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Abstract
Herein, we focus on the formulation of polymer-based heat insulators using natural local shale as a filler. The polymer 
composite was fabricated by blending unsaturated polyester resin with local natural Emirati shale of filler of different filler 
sizes and solidifying the obtained thermosetting blends. The prepared samples are subjected to compressive strength, 
flexural strength, and tensile strength tests. The obtained results indicate that these composites exhibit mechanical prop-
erties superior to those of commercial heat insulators and comparable with those of other building materials. Specially, 
the prepared composite features a much higher tensile strength (20–40 MPa) than conventional heat insulators (< 1 MPa).

Keywords Heat insulation · Composite · Emirati shale · Mechanical properties · Polyester · Water retention

1 Introduction

The United Arab Emirates (UAE) is the world’s eighth larg-
est oil producer with a 3.38% share of the global daily oil 
production. However, the easy availability of petroleum 
fuel makes UAE a country with one of the highest levels 
of per capita energy consumption in the world and leads 
to a constantly increasing level of carbon dioxide emis-
sion, which necessitates the development of alternatives 
to carbon-based fuels for power generation and cooling 
purposes. Moreover, the steadily increasing residential 
and commercial energy consumption caused by the vari-
ation of climatic conditions makes energy conservation 
a research area of global importance. Energy can be con-
served by either exercising more stringent control over its 
usage or by increasing the efficiency of its utilization, with 

the latter option being preferred in view of the increasing 
global demand for energy. Therefore, heat insulators are 
gradually gaining importance as a means of saving energy, 
being utilized in building materials and certain industrial 
hardware.

Heat insulation materials contribute to energy conser-
vation by reducing energy losses in various constructions 
and help to maximize the efficiencies of heating and cool-
ing systems, additionally decreasing their initial installa-
tion costs. Moreover, energy conservation decreases the 
emission of carbon dioxide and other harmful gases [1] 
and facilitates the creation of comfortable ecosystems for 
living. Most heat insulators are composites, i.e., contain 
polymer materials, fillers, and other additives. Building 
heat insulators can be broadly classified as either inor-
ganic (e.g., glass, rock, slag wool, and ceramics) or organic 
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(e.g., cellulose, cotton, wood, pulp, cane, synthetic fibers, 
cork, foamed rubber, melamine foam, polystyrene, poly-
ethylene, polyurethane, and other polymers) materials. 
Although the physicochemical stability of polymers gen-
erally makes them good heat insulators, their mechani-
cal properties can be further improved or modified by 
the addition of inorganic fillers to afford composites 
with enhanced strength [2–9]. Moreover, heterogeneity 
the composite should be tested to confirm the isotropic 
behavior [10, 11].

Clay minerals such as bentonite, kaolin, talc, and mica 
are often used as inorganic fillers in conventional poly-
mer composites to reduce their cost and/or to impart 
special properties such as high modulus, hardness, ther-
mal stability, electrical insulation, thickening, opacity, and 
brightness [12–16]. Heat insulation materials available on 
the local market are relatively expensive and are mostly 
used by local contractors and small-size entrepreneurs. In 
addition, typical insulation materials such as polyurethane, 
polystyrene, and mineral wool [17] exhibit poor mechani-
cal properties, thus being of only limited use for the con-
struction process. Consequently, one needs to develop 
new insulating materials with improved mechanophysi-
cal performance that allow energy saving/water leakage 
prevention and additionally exhibit the advantages of ease 
of handling and machining [13, 15] while being relatively 
cheap and suitable for general-purpose use by regular 
consumers. Much effort has recently been directed at the 
development of composite heat insulation materials, e.g., 
polyester filled with scrap tires [18] or date wood/pits [19] 
showing acceptable tensile and compressive strengths 
compared to commercially available materials, although 
the mechanical properties of these composites markedly 
deteriorate with increasing filler content. Chikhi et al. [20] 
investigated the effect of date palm fiber on the thermal 
conductivity and water absorption/mechanical properties 
of gypsum-based materials, concluding that these novel 
biocomposites exhibit good thermal and mechanical 
performance and can therefore be applied as heat insula-
tion materials. Benmansour et al. [21] showed that date 

palm wood is a good candidate for the development of 
efficient and safe insulating materials compared to other 
natural materials. Al-Malah and Abu-Jdayil [10] formulated 
a polymeric heat insulator using different types of local 
Jordanian filler, demonstrating that a bentonite-based 
unsaturated polyester (UPE) composite exhibits stable 
and compatible thermal, physical, and chemical proper-
ties and is a promising heat insulator for both domestic 
and industrial applications.

