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Abstract
In the below investigation, the impact of speed, feed, depth of cut, and workpiece hardness on the cutting temperature 
at tool-workpiece interface on hard-turning of the American Iron and Steel Institute (AISI) H13 tool steel parts will be 
investigated. It is worth noticing that the inclusion of workpiece hardness as an input variable in discussing cutting 
temperature wasn’t widely investigated in the literature. Dry cutting experiments were done and the outcomes showed 
that the cutting temperature is highly influenced by the workpiece hardness. Also, it was noted that though the effect 
of depth of cut is statistically insignificant, yet it was found that the cutting temperature is an increasing function of the 
cutting depth. Furthermore, a predictive model for predicting cutting temperature was developed using response surface 
methodology (RSM) and artificial neural network (ANN) based on the inputs. The mean relative error was employed for 
testing the adequacy of the created predictive models, and its value was 3.56% and 0.844% for RSM and ANN respec-
tively. Moreover, the new optimization algorithm, cuttlefish algorithm (CFA) was employed for optimizing the cutting 
temperature and the results were compared with those from the genetic algorithm (GA). The CFA obtained the best 
results at the least convergence rate.

Keywords Cutting temperature · Hard turning · Response surface methodology · Neural networks · Cuttlefish 
algorithm · Genetic algorithm

1 Introduction

Hard-turning is the process of turning components possess-
ing hardness varying from 45 to 68 Rockwell hardness (HRC) 
[1], into complete products on the same lathe that ordinary 
turning is done [2]. The hard-turning process increases the 
quality of the products and reduces the time of operation, 
in addition to other advantages stated in the literature [3–5]. 
On the other hand, hard turning has some major difficul-
ties during cutting operations, which affect the procedure 
of achieving high-quality products. One of these major dif-
ficulties is the high cutting temperature generated during 
hard turning. Generally, the main causes of surface changes 

generated by cutting processes are high temperatures or 
high temperature gradients taking place in the cutting pro-
cess, chemical reactions and plastic deformation [6]. In hard 
turning operations, owing to the high hardness of workpiece 
materials and the corresponding high temperatures, prob-
lems become more complicated. When thermal aspects are 
coupled with mechanical aspects, this will result in rapid tool 
wear. Tool wear, not only reduces the tool life and increases 
the machining costs, but it also increases the forces and 
tensile residual stresses affecting the surface quality and 
causing white layer surface damages [7]. These generated 
white layers possess a negative effect on surface finish and 
fatigue strength of the final product. A white layer is a hard 
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phase that leads to a more brittle surface, causing crack 
penetration and thus leading to product damage. This is a 
major problem regarding service performance, particularly 
in the aerospace and automotive industries [8]. Although 
dry cutting is desirable from the economic and environ-
mental concerns [9], yet dry cutting without utilizing cool-
ing and lubricants, especially in case of cutting hardened 
materials, may result in an extreme temperature rise, which 
in turn will cause a detrimental effect on the tool and work 
materials. Thus, it is quite important to model this phenom-
ena, particularly in dry cutting, to try to predict it to take 
the advantages of dry turning and at the same instance to 
reduce its negative effects by taking all necessary precau-
tions for dealing with it, to make sure that the performance 
of the produced part won’t be affected. A unidimensional 
model suggested by Chakraverti et al. [10] for temperature 
distribution prediction on the tool, through intermittent 
machining. It was found that the thermal stresses increase 
directly with the fluctuating amplitude of temperature. A 
finite-difference model was established by Islam et al. [11]. 
The model was able to calculate the steady and the transi-
tory states of temperature in the tool, workpiece, and chip. 
A modified 3D model was established by Liang et al. [12] 
for determining the temperature at the chip-tool interface 
in turning of AISI 1045 steel, taking into consideration the 
inverse heat conduction technique. The cutting temperature 
in turning was experimentally discussed and optimized by 
Davoodi et al. [13], to eliminate the cooling fluid. The cutting 
temperature and temperature distribution over the surface 
of the tool were modeled by Karpat and Ozel [14]. They also 
found that the experimental and the predicted results agree 
with each other to a good extent. Turning parameters were 
optimized by researchers [15] for minimizing the tool wear 
and maximizing the material removal rate without disturb-
ing the cutting temperature limit. An optimization model 
proposed by researchers [16] was established for optimiz-
ing the cutting temperature in turning AISI D2 steel utiliz-
ing Taguchi technique employing different fluids. Results 
disclosed that nanofluid consisting of carbon nanotubes 
reduced the cutting temperature effectively by increasing 
the heat transfer rate. The ability of a solid lubricant in reduc-
ing the chip-tool interface temperature through turning 
was discussed by Moura et al. [17] and it was deduced that 
utilizing a solid lubricant in turning yields better results in 
comparison with wet or dry turning. Cutting temperature 
was modeled by researchers [18], taking into consideration 
the effect of the air flowing around the insert, and the results 
helped in understanding the cutting temperature scheme. 

