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Abstract
Vegetation cover plays an important role in the hydrologic cycle of Kasilian catchment in Iran. This study aimed to esti-
mate leaf area index (LAI), as an important vegetation factor in hydrologic loses, in response to climate change in the 
future period (2020–2039) over Kasilian catchment located in the north of Iran. For this purpose, LAI was simulated by 
gridded BIOME-BGC in 319 pixels within the case study domain over the study period (2004–2013) for three dominant 
land covers of the Kasilian catchment including deciduous broadleaf forest (DBF), shrubs, and C3 grasses, and BIOME-
BGC accuracy has been assessed using MODIS-derived LAI. Then, monthly projections of climate variables obtained 
from the average of 9 AOGCMs-AR5 in the future period (2020–2039) and annual projection of CO2 level from 2004 to 
2039 under RCP2.6 and RCP8.5 scenarios were used to assess the impact of climate change on LAI. Results show that LAI 
will increase in response to the overall predicted rise in temperature, precipitation, and CO2 level under both scenarios 
in all pixels. This increase under the RCP8.5 scenario is predicted to be more than RCP2.6 scenario so that the mean LAI 
in Kasilian catchment will increase by 3.1% and 2.2% under RCP8.5 and RCP2.6 scenarios, respectively. In addition, our 
analysis showed that DBF land cover will be more sensitive to climate change in this catchment.
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1  Introduction

The leaf area index (LAI) refers to the ratio of the total one-
sided green leaf area per unit area of ground [3, 45]. LAI is 
a consumptive water term in hydrologic processes, which 
control the amount of water intercepted by leaf area. This 
vegetation variable plays an important role in hydrologic 
processes and water accounting in catchments [13, 33, 53, 
59, 63, 64]. Regarding the influence of LAI on eco-hydrol-
ogy processes, investigating its changes in catchment 
scale is vitally important [48], and it enables hydrologists 
to estimate accurate water budget under climate change 
scenarios. Estimating LAI changes in response to climate 

change (temperature and precipitation changes) and 
atmospheric variable change (level of CO2) has been less 
considered in the ecological studies [40, 49].

Climate variables, as a limiting factor, have a significant 
effect on plant growth [7, 15] so that recent researches 
have shown that humidity and warming of the climate 
have led to intensification of the plants’ growth [16, 34]. 
Also, in areas with water scarcity, changes in plant growth 
and LAI are particularly dependent on the plant available 
water held in soil and atmosphere [65]. Besides, another 
effective factor in plant growth is the carbon dioxide level 
(CO2) [18]. It has been proven that an increase in car-
bon dioxide level causes to increase the photosynthesis 
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rate and intensity of the plant growth [23]. Also, a study 
showed that an increase in carbon dioxide level contrib-
utes to LAI increase in grasses land cover [28]. Consider-
ing the strong interaction between LAI, climatic variables, 
and carbon dioxide concentration, it is expected that LAI 
would change in response to climatic and atmospheric 
changes in the future [22, 24]. Previous studies showed 
that an overall increase in temperature, precipitation, 
and carbon dioxide level in the future would lead to LAI 
increase in a forested region, for a study case in Montana, 
USA [40]. In contrast, LAI is expected to decrease in the 
future, followed by precipitation drop and temperature 
rise in a catchment, located in southeastern Australia [49].

Modeling the relationships between LAI and environ-
mental factors enables researchers to predict the interac-
tions between them in different conditions, such as cli-
mate change [27]. To model these relationships, there is 
a simple method of making regression models between 
LAI and climate variables [5, 49]. However, these meth-
ods are not able to recognize the interaction between LAI 
and atmosphere as well as hydrosphere. A more accurate 
approach is using ecosystem models which simulate the 
flow of water, carbon, and energy in terrestrial ecosystems 
[25, 43, 56]. For example, BIOME-BGC is a well-known bio-
geochemical model. Its capability to simulate LAI has been 
demonstrated in several studies [20, 37, 39, 55, 66].

