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Abstract
To enhance the strength of single FCC phase high entropy alloys, TiC was selected as reinforced phase to improve the 
properties of high entropy alloys (HEAs). Therefore, a series of TiC/Al0.6CrFe2Ni2 high entropy alloys with different TiC con-
tent which ranging from 0 to 5 vol% were prepared by vacuum arc melting furnace. The phase compositions, microstruc-
tures and mechanical properties of alloys were investigated detailedly. The results show that TiC has no effect on phase 
composition of the alloys, but the addition of ceramic phase TiC has an advantageous effect on the mechanical proper-
ties of alloys, the yield strength of TiC/Al0.6CrFe2Ni2 HEAs increases due to the refined of grain size, when TiC content is 
2.50 vol%, alloy has better properties, the yield strength and Vickers hardness are 576.93 MPa and 244 HV, respectively.
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1 Introduction

The concept of high entropy alloys (HEAs) was proposed 
by Yeh et al. [1] and Cantor et al. [2] respectively in 2004, 
and become a popular research direction in the metal-
lic materials field promptly. The propose of HEAs break-
through the limitations of traditional alloys because of 
their simple phase structure and excellent mechanical 
properties [3–16].

Composite material is a combination of two materials 
with different characters to obtain new materials with 
superior properties, ceramic phases were widely used due 
to their high melting point and high hardness in traditional 
alloys [17–23]. Due to the excellent properties of HEAs, 
some scholars investigated the effect of ceramic phases 
on high entropy alloys. Chen et al. [24] compound the WC/
Al0.5CoCrCuFeNi high entropy alloy, the hardness of WC/
Al0.5CoCrCuFeNi alloy is 200–300 HV higher than the tradi-
tional WC/Co alloys at room temperature. Zhao et al. [25] 

sintered the  TiB2/CoCrFeNiMn0.5Ti0.5 high entropy alloys, 
and found that when the content of  TiB2 was 10%, the Vick-
ers hardness and flexural strength of alloys were 2174.64 
HV and 427.69 MPa respectively. Fan et al. [26] studied the 
microstructure and mechanical properties of (FeCrNiCo)
AlxCuy high-entropy alloys and their TiC reinforced com-
posites, the results show that addition of TiC increased the 
comprehensive mechanical properties of the high-entropy 
alloy matrix tremendously, and when the TiC content was 
10 vol%, the hardness, yield stress and fracture stress were 
as high as 621 HV, 1637 MPa and 2972 MPa, respectively. 
Fu et al. [27] prepared a series of  TiB2–TiNiFeCrCoAl high-
entropy alloy composites, the addition of  TiB2 to HEA can 
enhance the densification significantly, when the  TiB2 was 
20 wt%, the grain size, hardness and indentation fracture 
toughness of alloys were 0.74 ± 0.07 μm, 17.5 ± 1.2 GPa and 
12.8 ± 0.6 MPa m1/2, respectively. Liu et al. [28] developed 
TiC/Co1.5CrFeNi1.5Ti0.5 composite and the results shows 
that the composite exhibits an ultra-fine microstructure, 
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the TiC/HEA composite shows an ultra-high room-tem-
perature compressive strength (> 3000 MPa). A refractory 
high-entropy alloy of  HfNbTiVSi0.5 was synthesized by 
Zhang et al. [29], the alloys were composed by BCC solid 
solution and a multi-component silicide ((Hf, Nb, Ti)–Si), 
the research results indicate that the generate of silicide 
is beneficial for the room temperature strength, ductility 
and the elevated temperature properties. Lin et al. [30] 
found that the addition of TiC in  Co1.5CrFeNi1.5Ti0.5 HEAs 
can improve the hardness-toughness combination of the 
alloys. Wang et al. [31] investigated the anti-penetration 
performance of high entropy alloy, the results indicated 
that more uneven the ceramic distribution, the better the 
anti-penetration performance. Guo et al. [32] prepared 
the TiN-reinforced  CoCr2FeNiTi0.5 high-entropy alloy 
composite, the results demonstrated that hardness and 
corrosion resistance of coating improve tremendously. 
Yim et al. investigated the microstructural evolution and 
mechanical properties of TiC-reinforced CoCrFeMnNi high-
entropy alloy composite [33], the results show that the 
5 wt% of TiC addition resulted in fine grain size; the yield 
strength, strain hardening of composite increased due to 
grain boundary strengthening, dislocation strengthen-
ing, and dispersion strengthening. The  Y2O3-reinforced 
 Al0.3CoCrFeMnNi high-entropy alloy composite was pro-
cessed by Gwalani et al. [34], the paper find that the in-
situ formation of complex oxide Al–Y2O3 enhancing the 
strength, the compressive yield strength of composite 
increased from 0.98 GPa (0 vol%  Y2O3) to 1.76 GPa (3 vol% 
 Y2O3). The significant increase in strength can be attributed 
to the nano-dispersoid strengthening coupled with grain 
refinement [35]. The addition of ceramic phases has posi-
tive impacts on the properties of HEAs, however the cur-
rent researches focus on double-phases HEAs principally, 
the research on single-phase HEAs not been searched in 
available literatures.