Generally, clays and rocks can enhance the mechani-
cal properties of thermosetting resins. Ruban et al. [22] 
studied the chemical resistance and mechanical properties 
of UPE/organoclay nanocomposites, showing that their 
tensile and flexural characteristics were strongly depend-
ent on clay content and further demonstrating that these 
composites can be used as heat insulators with excellent 
resistance to non-aqueous solvents. Qian et al. [23] inves-
tigated the effect of vermiculate (mineral found in typical 
rocks and limestone) reinforcement in polyurethane. The 
composites showed a > 270% increase in tensile modulus 
and > 60% increase in tensile strength compared to pure 
polyurethane. The composite was prepared using three 
different compositions of limestone (5%, 7.5%, and 10%). 
The result shows that with the addition of limestone, flex-
ural strength increased from 159 MPa (5%) to 165 MPa 
(10%). Meanwhile, tensile strength reduced from 17 (5%) 
to 14 MPa (10%).

Herein, we focus on the formulation of polymer-based 
heat insulators using natural local shale as a filler. Specifi-
cally, liquid unsaturated polyester was blended with the 
filler at different polymer/filler ratios and solidified during 
thermosetting. Physical and thermal properties of Emirati 
red shale/ polyester composites were reported in our pre-
vious studies [24]. The promising results (summarized in 
Table 1) motivated the research group to investigate the 
mechanical integrity and performance of the developed 
composites. Thus, in the current work, the fabricated solid 
samples were subjected to different mechanical tests 
to come up with a product formulation having optimal 
properties.

Table 1  Thermal and physical 
properties of polyester, 
polyester/shale composite

Properties Pure polyester UPE/shale com-
posite (10%)

Polyester/
shale 
composite 
(50%)

Thermal conductivity k (W/mK) 0.15 0.15 0.22
Bulk density ρ (g  cm−3) 1.17 1.2 1.55
Water retention at 50 °C (wt%) 0.22 0.25 0.89
Resistance to chemicals—citric acid (wt%) 0.07 0.1 0.18
Microstructure (scanning electron microscopy) No microgaps No microgaps Microgaps 

were 
observed
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2  Materials and methods

2.1  Rock shale

Rock shale obtained from the Emirates Ceramic Factory 
(subsidiary of Fujairah Building Industries P.S.C., Fujairah) 
was mainly extracted from rocky sand in the districts of 
Fujairah and Ras Al Khaimah in the UAE, containing silica 
(17.16 wt%) and alumina (64.18 wt%) as major constitu-
ents along with traces of other metal and nonmetal oxides.

The obtained rock shale was powdered to three 
different grain sizes, namely size 1 (< 100  µm), size 2 
(100–200 µm), and size 3 (200–300 µm).

2.2  Unsaturated polyester (UPE)

The polyester resin (Polylite 721-800E, 44–46% styrene, vis-
cosity = 280–330 mPa s) and methyl ethyl ketone peroxide 
were obtained from Reichhold Norpol Company (Dubai). 
The advantages of UPE include its ease of handling, low 
water absorption, low cost, good mechanical properties, 
transparency, and rapid room-temperature curing without 
gas evolution [3]. The individual polymer chains of UPE are 
cross-linked during curing, allowing it to be mold-cast and 
laminated at lower temperature and pressure than other 
thermosetting resins [25].

2.3  Fabrication of molds and composites

2.3.1  Molds

Three series of stainless-steel molds were fabricated 
according to ASTM standard recommendations for mold-
ing to produce standard specimens for mechanical tests.

2.3.2  Composites

Composites with different filler contents (0–60 vol%) and 
high mixing degrees were prepared at room tempera-
ture. A specified amount of shale was gradually added 
to polyester resin under continuous mixing, and methyl 
ethyl ketone peroxide was subsequently added to initiate 
thermosetting. The composite was fabricated at every 10% 
interval. The obtained mixture was poured into the suit-
able stainless-steel mold, the interior surface of which was 
coated with paraffin wax to prevent sticking [24, 26, 27].