GA was utilized by researchers [19] for optimizing the cutting 
temperature and the material removal rate. Few modeling 
approaches [20, 21] of chip-tool interface-temperature were 
developed in considering the cutting parameters. In this 
study, RSM will be utilized for designing the experiments, 
establishing a mathematical model relating the inputs with 
the output response, and studying the effect of inputs on 
the output response. RSM and ANN will be employed for 
creating predictive models for cutting temperature at the 
tool-workpiece interface (will be denoted as cutting tem-
perature for simplifying throughout the study) within the 
applied conditions. Finally, a new algorithm, which is the 
CFA, will be used for optimizing the cutting temperature 
using the developed mathematical model as the objective 
function, and to test its adequacy, the outcomes will be com-
pared with the ones obtained from the GA.

2  Materials and methods

Round AISI H13 bars of 100 mm length and 35 mm diam-
eter with an initial hardness of 207 Brinell Hardness (HB) 
were employed as test specimens. Table 1 reveals the 
chemical composition of the test specimens.

Heat treatment was utilized for hardening the speci-
mens to values 45 ± 1, 50 ± 1 and 55 ± 1 HRC as follows:

1. Removing stresses by heating to 600 °C in for 4 h, and 
then by slow cooling in furnace.

2. Hardening as follows:

(a) Pre-heating to 500 °C for 2 h, then second pre-
heating for 850 °C for half an hour.

(b) Employing a salt furnace for heating specimens 
to 1050 °C for a quarter of an hour, followed by 
quenching in oil.

3. Then the hardness was measured for validating the 
hardening process by utilizing INNOVATEST Europe BV 
Model: NEXUS 610 hardness tester.

4. For achieving the required hardness, tempering was 
done in which the specimen of hardness 45 ± 1 was 
reviewed at a temperature of 600 °C; for 50 ± 1, the 
reviewing temperature was 580 °C; finally, for 55 ± 1, 
the temperature was 450 °C.

5. Specimens were then kept at a uniform temperature 
for 2 h. Thereafter, it was cooled by being left in ambi-

Table 1  Chemical composition 
of AISI H13 tool steel

Element C Mn Cr Mo Si P S V

% 0.39 0.48 4.88 1.25 1.09 0.012 0.002 0.92
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ent air, and then washed and measured to ensure that 
the desired was attained.

A mixed ceramic cutting insert of aluminum oxide 
(Al2O3) and titanium carbon nitride (TiCN), commonly 
used for finish cutting of hardened steel (CNGA 120408 
E040), was mounted on a shank holder (PCLNR 2525M 
12), having a 6o negative rake angle. Dry cutting opera-
tions were done. Machining tests were done on a con-
ventional lathe of spindle speed 1400 rpm (Make: SJR 
Machinery, Model: L6241, Power: 4 kW). An infrared cam-
era “Fluke infra-red thermal image camera” Model: T32i 
was employed for measuring the tool-workpiece interface 
temperature. The camera is accompanied by a full image 
analyzing and reporting software named  SmartView®. The 
software possesses tools for optimizing images and it also 
generates customized and professional reports. Figure 1a 
shows the procedure followed for measuring the cut-
ting temperature experimentally, while Fig. 1b reveals an 
image taken by the camera showing temperature meas-
urement using the software. In this research, the emissivity 
coefficient was taken ε = 0.4; [22] the separation distance 
between the camera and the cutting process was fixed 
to 35 cm. The temperature was recorded for each experi-
ment after a fixed time of 30 s from starting the cutting 
operation.