Satellite-derived LAI which provides time series of LAI 
over large areas with the high spatial resolution has been 
used to assess the ecological model accuracy [6, 26, 60]. 
There are several satellite sources for estimating LAI such 
as MODIS (the Moderate Resolution Imaging Spectroradi-
ometer) [31], CYCLOPES [1], and AVHRR (Advanced Very-
High-Resolution Radiometer) [10]. MODIS LAI products 
are one of the most widely used LAI sources in ecological 

studies, and its reasonable accuracy has been demon-
strated [8, 44, 61, 62]. For example, to assess the BIOME-
BGC performance in LAI simulation, MODIS annually maxi-
mum LAI [66] and MODIS monthly LAI [55] have been used 
in recent years. Moreover, MODIS LAI images have been 
used as initial input to different ecosystem models or as 
observed data for calibration of these models [38, 53].

In this study, our overall purpose is to understand how 
the LAI will change in response to climate and atmos-
pheric changes in the future period in Kasilian catchment. 
In particular, our main objectives include (1) determining 
the vegetation conditions of the study area with an eco-
system model during the study period (2004–2013), (2) 
projecting the changes in climate and atmosphere vari-
ables in the future period (2020–2039) relative to baseline 
period (1986–2005), and (3) determining the LAI changes 
in response to climate and atmosphere changes under 
different scenarios of climate change in the future period 
(2020–2039) relative to the study period (2004–2013).

2 � Case study

The geographic location of Kasilian catchment spans 
35.58°–36.07°N in latitude and 53.18°–53.30°E in longi-
tude, with a total catchment area of 68 km2 located in the 
mountainous lands of Mazandaran Province in the north 
of Iran (Fig. 1). The catchment elevation ranges from a 
minimum altitude of 1113 m on the northern part to a 
maximum altitude of about 3334 m in the southern part. 
Based on de Martonne’s climate classification, the Kasilian 
catchment is characterized by the cold climate in southern 
zones and temperate climate in northern zones. According 
to a climate data recorded at the Darzikola climate station 

Fig. 1   Location of case study 
in Iran and the location of sta-
tions in the case study
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located in the center of the catchment, the mean annual 
precipitation and temperature (2004–2013) in the catch-
ment are 700 mm year−1 and 12 °C, respectively. Previous 
research by agriculture ministry of Iran in Kasilian catch-
ment in 1995 showed that about 60% of Kasilian catch-
ment is covered by dense forest, and the rest of the area is 
covered by pasture (20%), croplands (15%), and lands with 
sparse vegetation (5%). Another study showed that about 
80% of the trees in this forest consist of two broadleaf tree 
species including broadleaf beech trees (Fagus Orienta-
lis) and hornbeam trees (Carpinus betulus), and both of 
them consist of a high interception rate [12]. Also, Kasi-
lian catchment land cover, especially natural forest, plays 
a fundamental role in the formation of initial hydrologic 
losses rate [12].

Moreover, deforestation caused by anthropogenic 
activities resulted in a rise in the production of potential 
runoff in Kasilian catchment over four recent decades [21]. 
Although previous research investigated the land cover 
change scenarios in the past decades [11], land cover 
change in response to climate change in the future periods 
has never been investigated in Kasilian catchment.

3 � Materials and methods

3.1 � BIOME‑BGC model

BIOME-BGC is a biogeochemical model which simulates 
main physiological processes such as photosynthesis, 
evapotranspiration, respiration, and decomposition within 
the terrestrial ecosystems [39, 51]. The latest version of 
this model is BIOME-BGC version 4.2, which can simulate 
several vegetation indices such as NPP, GPP, and LAI for 7 
vegetation cover types such as the evergreen needle leaf 
forest (ENF), evergreen broadleaf forest (EBF), deciduous 
needle leaf forest (DNF), deciduous broadleaf forest (DBF), 
shrubs, C3 and C4 grasses, based on temporal scales of 
daily, monthly, and annual. BIOME-BGC model calculates 
LAI by multiplying carbon allocated to leaves times the 
specific leaf area.

To simulate LAI using BIOME-BGC model with high spa-
tial resolution, high-resolution land cover map and LAI 
values are needed. The only available land cover map in 
Kasilian catchment was related to the year 1995 and has a 
low spatial resolution of 2 km, while we needed a vegeta-
tion map with a higher spatial resolution at the beginning 
of the study period (2004). Moreover, there were no avail-
able field-LAI measurements for the Kasilian catchment. 
To address these restrictions, MODIS land cover product 
named as MODIS MCD12Q1 [9] and MODIS LAI product 
named as MODIS MOD15A2H [32] which have the same 
spatial resolution (500 m) were used in this study. Using 
MODIS products enabled us to develop gridded BIOME-
BGC with a spatial resolution of 500 m within Kasilian 
catchment, and consequently, 319 pixels were created 
over Kasilian catchment area.