2.4  Microstructure

Scanning electron microscopy-FEI Quanta 200 ESEM was 
used to investigate the microstructure of samples. Sam-
ples were finely powdered and gold sputtered to make 

them conductors, and the images were taken at a different 
resolutions.

2.5  Mechanical tests

Composite samples were subjected to tension, com-
pression, and bending tests in accordance with ASTM 
standards. All mechanical tests were performed using 
a universal testing machine (MTS Model 20/mh, capac-
ity = 100 kN). Tension tests were performed by stretching 
the tensile specimens of overall length = 100 mm, gage 
length = 30 mm, width = 10 mm, and thickness = 5 mm at 
an overhead speed of 2 mm/min until full separation. The 
tensile tests were conducted according to ASTM C 190–85. 
The flexural (three-point bending) tests were carried out, 
using the abovementioned universal testing machine, 
on rectangular specimens with a cross-sectional area of 
4 × 12.5  mm2 and a length of 65 mm according to ASTM 
D790-00. Compression tests were performed on cylindrical 
specimens of length = 30 mm, diameter = 25 mm accord-
ing to ASTM D695-15. In all tests, the results were reported 
as averages of 3–5 measurements.

3  Results and discussion

3.1  Morphology of composites

Scanning electron microscope (SEM) images were ana-
lyzed to visualize the distribution of the fillers in the UPE 
matrix. We have analyzed the effect of size 1 (as a repre-
sentative) filler loading on the morphology of the com-
posite. Figure 1 shows the SEM images of cross sections of 
pure polyester and UPE–shale (size 1) composite specimen 
with 10% and 50% reinforcement. The composite speci-
mens shows that the shale particles are properly mixed in 
the UPE matrix. However, microgaps were observed in 50% 
filler-loaded composite specimens (Fig. 1c, d), and this may 
be due to weak interfacial adhesions between filler and 
polyester matrix. However, no microgaps were observed 
in composites with 10% filler content. This is because of 
high volume fraction of polyester comparing to the filler. 
These microgaps may affect the mechanical properties of 
the composites at high filler loading.

3.2  Tensile testing

For tensile strength analysis, samples clamped between 
the two jaws of the MTS machine were strained at a 
constant rate of 2 mm/min until sample failure. Figure 2 
shows tensile stress–strain curves for representative sam-
ples filled with size-1, size-2, and size-3 shale. The stress 
increases linearly with strain at the beginning with some 
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nonlinearity before fracture [28–30]. Such nonlinearity dis-
appeared with increasing the filler content. Pure polyester 
samples exhibited higher tensile strength and elongation 
at break than composite ones, which, exhibited elevated 
stiffness that increased with filler content.

The tensile strength of UPE composites decreased 
after reinforcement with shale filler, i.e., neat UPE speci-
mens exhibited a maximum stress of 41.4 MPa, whereas 
shale-reinforced ones exhibited smaller values of ultimate 
strength ( �

u
 ), as shown in Table 2.

The observation of higher tensile strength at lower 
filler content was attributed to the better dispersion of 
shale in the polyester resin matrix, the absence of voids or 
pores, and good interfacial bonding at low filler loading. 

On the other hand, the low tensile strength at high filler 
content was attributed to inefficient stress transfer at the 
particle–matrix interface due to poor interfacial adhesion, 
particle-to-particle contact, and the presence of voids or 
pores. Similar observations were reported, in our recent 
publication [18], on similar behavior of polyester/scrap tire 
composites. Patnaik et al. has observed that the mechani-
cal properties are getting reduced when fillers, such as 
fly ash, alumina, and silica are added to polyester/glass 
composite [31]. Mourad et al. [9] have observed a deg-
radation in the mechanical performance of kevlar/epoxy 
composite due to agglomeration when more than 0.5% 
of MWCNT were added to polymer (epoxy) matrix. Similar 

Fig. 1  SEM images of pure polyester (a), UPE–shale composite specimen with 10% (b) and 50% (c, d) filler loading
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observations were reported in HDPE/ZnO composites [4] 
and SiC-reinforced aluminum matrix composites [7].