3  Experimental design

To discuss the influence of the various factor levels on the 
cutting temperature, response surface central composite 
design was employed for designing the experiments by 
utilizing design expert software. In the design, there are 
four numeric factors, which are cutting speed, feed rate, 
depth of cut and workpiece hardness. Factor levels were 
selected based on recommendation data by cutting tip 
manufacturer, literature, and the availability of cutting fac-
tors on the employed lathe. The three levels for cutting 
speed were 100, 125 and 150 m/min; feed rate 0.05, 0.1 
and 0.15 mm/rev.; depth of cut 0.05, 0.09, 0.13 mm/rev; 

and finally, the workpiece hardness as mentioned before 
were 45, 50 and 55 HRC. The experimental design scheme 
and its corresponding values are shown in Table 2. A linear 
mathematical model was proposed for cutting tempera-
ture, based on the experimental data.

The adequacy of the linear model was examined by 
Analysis of variance (ANOVA). The ratio between the 
maximum and minimum values of temperature data 
was 1.45526, indicating that no transformation functions 
are needed. Adequate Precision for cutting temperature 
model is 21.083; it is computed by dividing the signal by 
noise, and its value shall exceed 4. It is a measure of the 
adequacy of the generated model to search the design 
space. The linear model generated and selected by the 
design can be represented by the following equation:

where Yu is the cutting temperature response, βo is the 
main effect, β1…βi are the regression coefficients of the 
linear factors, ‘xi’ is the independent input terms such as 
cutting speed, depth of cut, feed rate and workpiece hard-
ness (1, 2, 3…N), and ‘e’ is the residual error of model.

The latter equation can be rewritten simply for four 
independent variables as follows:

The next step is testing the lack of fit which has a P value 
of 0.6651, indicating its insignificance; this can be revealed 
in the ANOVA Table 3. Non-significant “lack of fit” is nec-
essary, as it is required for the created model to fit. It is 
also revealed from the same table that the resulted model 
possesses an F value of 34.24, indicating its significance. 
Table 3 also distinguishes the significant factors based 
on the P value, where terms whose P value is < 0.05 are 
the significant ones. Moreover, the contribution of each 
parameter can be calculated by dividing its correspond-
ing sum squares value by the total sum of squares value. 
The workpiece hardness “D” have a contribution of 63.77%, 
making it the most influential factor on the cutting speed; 

(1)Yu = βo +

N∑
i=1

βi xi + e

(2)Yu = βo + β1 x1 + β2 x2 + β3 x3 + β4 x4 + e

Fig. 1  a Experimental setup 
and b shows temperature 
measurement in a sample 
Image
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followed by the cutting speed “A” with contribution of 
about 16%; then the feed rate “B” with a contribution 
of 4.78%, and finally, the depth of cut “C” with the least 
contribution percent. Similar findings were obtained by 

[23, 24]. Equation 3 represents the cutting temperature 
linear-model, in terms of the above-mentioned factors in 
the coded form:

Table 2  Central composite 
design: different input 
parameters and results

Run Speed (m/min) Feed (mm/rev) Depth of cut 
(mm)

Hardness (HRC) Cutting 
Temperature 
(°C)

