
t

t0

A(s1)∫
s1

t0

A(s2)ds2ds1 +…

+ ∫
t

t0

A(s1)∫
t

t0

A(s2)⋯∫
si−1

t0

A(si)dsi ⋯ds1.

tk = tk
0
< tk

1
< tk

2
< ⋯ < tk

m
= tk+1,

M(tk+1, tk) = M(tk
m
, tk
m−1

)M(tk
m−1

, tk
m−2

)⋯M(tk
1
, tk
0
).

(25)

M̃(tk
j+1

, tk
j
) = I + [A(tk

j
) + 4A((tk

j
+ tk

j+1
)∕2)

+ A(tk
j+1

)]d𝜏∕(3!)

+ [2A(tk
j+1

)A(tk
j
) + A(tk

j
)A(tk

j+1
)](d𝜏)2∕(3!)

+ [A(tk
j
)]3(d𝜏)3∕(3!).

(26)M̃(tk+1, tk) =

m−1∏
j=0

M̃(tk
j+1

, tk
j
),

Λ0

j
⇐ [A(tk

j
) + 4A((tk

j
+ tk

j+1
)∕2) + A(tk

j+1
)]d�∕(3!)

+ [2A(tk
j+1

)A(tk
j
) + A(tk

j
)A(tk

j+1
)](d�)2∕(3!)

+ [A(tk
j
)]3(d�)3∕(3!), j = 0, 1, 2,… ,m − 1;
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 End 

Step 5:	� Repeat executions of Step 2-4 for N times. Then, it 
can be obtained M̃(t1, t0), M̃(t2, t1),⋯ , M̃(tN , tN−1), , 
respectively.

Step 6:	� Calculate M(t, t0) . If t = T  , then 

 else if t < T  , then 

Based on the above HPDI algorithm, the transition matri-
ces M(T , 0) and M(t̂ − T , 0) in Eq. (18) can be calculated by 
Eqs. (28) and (29), respectively.

In order to calculate the transition matrices Γ(T , 0) and 
Γ(2T , t̂) in Eq. (18), it is considered that Â(t) = A(t) + B(t)K . 
Then, similar to that of the transition matrices M(T , 0) and 
M(t̂ − T , 0) , Γ(T , 0) and Γ(2T , t̂) can be calculated based on 
the same precise integration algorithm. Therefore, the mon-
odromy matrix � (2T ) in Eq. (18) which is associated with the 
closed-loop system (7) can be computed. By selecting an 
appropriate gain matrix K, the state trajectory of the system 
(7) converges toward a periodic solution.

4 � Illustrative examples

In this section, we give two examples to examine the effec-
tiveness of the above method.

4.1 � Example 1

Consider a nonlinear system defined by a two-dimensional 
state vector � = [�1, �2]

T , a control input vector u = (u1, u2) 
and the vector field

The above system (30) is a modified version of the exem-
plified system of the so-called Poincaré–Andronov–Hopf 
bifurcation [61]. The linear variational equation associated 
with the closed-loop system under the act-and-wait con-
troller (with T = 1 s) is given by Eq. (5), where

Λi
j
= Λi−1

2j+1
+ Λi−1

2j
+ Λi−1

2j+1
Λi−1

2j
,

j = 0, 1, 2,… , 2Q−i − 1;

(27)M̃(tk+1, tk) ⇐ I + ΛQ
0
.

(28)M(t, t0) ≃ M̃(tN , tN−1)⋯ M̃(t2, t1)M̃(t1, t0),

(29)M(t, t0) ≃ M̃(t, t − 𝜏)⋯ M̃(t2, t1)M̃(t1, t0).

(30)

�̇ = f (�, u)

≜
[
−�1

(
�
2
1
+ �

2
2
− (�2

1
+ �

2
2
)2
)
+ 2𝜋�2 + u1

−�2
(
�
2
1
+ �

2
2
− (�2

1
+ �

2
2
)2
)
− 2𝜋�1 + u2

]
.

(31)A(t) =

[
2 cos2(2�t) − sin(4�t) + 2�

− sin(4�t) − 2� 2 sin
2(2�t)

]
,

The system (30) shows unstable behavior if there is no con-
trol input. To evaluate the asymptotic behavior of solu-
tions under the control law (2), it needs to examine the 
eigenvalues of the monodromy matrix � (2T ) associated 
with the closed-loop system (7). Based on the proposed 
precise integration algorithm, by calculating numerically 
the value of � (2T ) for a certain range of feedback gain 
parameters and search for an appropriate feedback gain 
matrix K ∈ ℜ2×2.

N o te  t h a t  fo r  t h e  fe e d b a c k  g a i n  m a t r i x 
K = [2.2, 4.0; 4.5,−3.2], the corresponding monodromy 
matrix is calculated from Eq.  (18) based on the HPDI 
algorithm discussed in Sect. 3.2 as

which has the eigenvalues �1 = 0.9726 and �2 = 0.057.
Figure  2 plots a phase portrait of (�1, �2) of the 

uncontrolled system (30) (with the control input u = 0 ) 
under the initial condition �0 = (1,− 0.1) . From the time 
t = 1.5  s, the state trajectory begins to diverge from 
the periodic orbit. The periodic system without control 
input, hence, shows unstable behavior.

Figures 3 and 4, respectively, show a behavior and the 
phase portrait of the controlled system starting from 
the initial state �0 = (1,− 0.1) . Figure 3 shows a behavior 
of the controlled system, while Figure 4 plots a phase 
portrait of (�1, �2) . It is known from Figs. 3 and 4 that 
the state trajectory converges to the periodic orbit, i.e., 

(32)B(t) =

[
1 0

0 1

]
.

