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Abstract
These in vitro studies investigated the comparative antiglycemic properties and molecular docking of the methanolic 
extracts of dried leaves of Ageratum conyzoides L. and Phyllanthus amarus L. in an attempt to explore natural products 
that could be useful in preventing secondary complications that could arise from hyperglycaemia. The methanolic crude 
extracts of dried leaves of A. conyzoides (CEA) and P. amarus (CEP) were partitioned into n-butanol and aqueous extracts 
and glycation inhibitory potentials were investigated. The result reveals that CEA and CEP exhibited highest glycemic 
inhibitory potential on the activities of α-amylase, α-glucosidase and sucrase investigated. The molecular docking was 
done on reported identified compounds in A. conyzoides and P. amarus with α-amylase (1SMD), sucrase-isomaltase (3LPO) 
and α-glucosidase (3WY1). Methanol crude extracts exhibited the highest inhibitory effect with the lowest  IC50 values 
of (78.00 ± 1.73, 77.00 ± 1.16), (62.67 ± 1.45, 57.67 ± 0.88) and (89.67 ± 3.48, 95.33 ± 2.60) µg/mL respectively for 1SMD, 
3LPO and 3WY1. The molecular docking analysis depicted that phytol had the best docking binding energy for the three 
enzymes and oxazolone and 9,12,15-octadecatrienoic acid showed best affinity for 1SMD and 3LPO while none for 3WY1. 
Crude and butanol partitioned extracts of both plants had a significant (p < 0.05) inhibition on glucose-induced albumin 
glycation, thiol oxidation and β-amyeloid aggregation. This study provides evidence suggesting that methanolic crude 
extracts of both plants could be used in the prevention of diabetes secondary complications.
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1 Introduction

Diabetes mellitus (DM) is one of the most deadly dis-
eases in the world; its rate coupled with its complications 
increases with time in every part of the world [1]. This is a 
metabolic disorder that result from excessive accumula-
tion of glucose in the blood due to either deficiency in 
insulin synthesis or defects in insulin receptors. In adult, 
type II Diabetes mellitus is more common compared to 
type I Diabetes mellitus and its expected to reach 366 
million cases in the year 2030 [2]. Type II Diabetes Mel-
litus (T2DM) is a common disorder of glucose metabolism 

and has been linked to insulin resistance and high calo-
rie diets thus elevating the postprandial glucose level 
[3]. Different carbohydrate hydrolyzing enzymes such as 
α-glucosidase, amylase and sucrase in the brush border 
of small intestine can be inhibited through regular con-
sumption of the antihyperglycemic drugs e.g. acarbose 
has been reported as one of the current management 
strategy for diabetes based on the reduction of glucose 
level [4]. This inhibition of the enzymes slow down the 
process of carbohydrate digestion and absorption, which 
in turn delay glucose absorption and hinder postprandial 
plasma glucose increase [5]. Nijpels et al. [6] reported that 
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daily consumption of acarbose for three years reduced the 
risk of developing type II diabetes by 6% compared to the 
control.

Sometimes accumulation of amyloid, protein glycation 
and reduction of thiol protein could result as secondary 
complication of the elevated blood glucose [7]. Secondary 
complications in diabetic patients and failure or damage 
of multiple organs were due to delayed hyperglycemia [8]. 
Acute complications resulting from free radicals formation 
through glucose oxidation, non-enzymatic glycation of 
proteins cause lipid and protein metabolic mutation and 
more continual complications such as retinopathy, cata-
racts, atherosclerosis, neuropathy, aging and many more 
due to Advance Glycation End Products AGEs [9].