Figure 3 illustrates the variation of tensile strength with 
filler volume fraction for three filler sizes, demonstrat-
ing that at a given filler content, composites containing 
smaller particles featured higher tensile strength, which 
was ascribed to the better dispersion and filler–matrix 
interactions therein. Similar observations have been 
reported by Bigg [32] and Fuad et al. [33] for other filled 
systems (commercial fumed silica and talc). However, Fan 
et al. [34] observed a decrease in the tensile strength of 
polypropylene composites with increasing clay content

The results of tensile strength testing demonstrated 
that size-1 shale composites exhibited higher tensile 
strength than size-2 and size-3 ones. However, all prepared 

composites showed tensile strengths superior to those of 
commonly used insulating materials such as foam glass 
(0.150 MPa), mineral fiber (0.015 MPa), and polystyrene 
(0.186 MPa) [35–37].

3.3  Compression testing

Compressive strength is the capacity of a material to 
withstand axially directed pushing forces. Here the speci-
mens were held between the two platforms of the test-
ing machine, and a load was applied over a 25-mm span 
length at a constant overhead speed of 10 mm/min. Pure 
polyester samples flatten without failure, whereas com-
posite samples fractured before the 25  mm could be 
achieved.

Figure  4 shows compression stress–strain curves 
recorded for composite samples of the three different 
shale particle sizes. The curve of pure UPE is included for 
comparison. The curves of all cases show similar trends. 
A linear stress–strain relationship is observed at the first 
stage of loading prior the 1st peak takes place then the 
stress reduces with the strain prior increasing again till 
failure occurs. The modulus of elasticity is determined 
from the first stage of the curve while the yield and ulti-
mate strengths are measured at the first peak and highest 
achieved stress before failure. This performance has been 
observed by Mourad et al. [38–41].

The obtained mechanical properties (yield strength 
�y , ultimate stress �

u
 , and modulus of elasticity E) are pre-

sented in Table 3. Figure 5 illustrates the variation of com-
pressive strength with filler content for three filler particle 
sizes. Generally, the compressive strength of UPE matrices 
is the highest and tends to decrease with increasing filler 
size and content. With the addition of 60% shale, compar-
ing to UPE the compressive strength of size 1, size 2, and 
size 3 composites reduced by 12%, 21%, and 36% respec-
tively. This could be because of the concomitant forma-
tion of voids. Thus, the decrease in compressive strength 
observed for increasing shale content was ascribed to the 
concomitant increase in matrix porosity due to air entrain-
ment and poorer shale/matrix adhesion. This is supported 
by the SEM analyses in our previous work [24]. However, 
all prepared composites showed compressive strengths 
superior to those of other composites commonly used as 
lightweight construction materials (e.g., composites of 
cement, sand, and coconut and durian fiber (2.4–3.3 MPa) 
[42], and outperforming stone masonry (estimated com-
pressive strength = 20–30 MPa) [43].

Figure  6 shows comparison of the properties of all 
insulating materials based on filled polyester produced 
in our research laboratory [18, 19]. Notably, the satura-
tion content of rock shale, date wood, and date pit fill-
ers equaled 60 vol%, whereas for rubber it was limited to 
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Fig. 2  Tensile stress–strain curves for a size-1, b size-2, and c size 3 
samples with various shale volume fractions
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40 vol%. Interestingly, the addition of 10 vol% rock shale 
and date wood did not affect the compression strength of 
the composite. This can be related to the microstructure 
of the composite [24]. It has been observed in the previ-
ous studies that, up to 10% shale incorporation, there is 
much better interfacial adhesion between shale and poly-
ester. When percentage of filler content increases, there 
are microvoids seen in the composite specimen which 
affected the compression properties of the shale/polyester 
composite. Moreover, an overall performance comparison 
indicated that at higher filler concentrations, best mechan-
ical stability was obtained for size 1 rock shale.