In this paper, TiC was added to single-phase 
 Al0.6CrFe2Ni2 HEAs (FCC), and the phase compositions, 
microstructures and mechanical properties were investi-
gated systematically.

2  Experimental

The TiC/Al0.6CrFe2Ni2 high entropy alloys with different 
ceramic contents (0, 1.25, 2.50, 3.75, 5.00  vol%) were 
smelted by vacuum arc melting furnace in argon atmos-
phere, the alloys were remelting for five times to guaran-
tee the homogeneity of the alloy. The purity of the metals 
was more than 99.9 wt% and the diameter of ceramic par-
ticles TiC was 50 nm. The samples were prepared by elec-
trical discharge machining, after polishing and burnish-
ing, electro-polished was carried out in 90% acetic acid 

and 10% perchloric acid mixture liquid. X-ray diffraction 
(XRD, Shimadzu XRD-7000) was used to measure the phase 
structure of alloy, the microstructure and elemental distri-
bution were analyzed by Scanning Electron Microscope 
(SEM, Zeiss Gemini). The compression test was carried out 
by universal electronic laboratory machine (MTS-E45) with 
a strain rate of 5 mm min−1 and the size of compressed 
samples were φ4 × 6 mm, three samples were measured 
for every alloy to ensure the accuracy of the results, and 
the yield strength was measured using an extensometer. 
The Vickers hardness of the alloys were measured too.

3  Results and discussion

3.1  Phase analysis

Figure 1 shows the XRD patterns of TiC/Al0.6CrFe2Ni2 HEAs 
with different content of ceramic phase (ranging from 0 
to 5 vol%), and Fig. 1b is the partial enlarged drawing of 
2.50 vol%TiC/Al0.6CrFe2Ni2HEAs. As shown in Fig. 1a, only 
FCC diffraction peak can be observed in TiC-free alloy, and 
when the ceramic phase TiC is introduced into the alloy 
systems, TiC diffraction peaks appear in the XRD patterns, 
as shown in Fig. 1b, when the TiC content is 2.50 vol%, the 
diffraction peak of TiC can be observed near 36° and 43° 
clearly, and this indicating that TiC is added to alloys suc-
cessfully; with the increase of TiC content, the quantities 
and peak increase accordingly. Therefore, the addition of 
TiC has no influence on the phase species of alloys, but the 
appearance of TiC diffraction peak will affect the micro-
structures and mechanical properties of the  Al0.6CrFe2Ni2 
high entropy alloys.

3.2  Microstructures and elemental distribution

Figure  2a, b, c, e, f shows the microstructures of TiC/
Al0.6CrFe2Ni2 high entropy alloys with different TiC content, 
respectively, and Fig. 2d is the partial enlarged drawing of 
Fig. 2c. Table 1 shows the composition of  Al0.6CrFe2Ni2 high 
entropy alloy matrix.

As shown in Table  1, the composition of TiC-
free high entropy alloy is  Al10.94Cr18.39Fe33.46Ni35.20, 
after conversion, the composition of the alloy is 
 Al0.600Cr1.009Fe1.945Ni1.931, the proportion of element con-
tent is basically in accordance with the theory. As shown 
in Fig. 2a, when ceramic phase TiC has not introduced to 
the alloy system yet, known by XRD diffraction pattern 
that there are only FCC structure grains in the matrix 
alloy, the grain boundaries of matrix are brightness and 
purity. There is some unanticipated oxides and inclusions 
structure can be observed in Fig. 2a, it is produced by the 
reaction of residual oxygen with metal during smelting; 
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When TiC is introduced to the alloy system, bright-white 
“skeletal” structures appear at the grain boundaries(as 
shown in Fig. 2b), according to the elements distribution 
of 1.25 vol%TiC/HEAs in Fig. 3f, g, the “skeletal” structures 
are composed by added TiC ceramics. With the increases 
of TiC content continually, as shown in Fig. 2c, d, granular 
nano-phase can be observed in the grain boundaries, 
which is wrapped by TiC. From Fig. 2a, b, c we can see 
that, the size of grains decreases with the addition of 
TiC. When the content of TiC increases to 3.75 vol% and 
5.00 vol%, micropores can be observed in the alloys, this 
is due to excessive TiC agglomeration and separation 
from the alloy substrates, and this will have a negative 
effect on the properties of the alloys.