1 100.00 0.15 0.13 45.00 410
2 100.00 0.05 0.13 55.00 509
3 150.00 0.05 0.13 45.00 420
4 125.00 0.10 0.09 50.00 437
5 150.00 0.05 0.13 55.00 541
6 125.00 0.10 0.09 50.00 448
7 150.00 0.15 0.05 55.00 550
8 125.00 0.10 0.05 50.00 457
9 100.00 0.15 0.13 55.00 530
10 150.00 0.15 0.05 45.00 464
11 100.00 0.05 0.05 55.00 480
12 125.00 0.10 0.09 55.00 510
13 100.00 0.10 0.09 50.00 424
14 150.00 0.05 0.05 55.00 546
15 125.00 0.10 0.09 45.00 432
16 100.00 0.05 0.05 45.00 380
17 125.00 0.10 0.09 50.00 461
18 125.00 0.15 0.09 50.00 459
19 125.00 0.05 0.09 50.00 429
20 125.00 0.10 0.09 50.00 435
21 150.00 0.15 0.13 45.00 489
22 150.00 0.05 0.05 45.00 450
23 125.00 0.10 0.09 50.00 495
24 100.00 0.15 0.05 45.00 407
25 100.00 0.05 0.13 45.00 392
26 100.00 0.15 0.05 55.00 534
27 125.00 0.10 0.13 50.00 444
28 125.00 0.10 0.09 50.00 440
29 150.00 0.10 0.09 50.00 508
30 150.00 0.15 0.13 55.00 553

Table 3  ANOVA results for the 
cutting temperature

Source Sum of squares Df Mean square F value P value

Model 60,872.61 4 15,218.15 34.24 < 0.0001 Significant
A-speed 11,501.39 1 11,501.39 25.88 < 0.0001 Significant
B-feed 3444.50 1 3444.50 7.75 0.0101 Significant
C-depth of cut 22.22 1 22.22 0.0500 0.8249
D-hardness 45,904.50 1 45,904.50 103.29 < 0.0001 Significant
Residual 11,110.19 25 444.41
Lack of fit 8508.86 20 425.44 0.8177 0.6651 Not significant
Pure error 2601.33 5 520.27
Cor total 71,982.80 29
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The coded terms equation can be applied in predicting 
the cutting temperature for any specified level of each term. 
The level of the maximum value of terms is coded in the 
form of + 1 while minimum ones are coded as − 1. The bene-
fit of a coded formula is for identifying the relative impact of 
the factors by factor coefficients mimicking. The latter equa-
tion can be rewritten in terms of actual terms as follows:

The normal plot of residuals is utilized for checking 
the adequacy of the created model. The plot must take a 
straight-line profile because residuals are the approximate 
difference among the experimental values and the pre-
dicted values of the response. Furthermore, residuals versus 
the predicted response plot are for checking the adequacy, 
in which the value points shall be distributed randomly. 
Figure 2a reveals the Normal plot of residuals for the cut-
ting temperature while Fig. 2b reveals the residuals against 
the predicted for the cutting temperature. Similar findings 
were obtained by Noordin et al. [25]. As errors are normally 
distributed, which is described by the straight-line shape 
formed by the residuals, there is no probability for constant-
variance. Furthermore, in the ‘residuals versus the predicted 
plot,’ the value points have no definite arrangement, which 

(3)

Cutting temperature = 467.80 + 25.28 ∗ A + 13.83 ∗ B

+ 1.11 ∗ C + 50.5 ∗ D

(4)

Cutting temperature (T) = −193.7555 + 1.01111 ∗ Speed

+ 276.66667 ∗ Feed + 27.77778

∗ Depth of cut + 10.1 ∗ Hardness

proves adequacy. Therefore, the obtained model is robust 
and can be applied in cutting temperature prediction as it 
resembles previous works. The perturbation plots revealed 
in Fig. 3 agrees with the later discussed “ANOVA” results 
for cutting temperature, in which hardness of workpiece 
comes in the first rank. Perturbation plots also compare the 
impacts of different input terms on the output response. 
Thus, it is clear that all four input parameters increase the 
cutting temperature by different percentages. 