Systemic oxidative stress resulting from hyperglyce-
mia due to imbalance between antioxidant and reactive 
oxygen specie (ROS) in favour of ROS causes an increase 
in insulin resistance and β-cell dysfunction, thus promot-
ing the devlopment of type 2 diabetes mellitus [10–12]. 
Cellular damage caused by ROS is prevented by removing 
excess ROS via an endogenous antioxidant mechanisms 
such as catalase, superoxide dismutase, and the peroxi-
dase-glutathione system [13]. Thiols are compounds with a 
free sulfhydryl (R–SH) moiety occurring in the form of pro-
teins containing one or more free cysteine groups or low 
molecular-weight compounds (e.g. glutathione) in cells 
and extracellular fluids which is oxidized and transformed 
to disulfide [14]. The formed disulfide moiety is expected 
to be related to some secondary complications of diabetes 
mellitus [15]. However, the gastrointestinal side effects of 
known carbohydrate hydrolyzing enzyme inhibitors such 
as acarbose, miglitol and voglibose and inefficiency of the 
endogenous defense system to scavenge free radicals rest 
on natural exogenous antioxidants. Antioxidants from 
plant source are known to reduce oxidative stress thus, 
phytomedicines are sought as possible alternatives or 
adjuncts [16]. This present in vitro study investigated the 
carbohydrate hydrolyzing enzymes inhibitory potential, 
amyloid aggregation inhibition, non-enzymatic glycation 
inhibitory properties and thiol containing protein of differ-
ent extracts of Ageratum conyzoides and P. amarus leaves 
for the prevention of secondary complications in DM and 
binding behavior of reported isolated compounds.

2  Materials and methods

2.1  Material

Absolute methanol, butanol, ethanol, congo red, dinitro-
salicylic acid, para-nitrophenylglucopyranoside, trichlo-
roacetic acid, bovine serum albumin, 5, 5′-dithiobis 
(2-nitrobenzoic acid) were obtained from JHD in China. 

Other reagents were of analytical grade and were pre-
pared with distilled water.

2.2  Method

2.2.1  Samples preparation

Fresh leaves of A. conyzoides and P. amarus were air-dried 
at room temperature of 29 ± 1  °C. The samples were 
authenticated at the Department of Biological Sciences 
Herbarium, McPherson University, Nigeria with voucher 
numbers McUBHA0001 and McUBHP0005 for A. conyzoides 
and P. amarus respectively. The dried leaves of A. cony-
zoides and P. amarus were pulverized and 10 g of each pul-
verized samples were extracted with 100 mL of methanol 
at room temperature of 29 ± 1 °C for 24 h and later filtered. 
Two-third of the crude extracts were partitioned repeat-
edly inside a separating funnel into an aqueousextract and 
n-butanol extract. The crude extracts and the partitioned 
extracts were used as the corresponding extracts for the 
subsequent analyses.

2.2.2  Preparation of the crude α‑glucosidase and sucrase 
solution

The mucosa of the small intestine of rats sacrificed under 
light anaesthesia was carefully scraped off with a glass 
slide, homogenized in cold sodium phosphate buffer (pH 
6.8) and centrifuged at 4 °C for 20 min at 650×g. The clear 
solution was used as source of crude of α-glucosidase and 
sucrase solutions [17].

2.2.3  Inhibition of the α‑amylase activity

The determination was carried out according to the 
method described by Bernfeld [18]. In a test tube contain-
ing 1.0 mL of 2 mM phosphate buffer (pH 6.9), 0.1 mL of 
each extract was incubated with 0.05 mL of α-amylase 
solution for 20 min. Precisely 0.1 mL of 1.0% of freshly 
prepared starch solution was subsequently added and 
allowed to stand for 5 min. Next, 0.5 mL of dinitrosalicylic 
acid reagent was and held in boiling water for 5 min. The 
solution was subsequently cooled and the absorption was 
measured at 540 nm. The result was expressed in  IC50 (μg/
mL) calculated as the concentration needed for inhibition 
of 50% of α-amylase activity.

2.2.4  Inhibition α‑glucosidase activity

The determination was carried out based on the method 
described by Kim et al. [19]. In a test tube containing 
1.0 mL of 2 mM phosphate buffer (pH 6.9), 0.1 mL of 
each extract was incubated with 0.1  mL of mucosa 
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solution for 20 min. Subsequently, 0.1 mL of 3 mM of 
para-nitrophenylglucopyranoside prepared in 20 mM 
phosphate buffer (pH 6.9) was added and allowed to 
stand for 15 min. Then, 0.5 mL of 5.0% sodium carbon-
ate was added, incubated for 90 min and the absorb-
ance was read at 450 nm. The result was expressed as 
the concentration of inhibition required to inhibit 50% 
of α-glucosidase activity  [IC50 (μg/mL)].