The ecosystem process modeling using BIOME-BGC 
model includes two steps: In the first step, the model was 
run in a spin-up mode. Spin-up run is a common step for 
ecosystem models to ensure that it achieves stable eco-
system conditions in the desired site [52]. After achieving 
an equilibrium state, the model was run in normal mode. 
At this step, BIOME-BGC simulates carbon, nitrogen, and 
water cycles in the components of the plant and soil. 
BIOME-BGC model requires three main categories of infor-
mation, including climatic data, environmental informa-
tion, and eco-physiological parameters (Table 1). The cli-
matic data in each pixel were simulated using the weather 
simulator of BIOME-BGC model called “Mountain Climate 
Simulator” (MT-CLIM model) [50]. Other environmen-
tal information of each pixel, including elevation, slope, 
slope’s direction, and soil texture information (silt, clay, and 
sand), was obtained from a digital elevation model (DEM) 
and basin’s soil map, respectively. These environmental 
data were re-gridded to a 500 m spatial resolution to enter 
the BIOME-BGC model.

Figure 2a shows the vegetation cover map in the study 
area in 2004. To use MODIS vegetation cover map informa-
tion for the BIOME-BGC model, the obtained vegetation 
cover types were reclassified into available vegetation 
cover types in the database of BIOME-BGC model (Table 2). 

Table 1   Input datasets for 
BIOME-BGC model

Data Temporal scale Time span Spatial scale Data source

Max and min temp Daily 2004–2013 Point Darzikola climate station
Precipitation Daily 2004–2013 Point Darzikola climate station
CO2 Annual 2004–2013 Point Stocker et al. [46]
Soil One-off 2000 Grid (1 km) FAO–UNESCO
DEM One-off – Grid (90 M) Iran mapping organization
Land cover One-off 2004 Grid (500 M) MODIS MCD12Q1
LAI Monthly 2004–2013 Grid (500 M) MODIS MOD15A2H
Eco-physiological parameters – – – White et al. [57]
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Figure 2b shows the average LAI map throughout the 
Kasilian catchment from 2004 to 2013. It is important to 
note that the accuracy of MODIS-derived LAI was not vali-
dated because there were no field-LAI measurements in 
Kasilian catchment. Lack of field-LAI measurements was a 
restriction in this study that might reduce the reliability of 
results. This restriction did not allow us to use other satel-
lite imageries such as Landsat TM (with 30 m spatial reso-
lution), which has a higher spatial resolution than MODIS 
images (with 500 m spatial resolution), because derived 
LAI from Landsat TM needs to be validated against field-
LAI measurements. Therefore, we used MODIS LAI product, 
in which its reasonable accuracy and reliability have been 
reported by many studies conducted in a different part of 
the world [8, 44, 61, 62].

3.1.1 � Evaluation of BIOME‑BGC model

To evaluate the gridded BIOME-BGC model accuracy, 
BIOME-BGC monthly LAI output was compared against 

monthly MODIS-derived LAI using three statistical cri-
teria including R2 (coefficient of determination), RMSE 
(root mean square error), and percent error (PE) shown 
in Eqs. (1), (2), and (3), respectively, where X: the monthly 
MODIS LAI, Y: the monthly BIOME-BGC LAI, and N: the total 
number of monthly MODIS LAI (N = 120). Low quantities 
of RMSE and PE and high quantities of the coefficient of 
determination (R2) represent the acceptable accuracy of 
BIOME-BGC model.

3.2 � Climate change projections

3.2.1 � Climate models

At present, AOGCMs (atmosphere-ocean general circu-
lation models) are the most credible climate simulators 
that have been used in ecosystem studies [35, 47]. In this 
study, climate projections from the average of 9 AOGCMs, 
used in the Intergovernmental Panel on Climate Change 
(IPCC) Fifth Assessment Report (AR5), are applied to assess 
potential climate change impacts on LAI (Table 3). RCP2.6 
and RCP8.5 are emission scenarios chosen in this study [30, 
54]. These scenarios were used because RCP2.6 and RCP8.5 
scenarios cover the minimum and maximum conditions of 
the emission scenarios in the future, respectively.