Figure 3 is the elemental distribution of 1.25 vol%TiC/
HEAs and Fig.  4 shows the elemental distribution of 
Fig. 2d. As shown in Fig. 3b, c, d, e, matrix elements Al, 
Cr, Fe, Ni distribute within the grains uniformly. Although 
ceramic phase elements Ti and C exist in the grain 
interior, they mainly appear at the grain boundaries, 
this indicates that the bright-white structures at grain 
boundary in Fig. 2 are TiC ceramic reinforcing phase. 
From Fig. 4 we can see that, the main elements of nano-
phase which exist in grain boundaries are Al and Ni 
element, e.g. Fig. 4a, d. The nano-phase is wrapped by 
TiC, and nano-phase plays the role of connecting the 
ceramic phase, so that the ceramic phase has higher per-
formance, which improves the properties of the alloy. 
So it will enhance the properties of TiC/HEAs system 
inevitably.

3.3  Mechanical properties

The stress–strain curves and the Vickers hardness (HV)of 
TiC/Al0.6CrFe2Ni2 HEAs are shown in Fig. 5a, b, the yield 
strength (δy) and the value of hardness are listed in Table 2. 
With the addition of TiC, the δy of alloys rising primarily 
and then falling. As shown in Table 2, the δy of TiC-free 
alloy is 113.03 MPa, with the addition of TiC phase, the δy 
increases and when the content of TiC reaches 2.50 vol%, 
the δy of alloy increases to maximum 576.93 MPa, this is 
due to that TiC is the core of heterogeneous nucleation, 
the addition of TiC reduces the grain size, this results in an 
advance in strength, meanwhile the TiC strengthened by 
nano-phase also plays a "supporting" role during compres-
sion tests, this also increases the strength of the alloy. With 
the increases of TiC ulteriorly, because of the appearance 
of microporous defect, as shown in Fig. 2e, f, the continuity 
of the alloys was broken, hence the strength of the alloys 
declines.

The strengthening of grain boundaries must lead to the 
reduction of plasticity, However, the TiC/Al0.6CrFe2Ni2 HEAs 
don’t fracture during compression tests (When the com-
pression rate is 60%, compression test stop). So the plastic-
ity of alloys have no change significantly with the addition 
of TiC phase, which is mainly caused by the precipitation 
of nano-phase, and this indicates that TiC can improve the 
strength of the alloy are greatly by adding appropriate TiC 
without affecting the plasticity of the alloy.

Since because that TiC phase has high hardness, 
the addition of TiC will increase the hardness of alloy 

Fig. 1  a The XRD patterns of TiC/Al0.6CrFe2Ni2 high entropy alloys, b partial enlarged drawing of 2.50 vol%TiC/Al0.6CrFe2Ni2
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inevitably, therefore, with the increase of TiC content, the 
hardness of TiC/Al0.6CrFe2Ni2 HEAs increases from 152 to 
264 HV, enhance 75% nearly. When the TiC content rises 
to 2.50 vol%, TiC agglomeration occurred, which led to 
a slowdown in the trend of hardness improvement. To 
conclude, the increase of TiC can improve the mechani-
cal properties of the alloy immensely, and when TiC con-
tent is 2.50 vol%, the alloy has better properties, the δy of 

Fig. 2  Microstructures of TiC/Al0.6CrFe2Ni2 high entropy alloys

Table 1  The composition of 
 Al0.6CrFe2Ni2 high entropy alloy 
matrix

Element Atomic (%)

Al 10.94
Cr 18.39
Fe 35.46
Ni 35.20
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2.50 vol%/Al0.6CrFe2Ni2 HEAs is 576.93 MPa, rising about 
400% compared with the matrix, and the Vickers hardness 
is 244 HV, rising about 60%.

4  Conclusions

A series of TiC/Al0.6CrFe2Ni2 high entropy alloys were pre-
pared and the microstructure and mechanical properties 
were investigated minutely. Based on the above research, 
the introduce of ceramic phases have energetic effect 
on  Al0.6CrFe2Ni2 high entropy alloys, the conclusions are 
obtained as follows:

(1) The  Al0.6CrFe2Ni2 HEAs are composed by single FCC 
phase, the addition of ceramic phases TiC have no 
influence on the phase species of matrix alloys;

(2) Ceramic phases TiC addition decreases the grain size, 
and with the addition of TiC, nano-phases occur in the 
boundaries, when the TiC content up to 3.75 vol%, 
micropores occur in the alloys;

(3) The addition of TiC can improve the mechanical prop-
erties of the alloy, when the value of TiC is 2.50 vol%, 
alloys have better properties, the yield strength and 
Vickers hardness are 576.93 MPa and 244 HV, respec-
tively.

Fig. 3  The elements distribution of 1.25 vol%TiC/Al0.6CrFe2Ni2 high entropy alloys
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