2.2.5  Assay of sucrase inhibitory activity

The determination was carried out according to the 
method described by Honda and Hara [20]. In a test 
tube containing 1.0 mL of 2 mM phosphate buffer (pH 
6.9), 0.1 mL of each extract was incubated with 0.1 mL 
of mucosal solution for 20 min. Afterward, 0.1 mL of 
60 mM sucrose solution was added and incubated for 
5 min. Then, 0.5 mL of dinitrosalicylic acid reagent was 
transferred into the test tube and incubated in boiling 
water for 5 min. The test tube was cooled and the opti-
cal density at 540 nm was read. The percentage inhibi-
tion of sucrase activity was calculated and the result was 
expressed in  IC50 (µg/mL) as the inhibition concentration 
required to inhibit 50% of sucrase activity.

2.2.6  In vitro glycation of albumin

The preparation of glycated albumin was carried out 
according to the procedure defined by Safari et al. [21] 
with slight modifications. The solution contained bovine 
serum albumin (0.1 g/mL) prepared in 0.1 M phosphate 
buffer (pH 7.4) containing 0.01% sodium azide, d-glucose 
(10 mg/mL) and the extract combined in ratio 3:2:1 and 
incubated for 72 h.

2.2.7  Estimation of anti‑glycation capacity

The determination was carried out colometrically using 
the method described by Furth [22]. In a test tube con-
taining 1.0 mL of glycated sample, 0.5 mL of 10% trichlo-
roacetic acid was added. For 5 min, the solution was 
centrifuged at 650 g. Then, 1.0 mL of phosphate buffer 
and 0.5 mL of 0.3 N oxalic acids were added to the sedi-
ment and boiled for 60 min. The solution was cooled and 
0.5 mL of 10% trichloroacetic acid solution and 0.5 mL 
0.05 M thiobarbituric acid were added and boiledfor 
10 min. The solution was centrifuged at 650×g and the 
absorbance of the supernatant was read at 443 nm. The 
result was reported as percentage inhibition.

2.2.8  Determination of inhibition of glycation‑induced 
oxidation of protein thiol groups

The determination was carried out colometrically using 
the method described by Ellman [23]. Accurately, 1.0 mL 
of 0.5 mM 5, 5′-dithiobis (2-nitrobenzoic acid) in 0.1 M 
Phosphate buffer (pH 7.4) was transferred into a test tube 
containing 1.0 mL of glycated sample and incubated at 
room temperature of 29 °C for 15 min. The absorbance at 
412 nm was measured. The thiol group concentration was 
calculated using molar extinction = 1.34 × 104 M−1 cm−1. 
The findings were documented as a protein of nmol/mg 
(Figs. 1, 2, 3, 4).

2.2.9  Determination of inhibition of protein aggregation

The determination was carried out colometrically using 
the method described by Klunk et al. [24]. Precisely, 0.1 mL 
of 1% Congo red prepared in phosphate buffer with 10% 
ethanol was added to a test tube containing 1.0 mL of 
glycated sample. The solution was incubated for 30 min, 
absorbance was measured at 530 nm and the percentage 
of the results was reported.

2.2.10  Statistical analysis

The results obtained were expressed as mean ± stand-
ard deviation of three determination and analyzed using 
one-way variance analysis (ANOVA) for mean differences 
between different extracts followed by Duncan multiple 
range test for post hoc correlation at p < 0.05.

2.2.11  Molecular docking

In association with in vitro antiglycemia activity, it is use-
ful to carry out molecular studies to predict the binding 
affinity at the active site of the selected hydrolases. The 
docked selected compounds with carbohydrate hydro-
lyzing enzymes were the major compounds identified 
as an active agents in Ageratum conyzoides [25, 26] and 
in P. amarus [27] and the 3D SDF format structures were 
obtained from PubChem data base. The compounds 
were neophytadiene (PubChem CID: 10446), caryophyl-
lene (PubChem CID: 5354499), phytol (PubChem CID: 
5280435), 9,12,15-octadecatrienoic acid (PubChem CID: 
860), 9,17-octadecadienal (PubChem CID: 5365667) and 
oxazolone (PubChem CID: 1712094) while the 3D structure 
targeted enzymes were obtained as from RCSB Protein 
Data Base (PDB) as 1SMD, 3LPO and 3WY1 for α-amylase, 
sucrose-isomaltase and β-glucosidase respectively. All 
the compounds and the enzymes were autodocked 
into pdbqt format and the affinity energy (kcal/mol) 
between compound and enzyme were measured using 
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PyRx-Python Prescription 0.8 and visisualized using PyMOL 
ver. 1.leval. The affinity results of the compounds were 
compared to those of acarbose (PubChem CID: 41774) 
with the enzymes.