3.2.2 � Preparing climate model scenarios

To create a climate change scenario for each AOGCM, the 
delta method was used (Eqs. 4, 5, and 6).
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Fig. 2   a MODIS land cover map and b MODIS LAI map in Kasilian 
catchment

Table 2   Reclassification of MODIS land covers into BIOME-BGC 
database land cover

LAI/FPAR land cover classification BIOME-BGC 
land cover 
classifica-
tion

Grasses and cereal crops C3 grasses
Broadleaf crops C3 grasses
Shrubs Shrubs
Savanna Shrubs
Deciduous broadleaf forest (DBF) Deciduous 

broadleaf 
forest 
(DBF)
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In the above equations, ΔTmini , ΔT maxi , and ΔPi rep-
resent the changes in the amount of minimum tempera-
ture, maximum temperature, and precipitation, respec-
tively, for the future period (2020–2039) relative to the 
baseline period (1986–2005) in each month ( 1 ≤ i ≤ 12 ). 
Also, ( TminGCM,fut,i) , ( TmaxGCM,fut,i ), and ( P̄GCM,fut,i ) are 
20-year average simulated minimum and maximum 
temperature and precipitation for each month in 
2020–2039, respectively. Moreover, ( TminGCM,base,i), 
( TmaxGCM,base,i ), and ( P̄GCM,base,i ) are 20-year average 
observed minimum and maximum temperature and 
precipitation for each month in the baseline period 
(1986–2005), respectively [19].

Then, the ensemble average climate change sce-
narios of 9 AOGCMs were calculated for minimum tem-
perature, maximum temperature, and precipitation in 
the future period (2020–2039) relative to the baseline 
period (1986–2005) (Eqs. 7, 8, and 9).

I n  t h e  a b o v e  e q u a t i o n s ,  ΔTmin(ensemble)i , 
ΔTmax(ensemble)i , and ΔP(ensemble)i represent the 
ensemble average climate change scenarios for mini-
mum temperature, maximum temperature, and precipi-
tation in each month ( 12 ≥ i ≥ 1 ). Also, (n) is the number 
of AOGCMs.

(7)ΔTmin (ensemble)i =

n∑

j=1

(
ΔTmini

)
∕n

(8)ΔTmax (ensemble)i =

n∑

j=1

(
ΔTmaxi

)
∕n

(9)ΔP (ensemble)i =

n∑

j=1

(
ΔPi

)
∕n

3.2.3 � LARS‑WG model

To introduce daily climate data to the BIOME-BGC model 
in the future period (2020–2039) under the climate change 
scenarios, a weather generator model called LARS-WG 
was used [2]. LARS-WG model (version 5.5) is a stochas-
tic weather generator which is useful for generating the 
daily time series of maximum and minimum temperatures 
(degrees Celsius) and precipitation (millimeters) in a cli-
mate station under current and future climate conditions 
[36, 41].

The modeling processes using LARS-WG model are 
composed of three main steps, including calibration, 
evaluation, and generation of meteorological data for the 
future. In the calibration step, the probabilistic distribu-
tion parameters of the observed daily climate variable 
(1986–2005), including daily maximum and minimum 
temperatures and precipitation, were analyzed and com-
puted. In the second step, the ability of the LARS-WG 
model to simulate daily climate data during the baseline 
period (1986–2005) was evaluated by comparing observed 
and simulated climate data. In the third step, by introduc-
ing the ensemble average climate change scenario under 
RCP2.6 and RCP8.5 emission scenarios created by Eqs. (7), 
(8), and (9), daily climate data for 2020–2039 were gener-
ated under future climate conditions.