3.4  Flexural testing

Figure 7 presents the load–deflection curves obtained for 
different filler contents and filler particle sizes, and the 
flexural test results are summarized and Table 4. The load 

Table 2  Tensile strengths of 
samples with different filler 
contents

Filler con-
tent (vol%)

Size 1 Size 2 Size 3

Ultimate 
strength (MPa)

Standard 
deviation

Ultimate 
strength (MPa)

Standard 
deviation

Ultimate 
strength (MPa)

Standard 
deviation

0 41.38 3.56 41.38 3.56 41.38 3.56
5 40.52 1.98 – – – –
10 31.80 3.25 31.53 4.88 30.8 0.42
15 31.57 3.98 – – – –
20 29.20 3.12 28.55 3.25 25.97 2.25
25 25.63 5.19 – – – –
30 26.60 4.24 25.87 3.82 19.37 1.12
35 26.57 1.26 – – – –
40 26.62 1.63 18.37 0.59 17.07 1.56
45 22.35 2.47 – – – –
50 22.12 3.03 17.77 3.06 15.90 2.54
55 21.19 2.63 – – – –
60 18.87 2.15 15.68 4.01 12.13 0.23
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varies with the deflection in a linear relationship, at the 
first stage of loading, with some nonlinearity prior frac-
ture. Such nonlinear performance disappears with filler 
contents. Both fracture load and deflection decrease with 
filler content for all filler particle sizes, which demonstrate 

Table 3  Compression test 
results of all samples

Filler 
content 
(vol%)

Size 1 Size 2 Size 3

σy (MPa) σu (MPa) E (MPa) σy (MPa) σu (MPa) E (MPa) σy (MPa) σu (MPa) E (MPa)

0 107.27 125.21 1220.9 107.27 125.21 1220.9 107.27 125.21 1220.9
5 106.54 124.43 1364.47
10 104.22 124.07 1311.57 104.86 109.43 1452.27 93.66 115.33 1270.15
15 103.52 119.17 1707.50
20 101.06 112.57 1600.7 100.01 102.27 1666.89 89.56 99.47 1189.34
25 100.74 109.93 1686.24
30 100.08 107.33 1338.26 93.74 93.73 1625.71 84.36 86.54 1223.33
35 98.12 103.27 1629.34
40 97.15 100.87 1678.9 92.69 92.67 1591.43 78.21 78.22 1197.63
45 95.38 96.37 1511.22
50 95.22 93.66 1593.51 88.65 88.67 1734.41 75.87 75.87 1033.65
55 93.02 93.03 1280.18
60 94.18 94.1 1305.29 84.31 84.3 1412.2 68.5 68.51 1403.3
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that the composite flexural strength and strain decrease 
with filler content.

Figure 8 demonstrates the variation of fracture load 
with filler content for different particle sizes, revealing 
that the load-bearing capacity of UPE matrix decreases 
with increasing filler content and particle size. This can 
be due to the presence of microvoids and weak interfa-
cial adhesion seen at higher shale concentrations. The 
observation is also in agreement with the results of the 
compressive strength test of Ohama et al. [44]. Moreover, 
particle agglomeration will create stress concentration 
points resulting in premature failure of the composite. 
Similar observations are reported by Mourad et al. [9] in 
kevlar/epoxy composites incorporated with MWCNT. Simi-
larly, composites made from polyester and fillers such as 
date pits, date wood and rubber are found to reduce the 
flexural strength [18, 19].

4  Conclusions

Herein, we prepared and conducted mechanical testes to 
characterize a range of Emirati rock shale-filled polymer 
composites. In our previous work, the thermal characteri-
zation of this material as heat insulating material has been 
conducted, and the findings of the study revealed that it 

is a competitive insulating material. The results of this 
work showed that, the highest strength was observed for 
the smallest filler particle size. Moreover, the mechanical 
properties of these composites deteriorated with increas-
ing filler content, i.e., an increase of filler content from 0 
to 60 vol% decreased the tensile strength, compression 
strength, and flexural load-bearing capacity from 43 to 
16 MPa, 105 to 68.5 MPa, and 180 to 82 kN, respectively. 
Nevertheless, compared to the commonly used insulat-
ing materials (such as, glass, mineral fiber and polystyrene) 
all polyester–shale composites described herein exhibited 
superior mechanical properties, thus being suitable for 
industrial application as a heat insulator.
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