3  Results

The inhibitory potential of the extracts varied towards 
the three selected carbohydrate hydrolases (Table 1). The 
results depicted that no significant difference (p < 0.05) 
between the butanol extracts and the metanolic extracts 
of the plants but are significantly different (p < 0.05) from 
the aqueous extracts of the plants towards the α-amylase 
activity. Also, butanol and methanol extracts possessed 
higher inhibition than the aqueous extracts; although 
the methanolic extracts had the best inhibitory potential. 
There is significant difference (p < 0.05) among the extracts 
towards sucrase activity except for both aqueous and 
butanol extracts of A. conyzoides leaves with methanolic 
crude extract of P. amarus (CEP) possessing the highest 
inhibition (57.67 ± 0.88). Similarly no significant difference 
(p < 0.05) in inhibition towards α-glucosidase between 
aqueous residual extract of P. amarus (AREP) and butanol 
partitioned extract of P. amarus (BPEP) and between 
methanolic crude extract of A. conyzoides (CEA) and CEP 
which are significantly difference (p < 0.05) from aqueous 
residual extract of A. conyzoides (AREA) and butanol par-
titioned extract of A. conyzoides (BPEA). However, none of 
the extracts from both plants possessed inhibitory poten-
tial more than acrabose towards the three carbohydrate 
hydrolyzing enzymes.

The visual screening results of selected reported 
compounds present in both plants with the selected 
carbohydrate hydrolases revealed the binding energies 
(Table 2). The docking report showed that all the com-
pounds docked towards α-amylase (1SMD) possessed 
higher affinity than acarbose except caryophyllene while 
none has higher affinity than acarbose towards sucrase-
isomaltase (3LPO) and α-glucosidase (3WY1). Also, phytol 
(5280435) has the highest biniding energy towards the 
three enzymes compared to other two compounds from 
A. conyzoides and none of the compounds from P. amarus 
docked with α-glucosidase (3WY1) possessed any binding 
energy.

The antiglycation properties of the extracts were evalu-
ated through the assessment of the inhibitory potential 
of the extracts against albumin glycation, thiol groups 
oxidation, and β-amyloid aggregation (Table  3). There 
were significant differences in the inhibitory effect of the 
extracts against glucose-induced albumin glycation thiol 
groups oxidation and β-amyloid aggregation. The albu-
min glycation inhibitory potential of BPEA and CEA were 
statistically (p < 0.05) different from that of BPEP and CEP 
respectively but with values higher than what is obtained 
from AREA and AREP and AREA had the least. Also, extracts 
of P. amarus were not only statistically different from their 
corresponding A. conyznoides extracts but higher than 
their values. There is a significant decrease in the thiol 
groups oxidation in the albumin-glycated sample when 
incubated with the extracts but no significant difference 
(p < 0.05) between BPEA and CEA and their correspond-
ing BPEP and CEP with CEP being the highest. However 
the aqueous extracts exhibited less inhibitory effect with 
AREA being the least. It was also observed that inhibition 
of β-amyloid aggregation followed the same trend and 
CEP had the highest inhibition of β-amyloid aggregation 
(28.00 ± 0.58%) while AREA had the least inhibition of 
β-amyloid aggregation (6.67 ± 0.33).

4  Discussion

Plant species investigated for antioxidant activity are 
known to exhibit antidiabetic effect. It has been estimated 
that more than 400 herbal or plant-derived products are 
used for the management of T2DM across the globe [28]. 
The hypoglycemic effect of some plant extracts has been 
confirmed in human and animal models of T2DM [29]. The 
WHO Expert Committee on diabetes recommended that 
medicinal plants should be investigated further [28]. A. 
conyzoides, a family of asteraceae with an annual weed 
of 80–90 cm in height has been reported to exhibit anti-
oxidant property [30]. Also, the P. amarus of the family 
Euphorbiaceae contains compounds like alkaloids, fla-
vonoids, lignans, phenols and terpenes which have been 
shown to interact with most key enzymes such as amylase, 
glucosidase [31].