4 � Results and discussion

4.1 � Evaluation results of BIOME‑BGC model

The monthly LAI values were simulated by BIOME-BGC 
in 319 pixels separately over the Kasilian catchment. The 

Table 3   Description of AOGCMs used in this study

GCM model Institute developer Spatial resolution Reference

1. MIROC-ESM The Atmosphere and Ocean Research Institute (Tokyo University) 2.8° * 2.8° Watanabe et al. [58]
2. MIROC-ESM-CHEM
3. GISS-E2-R NASA/GISS (Goddard Institute for Space Studies) USA 2° * 2.5° Schmidt et al. [42]
4. GISS-E2-H
5. CESM1(WACCM) National Center for Atmospheric Research USA 2° * 2.5° Marsh et al. [29]
6. CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization—Queens-

land—Climate Change Centre of Excellence Australia
1.9° * 1.9° Collier et al. [4]

7. MPI-ESM-LR Max Planck Institute for Meteorology Germany 1.9° * 1.9° Giorgetta et al. [14]
8. MPI-ESM-MR
9. EC-EARTH EC-EARTH consortium published at Irish Centre for High-End Computing 

Netherlands/Ireland
1.1° * 1.1° Hazeleger et al. [17]
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amount of calculated R2 is greater than or equal to 0.7 
(R2 ≥ 0.7) in all pixels which demonstrate that monthly 
MODIS LAI and BIOME-BGC LAI were in good agreement. 
As an example, the scatterplot of the monthly MODIS LAI 
and BIOME-BGC LAI for three pixels including deciduous 
broadleaf forest (DBF), shrubs, and C3 grasses is shown in 
Fig. 3a, b, c, respectively. Although the R2 values indicate 
an acceptable correlation between monthly MODIS LAI 
and BIOME-BGC LAI, the values of percentage error (PE) 
and RMSE show a small amount of error between these 
two LAI time series. The PE and RMSE values in all pixels 
were less than or equal to 30% and 0.9, respectively. This 
error is resulted from the inability of BIOME-BGC model 
to simulate the rapid growth of plants in the early part of 
the growing season. Furthermore, the comparison of the 
annual mean values of the MODIS LAI and BIOME-BGC LAI 
showed a slight discrepancy from 2004 to 2013 (Fig. 4). Fig-
ure 4 also demonstrates that BIOME-BGC model simulated 
the annual mean LAI values with high accuracy in all years.

4.2 � Changes in climate variables and CO2 level

Monthly changes of minimum temperature, maximum 
temperature, and precipitation in the future period 
(2020–2039) relative to the baseline period (1986–2005), 
calculated based on Eqs.  (7), (8), and (9), are shown in 
Fig. 5a, b, c, respectively. The results showed that mini-
mum and maximum temperature would increase under 
both scenarios (RCP2.6 and RCP8.5) in all months. Under 
both scenarios, minimum and maximum temperatures 
are expected to increase more in May, June, July, August, 
and September compared to other months in the future 
period. It is also projected that minimum and maximum 
temperatures under the RCP8.5 scenario will see a higher 
increase compared to the RCP2.6 scenario in all months, 
with an exception in February and March.

The percentage of precipitation will increase in half 
of the months and decrease in the rest of the months. 
Precipitation changes will be negative from February to 
August. For example, the highest precipitation fall in both 
scenarios is related to May and July, when precipitation 
will see a reduction of more than 10%. In contrast, the 
highest precipitation increase is expected to occur in June 
(more than 30%) and in September (more than 50%) under 
the RCP2.6. It is projected that the average temperature 
over the Kasilian catchment will be increased by 1.1 °C and 
1.3 °C under RCP2.6 and RCP8.5 scenarios, respectively. 
Moreover, average precipitation in Kasilian catchment will 
rise by 5.5% and 1.3% under RCP2.6 and RCP8.5 scenarios. 
In addition, based on annual time series of carbon dioxide 
derived from IPCC website (www.IPCC-data.org), carbon 
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dioxide concentration under RCP2.6 and RCP8.5 scenarios 
will increase by + 18 ppm and + 23 ppm in Iran from 2020 
to 2039, respectively (Fig. 6).

4.3 � Evaluation of the LARS‑WG model

Figure 7a, b, c shows scatterplots between monthly mean 
values of minimum temperature, maximum temperature, 
and precipitation simulated by the LARS-WG model and 
observed data at “Darzikola” climatology station located 
in the Kasilian catchment during the baseline period 
(1986–2005). The high value of R2 between observed 
and simulated monthly mean minimum temperature, 
maximum temperature, and precipitation indicates that 
LARS-WG model regenerates climate variables with high 
accuracy at “Darzikola” climatology station. R2 value for 
monthly mean minimum and the maximum temperature 
is more than 0.99, and for monthly mean precipitation it 
is about 0.86. It represents that simulated monthly mean 
precipitation values have a relatively lower accuracy com-
pared to simulated monthly mean minimum and maxi-
mum temperature.