In dry cutting, the surrounding air does not offer suf-
ficient cooling for the tool-workpiece interface, where the 
high friction generates a high increase in temperature at 
the contact point between the workpiece and the cutting 
tool [16]. This rise in cutting temperature is owing to the 
transformation of the mechanical energy into heat energy 
[26], which is due to the cutting tool presented in the form 
of cutting force for deforming the material plastically, [17] 
and form chips. Restricting force is generated by the mate-
rial being cut, preceding breakage of the bonds of metals/
alloy molecule against the cutting force brought by the 
tool insert. Increased hardness of the material contributes 
to the rise of the restraining force [27], and thus, increases 
the cutting temperature. The cutting speed follows the 
workpiece hardness in creating a significant influence on 
the cutting temperature. That is because increased cutting 
speed means an increased amount of material removal per 
unit time. Therefore, higher friction is afforded by the cut-
ting tool that contributes to the generation of cutting tem-
perature [28]. Furthermore, higher cutting speed results 
in a very short time for cutting and within this short time, 

Fig. 2  a Shows normal plot of residuals for cutting temperature. b Shows residuals against the predicted for cutting temperature
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cutting-tool has insufficient time for cooling and therefore 
the cutting temperature increases [29]. When the tempera-
ture of the cutting tool is increased and it gets hot, it gets 
softened and its sharpness is reduced; [17] the dull tool 
edge leads to a higher tool contact surface (increased nose 
radius) and is consequently faced with increased friction, 
and generates higher cutting temperature. Moreover, high 
cutting speed results in a higher strain rate in the shear 
zone; thus, more heat will be generated leading to tem-
perature rise. Though the feed rate has a significant effect 
on the cutting temperature, yet it is a little effect, as high 

feed rate value means a larger distance per revolution of 
the workpiece, and this barely leads to any change in the 
machining mechanism, and thus produces a low impact 
on the cutting temperature [24]. Figure 4a, b reveals the 
3D response surfaces curves for the cutting temperature 
since the formulated model was labeled as a satisfac-
tory model; thus, the obtained 3D response plots can be 
employed in predicting the cutting temperature values 
at the various interaction values of process factors. Fig-
ure 4a reveals that the best cutting temperature value in 
considering productivity and maximizing the value of the 
depth of cut to 0.13 mm and feed rate to 0.15 mm/rev, was 
obtained at the combination of the lowest values of speed 
and workpiece hardness, as stated before and as found 
by other researches. Figure 4b reveals that the best value 
of cutting temperature was obtained at the lowest values 
of workpiece hardness and the lowest value of feed rate, 
though the effect of depth of cut value on cutting tem-
perature is relatively small; yet increasing the depth of cut 
will increase the cutting temperature. Thus, the optimum 
cutting temperature values can be achieved at the least 
values of process parameters. This agrees with the results 
obtained by statistical analysis as well as the outcomes 
obtained from perturbation plots.

4  ANN model

ANNs are used for creating models similar to human brains 
processing information. ANN is essentially a statistical 
instrument and is considered as a kind of nonparametric 

Fig. 3  Shows the perturbation plot for cutting temperature

Fig. 4  3D response surfaces curves for the cutting temperature
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regression model [30]. An ANN consists of an input layer, hid-
den layer/s, and finally an output layer; the layers have one or 
more neurons. The number of neurons, structure, functions, 
training algorithm, weights and biases impact the preci-
sion of the ANN model. In the current study, a feed-forward 
back-propagation network with four nodes in the input layer 
representing cutting speed (v), feed rate (f ), depth of cut (d) 
and workpiece hardness (h) will be utilized. An output layer 
has one neuron representing the predicted response, which 
is the cutting temperature. An ANN model is based on trial 
and error for acquiring the optimal outcomes. The process 
of trial and error is done by regulating the number of layers 
and nodes of the hidden layer(s) of the network.