The results depicted that the crude extracts of the 
plants exhibited highest inhibitory potential towards the 
three hydrolases investigated with no significant differ-
ence (p < 0.05) from each other except for sucrase while 
the aqueous extracts had the least.

The reported percentage inhibitory potential was pre-
sumed to be the relative extracts/acarbose-induced reduc-
tion in the activities of the hydrolases with respect to the 
corresponding controls (without an extract or acarbose). 
Also, the inhibitory potential of the CE from the plants 

Fig. 1  Molecular docking of compounds with enzyme Ai α-amylase 
(1SMD) and neophytadiene (10446), Aii α-amylase (1SMD) and phy-
tol (5280435), Aiii α-amylase (1SMD) and caryophyllene (5354499), 
Aiv α-amylase (1SMD) and 9,12,15-octadecatrienoic acid (860), Av 
α-amylase (1SMD) and oxazolone (1712094), Avi α-amylase (1SMD) 
and 9,17-octadecadienal (5365667) and Avii α-amylase (1SMD) and 
acarbose (41774)

◂
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Fig. 2  Molecular docking of 
compounds with enzyme Ai 
sucrose-isomaltase (3LPO) 
and neophytadiene (10446), 
Aii sucrose-isomaltase (3LPO) 
and phytol (5280435), Aiii 
sucrose-isomaltase (3LPO) 
and caryophyllene (5354499), 
Aiv sucrose-isomaltase (3LPO) 
and 9,12,15-octadecatrienoic 
acid (860), Av sucrose-iso-
maltase (3LPO) and oxazolone 
(1712094), Avi sucrose-iso-
maltase (3LPO) and 9,17-octa-
decadienal (5365667) and Avii 
sucrose-isomaltase (3LPO) and 
acarbose (41774)
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ranges from sucrase to α-amylase and α-glucosidase in 
decreasing order with CEA and CEP possessing the high-
est inhibition 62.67 ± 1.45 µg/mL and 57.67 ± 0.88 µg/mL 
respectively for sucrase. Thus, inhibiting these enzymes 
could play a crucial role in controlling the hyperglycemic 
condition by limiting glucose absorption in the blood [3, 
32]. Thus lowering the postprandial hyperglycemia related 
responses in diabetes and complements the already estab-
lished claim by [19, 33]. However, none of the extracts 
from plants possessed inhibitory potential than acrabose 
against the three assessed carbohydrate hydrolyzing 
enzymes.

Also, molecular mechanistic evaluation of reported 
compounds of methanol extracts (crude extract of both 
plants) against the three selected studied enzymes 
(α-amylase, sucrase-isomaltase and α-glucosidase) car-
ried out revealed the possible interactions between the 
enzymes and the compounds. The binding energies of the 
compound-enzyme docked complexes revealed that there 
could be interactions between the selected compounds 
and the hydrolases based on the score of the model with 
least values having the highest affinity [34]. All the com-
pounds docked against α-amylase (1SMD) possessed 
higher affinity than acarbose except caryophyllene while 

Fig. 2  (continued)
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Fig. 3  Molecular docking of 
compounds with enzyme 
Ai α-glucosidase (3WY1) 
and neophytadiene (10446), 
Aii α-glucosidase (3WY1) 
and phytol (5280435), Aiii 
α-glucosidase (3WY1) and 
caryophyllene (5354499), Aiv 
α-glucosidase (3WY1) and 
9,12,15-octadecatrienoic acid 
(860), Av α-glucosidase (3WY1) 
and oxazolone (1712094), Avi 
α-glucosidase (3WY1) and 
9,17-octadecadienal (5365667) 
and Avii α-glucosidase (3WY1) 
and acarbose (41774)
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none had higher stability than acarbose against sucrase-
isomaltase (3LPO) and α-glucosidase (3WY1). Also, phytol 
(5280435) has the highest biniding energy against the 
three enzymes compared to other two compounds from 
A. conyzoides and none of the compounds from P. amarus 
docked with α-glucosidase (3WY1) possessed any binding 
energy. In addition, the amino acid residues at 1SMD active 
site include Gly-334, Pro-332, Leu-293, Phe-335 while the 
residue at 3LPO acive site include Glu-47, Gln-48, Phe-49, 
Pro-495 and 3WY1 amino acid residues at the active site 
include Ala-349, Asp-440, Pro-442, Asn-443. The docking 
and the hyperglycemia studies showed that the metha-
nolic extracts of the plants leaves could contain good 