Table 4 shows probability values (P value) calculated by 
T test between the observed and simulated monthly mean 
minimum and maximum temperature and precipitation. 
It also shows P values calculated by Kolmogorov–Smirnov 
test (KS) between probabilistic distributions of observed 
and simulated daily minimum and maximum tempera-
ture and precipitation. Calculated p values by the T test 
and KS test are above 0.1 in all months. Therefore, the 
null hypothesis for the T test and KS test is significant at 
10% level for minimum and maximum temperatures and 
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Fig. 7   LARS-WG monthly mean climate variables against observed 
monthly mean climate variables in the baseline period (1986–
2005). a Precipitation, b maximum temperature and c minimum 
temperature

Table 4   The evaluation result 
of LARS-WG ability to simulate 
climate variables in “Darzikola” 
climatology station located in 
Kasilian catchment

Month P value of KS test for daily distributions P value of T test for monthly distribu-
tions

PRCP T min T max PRCP T min T max

JAN 1.00 1.00 0.99 0.18 0.92 0.93
FEB 1.00 1.00 0.79 0.13 0.69 0.37
MAR 1.00 1.00 0.63 0.30 0.46 0.16
APR 1.00 1.00 0.79 0.41 0.64 0.35
MAY 1.00 1.00 0.95 0.75 0.95 0.73
JUN 1.00 1.00 0.65 0.63 0.12 0.76
JUL 1.00 1.00 0.98 0.87 0.28 0.58
AUG​ 1.00 1.00 0.74 0.47 0.73 0.91
SEP 1.00 1.00 0.65 0.42 0.57 0.76
OCT 1.00 1.00 1.00 0.38 0.64 0.78
NOV 1.00 1.00 0.54 0.87 0.97 0.88
DEC 1.00 1.00 0.68 0.71 0.56 0.79
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precipitation in all the months. This means that daily and 
monthly observed and simulated values had a similar sta-
tistical distribution. Results mentioned in this section show 
that the LARS-WG model has a high capability to simu-
late daily and monthly minimum temperature, maximum 
temperature, and precipitation at “Darzikola” climatology 
station. After evaluating the LARS-WG model, daily climate 
variables in the future period (2020–2039) were generated 
under climate scenarios mentioned in Sect. 4.3. 

4.4 � LAI changes under climate change

By introducing daily climate series generated by the LARS-
WG model and annual level of CO2 derived from IPCC web-
site (www.IPCC-data.org) to BIOME-BGC model, daily LAI 
series were estimated under RCP2.6 and RCP8.5 in the 
future period (2020–2039) in all pixels. Figure 8 shows per-
centage changes in monthly LAI in all pixels in response 
to changes in climate variables of temperature, precipita-
tion and carbon dioxide concentration (ppm) under the 
RCP2.6 and RCP8.5 scenarios during the future period 
(2020–2039) compared to the study period (2004–2013). 

Based on Fig. 8, LAI is expected to increase in all pix-
els under both scenarios. Also, it is demonstrated that LAI 
under RCP8.5 will rise more than under RCP2.6 in all pixels. 
The highest rise of LAI under RCP2.6 and RCP8.5 will be 
about 2.8 and 4%, and the least rise of LAI under RCP2.6 
and RCP8.5 is expected to be 0.3% and 1.1%, respectively. 
Under both scenarios, the highest increase in LAI will be 
related to pixels with DBF located in center and north of 
the catchment, and also pixels with shrubs and C3 grasses 
located in the south of the basin. LAI in these pixels will 
increase between 2 and 2.8% under RCP2.6 and between 
3 and 4% under RCP8. In contrast, the least increase in LAI, 
less than 1%, will occur in pixels with DBF located in the 
southern parts of the catchment under both scenarios.

Based on the data shown in Table 5, it is clear that Kasi-
lian catchment average LAI in pixels with DBF will have 

higher increase rather than that of pixels with shrubs and 
C3 grasses under both scenarios. It indicates that DBF will 
be more sensitive to changes in climate variables and 
the CO2 level compared to shrubs and C3 grasses in the 
case study. The behavior of shrubs and C3 grasses will be 
almost similar in response to climate and CO2 changes.