Therefore, researchers can select freely and test, 
employing any number of hidden layers and any number 
of nodes for each hidden layer. However, a great node 
number in the hidden layers lead to high usage of com-
puter memory and consumes time, and may result in 
overtraining [31]; also, few nodes lead to poor control of 
data [32]. Zhang et al. [33] suggested that the numbers of 
nodes in the hidden layer for providing the best outcomes 
are “n/2”, “1n”, “2n”, and “2n + 1,” such that n is the number 
of input layer nodes. In case the number of input factors is 
four, then the number of nodes in the hidden layer can be 
2, 4, 8 or 9. MATLAB R2015a ‘nntool’ toolbox was employed 
for training and testing the ANN. Figure 5 reveals the ANN 
architecture. Levenberg–Marquardt backpropagation 
(Trainlm) is a training algorithm for ANN, which updates 
weight and bias values based on Levenberg–Marquardt 
optimization [34]. Due to the symmetric nature, hyperbolic 
tangent sigmoid (Tansig) transfer function was employed 
in the hidden layer, while the pure linear function (Purelin) 
was employed in the output layer. Equation 5 was utilized 
for computing the mean relative error for comparing. 
Table 4 shows the ANN selected parameters.

(5)

Mean relative error

=
1

N

N∑
i=1

|Predicted outcome − Experimental outcome |
Experimental outcome

× 100

To test the adequacy of the created ANN model, an RSM 
predictive model based on the formulated linear model 
(Eq. 4) was used. Table 5 shows the experimental values 
along with the corresponding RSM, ANN predicted values, 
as well as the relative error for each. The regression plot 
between the cutting temperature experimental and ANN 
predicted values is revealed in Fig. 6a while Fig. 6b shows 
it for RSM. From the plot, the value of the regression coef-
ficient is 98.145% for ANN, and 91.959% for RSM, which 
proves the adequacy of the ANN model compared with 
that of RSM. The mean relative error for the ANN model 
was 0.844% while that for RSM is 3.56%. Consequently, the 
created ANN model can effectively predict the response 
with a slight error. Also, the ANN model proved to be more 
efficient compared with that of RSM.

5  Optimization and description of CFA

CFA is a novel bio-inspired metaheuristic optimization 
algorithm [35]. CFA imitates the phenomena of changing 
the color of a cuttlefish to disguise in its environment, 
for solving the global optimization numerical problems. 
The CFA simulates the phenomena of light reflection on 

Fig. 5  The architecture of ANN

Table 4  Selected ANN parameters for surface roughness prediction

Chosen ANN parameter Value

Network structure 4–9–1
Training/testing data 24/6
Network algorithm Feedforward 

backpropa-
gation

Transfer function Tansig, Purelin
Training function Trainlm
Learning function Learngdm
Performance function MSE
Momentum constant 0.001
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the combination of three layers of cells and matching 
pattern practice of visibility employed by the cuttlefish 
for matching its background. The CFA forms four groups 
of population (simulating cells in cuttlefish), and each 
of the four groups works independently by sharing only 
the best solution. Two groups of the population are uti-
lized as local search, while the other two are for global 
search. CFA considers two key techniques; the reflection 
process of light, which simulates the mechanism of the 
reflection of the light ray, and visibility, which simulates 
visibility of coordinating patterns of cuttlefishes. The 
latter two processes are employed for searching for the 
global optimum solution. The CFA principle flowchart is 
revealed in Fig. 7.

Following the prediction of cutting temperature at 
different input parameter values, the most logical step is 
obtaining the optimal combination of input parameters, 
which will lead to the least value of cutting temperature. 

In the current investigation, the equation for minimizing 
cutting temperature, which is (4), will be employed as 
the objective function where the target was to find the 
global minima employing the new proposed CFA in the 
search task, using the bounds of different input variables 
as boundaries. This is where the optimal value of cutting 
temperature will be found and its corresponding optimal 
values for inputs. The objective of employing Eq. (6) which 
can be expressed as follows:

(6)Cutting temperature ”T” = Minimize
[
Y(v, f, d, h)

]
.