(33)� (2T ) =

[
0.7052 0.0493

3.5138 0.3244

]
.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4

5

x
1

x 2

Fig. 2   The phase portrait of �1 − �2 of the system (30) without con-
trol input corresponding to the time of t = [0, 1.8]
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system (30) reaches a stabilization state via the proposed 
method.

4.2 � Example 2

As the next example, it is considered the well-known 
Lorenz system. The system is defined by a three-dimen-
sional state vector � = [�1, �2, �3]

T  , a control input vector 
u = (u1, u2) and the vector field

where � = 10 , � = 28 and b = 8∕3.
I f  choosing the per iod- one UPO with the 

per iod T = 1.5586 s  and the init ia l  condit ions 
�0 = [−15.467,−15.411, 36.598] , the linear variational 
equation associated with the closed-loop system under 
the act-and-wait controller is given by Eq. (5), where

(34)�̇ = f (�, u) ≜
⎡⎢⎢⎣

−𝜎(�1 − �2)

𝛾�1 − �2 − �1�3 + u

�1�2 − b�3

⎤⎥⎥⎦
,

(35)A(t) =

⎡⎢⎢⎣

−� � 0

� − �3 −1 −�1
�2 �1 −b

⎤⎥⎥⎦
, B(t) =

�
0 1 0

�T
.
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−1.5

−1

−0.5

0

0.5

1

1.5

t

x

 

 

x
1

x
2

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

t

u

 

 

u
1

u
2

Fig. 3   The time history of � and u of the system (30) stabilized by 
act-and-wait DFC
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Fig. 4   The phase portrait of �1 − �2 of the system (30) stabilized by 
act-and-wait delayed feedback control; it is a colored 3D contour 
of time mapped on the bottom plain in which color-bar represents 
the time t (s)
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The monodromy matrix associated with the uncon-
trolled system is given by

which has the eigenvalues 4.7148, 0, and 0.9991. As shown 
in Fig.  5, the uncontrolled system (34) shows chaotic 
behavior.

(36)M(T , 0) =

⎡⎢⎢⎣

1.2257 1.3786 − 1.4541

7.3979 9.9107 − 9.4232

4.0485 6.0767 − 5.4226

⎤⎥⎥⎦
,

Then, performing the procedures similar to those 
described in the previous example, it can be achieved 
the successful control of the UPO.

For the feedback gain matrix K = [−4.1,−5.0,−3.8] , the 
corresponding monodromy matrix � (2T ) is calculated 
from Eq.(18) as

(37)� (2T ) =

⎡⎢⎢⎣

0.0080 0.0543 − 0.0281

1.1896 3.4808 − 2.2845

1.6234 4.5691 − 3.0435

⎤⎥⎥⎦
,

−20 −10 0 10 20
−30

−20

−10

0

10

20

30

x
1

x 2

(i)

10

20

30

40

50

60

70

80

−20 −10 0 10 20
−30

−20

−10

0

10

20

30

x
1

x 2

(i)

85

90

95

100

105

110

115

120

−20 −10 0 10 20
0

10

20

30

40

50

x
1

x 3

(ii)

10

20

30

40

50

60

70

80

−20 −10 0 10 20
0

10

20

30

40

50

x
1

x 3

(ii)

85

90

95

100

105

110

115

120

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

x
2

x 3

(iii)

10

20

30

40

50

60

70

80

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

x
2

x 3

(iii)

85

90

95

100

105

110

115

120

(a) Phase portrait ( t=0∼80[s]) (b) Phase portrait ( t=80∼120[s])
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which has the eigenvalues �1 = 0.6927 , �2 = − 0.0001 and 
�3 = − 0.2473.

Figure  6 plots the time history of the control 
input of the system (34) stabilized by the proposed 
method. The trajectory of the orbits in the phase plane 
�i − �j(i = 1, 2;j = 2, 3) from t=0 till t=120  s via the sta-
bilization control input u is shown in Fig. 7. The initial 
condition �0 = (−15.46,−15.41, 36.59) . The phase por-
traits of �1 − �2, �1 − �3, �2 − �3 are shown in (i), (ii), (iii), 
respectively. Fig. 7a depicts the trajectory of 0 ∼ 80 s and 
Fig. 7b plots that of 80 ∼ 120 s. From Fig. 7b and Fig. 6, it 
is obvious that the trajectory of the orbits from about 70 s 
converged closer to a closed curve which means that the 
system attained a stable orbit via the act-and-wait delayed 
feedback control.

5 � Conclusion

This paper developed a stabilization method for the peri-
odic orbits embedded in nonlinear chaotic systems via 
an act-and-wait delayed feedback control. The proposed 
method derived a finite-sized corresponding monodromy 
matrix for the closed-loop system under a switching mech-
anism that turns the delayed feedback controller on and 
off alternately at every integer multiples of the period of 
the desired UPO. By analyzing the eigenvalues of the cor-
responding monodromy matrix, it was obtained condi-
tions under which the state trajectory converges toward 
a periodic solution. Due to the fact that it is hard to find a 
homogeneous expression of the monodromy matrix cor-
responding to the act-and-wait DFC, we present a periodi-
cally time-varying precise integration method by which 
the transition matrices can be calculated numerically with 
a high precision. Furthermore, two numerical examples 
showed that the dynamics of nonlinear systems can be 
stabilized to periodic orbits by means of the proposed 
strategy.
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