Figure 9 shows the changes in monthly average LAI 
over the Kasilian catchment. As shown in Fig. 9, LAI will 
increase in response to climate and carbon dioxide level 
change in all months, especially in spring and summer. 
Also, LAI will experience a higher rise under the RCP8.5 
compared to RCP2.6 in all months. The highest increase in 
LAI will occur in May under both scenarios.

Overall, our results showed that average LAI in the 
Kasilian catchment will increase by about 2.2% and 
3.1% under RCP2.6 and RCP8.5 in the future period 
(2020–2039) relative to the study period (2004–2013). 
These results demonstrate that the projected increase 
in both temperature and precipitation (mentioned 
in Sect. 4.2) is likely to have a positive impact on LAI 
growth in the Kasilian catchment, while another study 
conducted in Australia showed that LAI is expected to 
decrease for three land covers (crop, pasture, and tree) in 
response to increase in mean monthly temperature and 
a general decrease in precipitation under four scenarios 
(RCP2.6, RCP4.5, RCP6, and RCP8) [49]. This comparison 
shows that LAI behavior in response to climate change 
varies from region to region, and it depends on the con-
dition of climate variables in the future. Therefore, inves-
tigating LAI behavior in each particular region would be 
necessary, and the approach applied here can be used 
in other studies.

Fig. 8   Percentage of LAI change in the future period (2020–2039) 
relative to the study period (2004–2013) under RCP2.6 and RCP8.5, 
in all pixels within Kasilian catchment domain

Table 5   The percentage changes in the average LAI under the 
two RCPs in the future period (2020–2039) compared to the study 
period (2004–2013) in DBF, shrubs, and C3 grasses pixels

RCPs DBF Shrubs C3 grasses

RCP2.6 + 2.2 + 1.9 + 1.9
RCP8.5 + 3.2 + 2.9 + 2.8
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Fig. 9   Monthly Kasilian catchment average LAI changes in the 
future period (2020–2039) relative to the study period (2004–2013)
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To calculate the accurate impact of LAI increase (2.2% 
and 3.1% under RCP2.6 and RCP8.5) on the amount of 
runoff in the Kasilian catchment, projected LAI data 
should be coupled with hydrologic models. A slight 
increase in LAI may not have a great impact on the par-
ticular amount of runoff, but the seasonal or annual 
amount of runoff would change a lot [48, 59]. Therefore, 
our approach can be used by hydrologists to assess the 
impact of dynamic LAI on the amount of water balance 
in other regions.

5 � Conclusion

In this study, a new framework is presented to investigate 
future LAI changes over Kasilian catchment located in 
the north of Iran in response to climate change using an 
ecological model named as BIOME-BGC model. AOGCMs 
projections show an overall increase in mean tempera-
ture (+ 1.1 °C under RCP2.6 and + 1.3 °C under RCP8.5) 
and precipitation (+ 5.5% under RCP2.6 and + 1.3% under 
RCP8.5) during the future period (2020–2039) compared 
to the baseline period (1986–2005). These results indicate 
that climate conditions are expected to be warmer under 
RCP8.5 and more humid under RCP2.6 across the region. 
In addition, the concentration of CO2 will rise by + 18 ppm 
and + 23 ppm under RCP2.6 and RCP8.5 between 2004 
and 2039, respectively. Model outputs illustrate that the 
catchment mean LAI will increase by 2.2% and 3.1% under 
RCP2.6 and RCP8.5 during the future period (2020–2039), 
respectively. The study shows the vegetation feedback is 
more sensitive in response to temperature change com-
pared to precipitation change. Therefore, RCP8.5 will expe-
rience higher LAI than RCP2.6.

There are two sources of uncertainty in this paper. We 
used satellite-derived LAI (MODIS LAI) for assessing the 
accuracy of BIOME-BGC LAI outputs, while estimated LAI 
derived from satellite imagery is not quite accurate. More-
over, due to the uncertainty of AOGCMs in the simulation 
of climate variables in the future, forecasted LAI has also an 
uncertainty. However, overall, these predictions can pro-
vide an appropriate pattern from changes in vegetation 
cover conditions in the future in catchments. The results 
of this study could be associated with hydrologic models 
to investigate the vegetation dynamic behavior and cli-
mate change on the hydrologic behavior of the Kasilian 
catchment.
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