Subjected to:

⎧⎪⎨⎪⎩

100 ≤ v ≤ 150

0.05 ≤ f ≤ 0.15

0.05 ≤ d ≤ 0.13

45 ≤ h ≤ 55

Table 5  Experimental ANN 
Predicted values and relative 
errors for cutting temperature 
error

Run Experimental 
values

RSM pre-
dicted values

ANN pre-
dicted values

RSM relative error % ANN relative error %

1 410 406.97 410.0029 0.739837 0.000708
2 509 480.30 509.0055 5.638507 0.001083
3 420 429.86 420.6264 2.346561 0.149133
4 437 467.80 455.0271 7.048055 4.125187
5 541 530.86 541.0035 1.875128 0.000643
6 448 467.80 455.0271 4.419643 1.568542
7 550 556.30 549.4201 1.145455 0.105443
8 457 466.69 456.6694 2.120107 0.072346
9 530 507.97 530.0085 4.157233 0.00161
10 464 455.30 464.0173 1.875 0.003731
11 480 478.08 483.3235 0.400463 0.692387
12 510 518.30 510.0276 1.627451 0.005416
13 424 442.52 424.0065 4.368449 0.001526
14 546 528.63 545.9941 3.180708 0.001073
15 432 417.30 432.0076 3.402778 0.001759
16 380 377.08 380.0016 0.769006 0.00041
17 461 467.80 455.0271 1.475054 1.295647
18 459 481.63 458.3576 4.931009 0.139951
19 429 453.97 426.7255 5.819736 0.530184
20 435 467.80 455.0271 7.54023 4.603923
21 489 457.52 489.4834 6.437173 0.098847
22 450 427.63 450.0011 4.97037 0.000253
23 495 467.80 455.0271 5.494949 8.07534
24 407 404.74 407.0072 0.554191 0.001776
25 392 379.30 393.7145 3.239796 0.437371
26 534 505.74 534.0081 5.291303 0.001514
27 444 468.91 444.0086 5.610611 0.001929
28 440 467.80 455.0271 6.318182 3.415242
29 508 493.08 507.998 2.937445 0.000386
30 553 558.52 553.0081 0.998594 0.001464
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5.1  Optimization with CFA

In this optimization scheme, the number of cells will be set 
to n = 40, and the dimensional space of the problem d = 40, 
which shall be a number divisible by 4, and the total num-
ber of iterations shall be set to 10. After running the script 
using cutting temperature Eq. (4) through only one trial, 
the optimum value for cutting temperature was found 
to be T = 377.078 °C and the corresponding best cutting 
parameters were found to be v = 100 m/min, f = 0.05 mm/
rev, d = 0.05 mm and h = 45 HRC. The best values were 
obtained after only two iterations.

5.2  Optimization with GA

To study the appropriateness of the cuttlefish in optimiz-
ing the cutting temperature, the outcomes were com-
pared with those acquired from using GA, using the same 
above-mentioned Eq. (4) as the objective function along 
with the parameters’ boundaries and population size of 40. 
After several trials, the best cutting temperature obtained 
was found to be T = 377.078 °C and the corresponding 
best cutting parameters were found to be v = 100 m/min, 
f = 0.05 mm/rev, d = 0.05 mm and h = 45 HRC at a total no. 
of iterations of 184. Figure 8a, b summarize the outcomes 

in the form of convergence diagrams. Though equal val-
ues for the cutting temperature response as well as the 
same values for the corresponding input parameters for 
best value was suggested by both algorithm, yet CFA 
demonstrated its efficiency compared with the GA, espe-
cially in terms of the convergence rate for obtaining the 
best solution as well as no. of trials. The outcomes of input 
parameters for obtaining the least cutting temperature 
agrees with the statistical analysis stated before, in which 
the values of feed, depth of cut, speed and workpiece 
hardness were minimized to their least values. Finally, 
confirmation tests were done to test the performance of 
the algorithms experimentally. Where the optimal val-
ues of the input parameters obtained by the algorithms 
(v = 100 m/min, f = 0.05 mm/rev, d = 0.05 mm and h = 45 
HRC) were employed in performing several experimental 
runs, and the corresponding values of cutting temperature 
was recorded. The average value for five tests value was 
381 °C. The error percent was then computed between the 
predicted value (T = 377.078 °C) and the average value of 
the five experimental runs, thus the error was about 1.03%. 
This represents an error percent of below 5%, which indi-
cates the accuracy of results. Table 6 shows the outcomes 
of the confirmation test.

Fig. 6  Regression Plot for a. ANN and b. RSM
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6  Conclusions

This investigation aims at studying the effect of cut-
ting parameters on the resulting cutting temperature 
at the tool-workpiece interface in “hard-turning,” using 
an infrared camera. The hardness of the workpiece was 
hardly included in literature as an input parameter for 
discussing the cutting temperature. RSM was employed 
in experimental design, and the resulting criteria were 
applied in performing the hard turning operations on 
differently hardened AISI-H13-steel specimens. A lin-
ear model was suggested, based on the experimental 

results, and it was checked for appropriateness. Follow-
ing the proof of the adequacy of the suggested model, 
the influence of the various input terms on the cutting 
temperature was discussed. ANN was used for predic-
tive modeling of the cutting temperature. Furthermore, 
a predictive model was created for the cutting tempera-
ture prediction using RSM for comparison with the ANN 
model. Finally, the current problem was optimized for 
obtaining an optimal combination of the input machin-
ing parameters for attaining the least possible value of 
cutting temperature in hard turning within the applied 
conditions, and the results were experimentally con-
firmed. Based on the above-mentioned investigation, 
the following can be concluded:

1. Workpiece hardness possesses the main influence on 
the cutting temperature. It contributes by 63.77%, 
according to the statistical analysis. This is due to the 
increase of the restricting forces upon raising the hard-
ness of the workpiece against cutting, which increases 
the cutting temperature. Though the depth of cut is 
statistically insignificant, yet the observed trend con-
tributes to an increase in the value of cutting tempera-
ture on increasing the depth of cut, which makes it 
predictable that there is a significant impact of depth 
of cut on cutting temperature upon raising the value 
of depth of cut.

2. Cutting speed and feed had had a significant effect on 
cutting temperature however, their combined contri-
bution is less than one-third that of workpiece hard-
ness, which reflects its large influence. This agrees with 
data from perturbation plot and ANOVA.

3. The ANN predictive model was found to be more 
robust in predicting the cutting temperature, com-
pared with that created by RSM. ANN model has a 
value of 98.145% for the regression coefficient and a 
low mean relative error of 0.844%. Furthermore, the 
RSM regression coefficient was found to be 91.959%, 
with a mean relative error of 3.56%.

4. Both algorithms CFA and GA got the same results 
for the optimum value of cutting temperature of 
T = 377.078 °C at the same input parameters’ values of 
v = 100 m/min, f = 0.05 mm/rev, d = 0.05 mm and h = 45 
HRC. Yet, the CFA showed much better convergence 
on comparing with GA, where the best solution was 
obtained after two iterations and after only one trial, 
while GA obtained best values after 184 iterations 
and after several trials. This demonstrates the high 
efficiency of CFA in optimizing machining problems.

5. Confirmation tests were done utilizing the optimal 
input parameters got by the two algorithms. An error 

Yes

Stopping 

Criteria?

Yes

No

No

Yes

Yes

No

Fitness > current fitness

Fitness > Best fitness

Current solution = new solution

Initialization 

Evaluate the population’s fitness 

and keep the best solution in Best

Split the population to 4 groups 

Gr1, Gr2, Gr3, and Gr4.

Compute average best and 

save in AVbest

Every cell in Gr1 create a 

new outcome utilizing

reflection and visibility 

then calculate the fitness

Each cell in G2 generate 

new solution using 

reflection and visibility 

then calculate the fitness

Each cell in G3 generate 

new solution using 

reflection and visibility 

then calculate the fitness

Each cell in G4 generate 

a random solution 

Best = new solution

Return Best

Fig. 7  CFA Flowchart



Vol.:(0123456789)

SN Applied Sciences (2020) 2:540 | https://doi.org/10.1007/s42452-020-2303-5 Research Article

below 5% was attained. The obtained error can be 
because of slight differences in conditions of meas-
urement.
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