inhibitors that could interfere with the selected hydro-
lases compared to acarbose and limit the rate of glucose 
absorption in the gut. Though, P. amarus leaf methanol 
extract posed to be more effective than A. conyzoides leaf 
methanol extract as seen in the docking studies which 
was not obvious in the in vitro hyperglycemia inhibition 
assays. In addition, the active compounds in plant-based 
foods are numerous in number and could exhibit synergis-
tic properties in reducing the risk of chronic diseases and 
maintenance of cell safety. Therefore, interactions between 
these compounds could result to the increase observed 
pharmacological activity, and probably the shrub’s thera-
peutic effects as depicted through the superimposition 

Fig. 3  (continued)
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of the docked compounds inside the binding sites of the 
enzymes except 3WY1.

Albumin, an abundant plasma proteins, its glycation 
form glycated albumin (GA) that is ten times more than 
the glycation of hemoglobin in type II Diabetes mellitus 
[35]. Human albumin presents 50% of the normal indi-
vidual’s plasma protein and it is a marker reflects a short-
term glycemic control [36]. In serum, the concentration of 
all thiols added together is lower than albumin being the 
most abundant thiol [37]. Glycation is one of the major 

disruptive spontaneous/non-spontaneous reactions 
occurring between proteins and reducing sugars that 
result in secondary complications in diabetic patients. 
P. amarus and A. conyzoides methanol extracts were sig-
nificantly different (p < 0.05) from aqueous and butanol 
extracts on antiglycation property. However, the metha-
nol extract of P. amarus exhibited better inhibitory protein 
glycation. Thus, preventing the deposit of long chain fatty 
acids and promote drug binding at various stages of dia-
betes [38, 39]. Also, the methanol extracts of both herbs 

Fig. 4  Superimposition of 3-D structures of neophytadiene (10446), 
phytol (5280435) and caryophyllene (5354499) from A. conyzoides 
in the binding site of Ai α-amylase (1SMD), Aii sucrose-isomaltase 
(3LPO) and Aiii α-glucosidase (3WY1) and superimposition of 

3-D structures of 9,12,15-octadecatrienoic acid (860), oxazolone 
(1712094) and 9,17-octadecadienal (5365667) from P. amarus in 
the binding site of Aiv α-amylase (1SMD), Av sucrose-isomaltase 
(3LPO) and Avi α-glucosidase (3WY1)

Table 1  Inhibitory potentials 
of dried leaves of A. conyzoides 
and P. amarus on carbohydrate 
hydrolyzing enzymes

Values are expressed as mean of 3 replicates ± standard deviation of mean. Values with different super-
scripts within a column are significantly different (p < 0.05)

ARE aqueous residual extract, BPE butanol partitioned extract, CE methanol crude extract (A A. cony-
zoides, P P. amarus)

Extracts α-Amylase (IC50, μg/mL) Sucrase (IC50, μg/mL) α-Glucosidase 
(IC50, μg/mL)

AREA 734.33 ± 76.02a 115.10 ± 18.98a 177.33 ± 16.83a

BPEA 244.67 ± 40.91b 115.72 ± 6.14a 136.00 ± 11.02b

CEA 78.00 ± 1.73c 62.67 ± 1.45b 89.67 ± 3.48c

AREP 373.00 ± 24.00d 2075.33 ± 1474.52c 158.33 ± 0.33d

BPEP 257.33 ± 11.57b 87.67 ± 6.23d 157.00 ± 2.89d

CEP 77.00 ± 1.16c 57.67 ± 0.88e 95.33 ± 2.60c

Acarbose 32.29 ± 6.82f 30.72 ± 1.42f 33.11 ± 7.12d
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could probably inhibit the activation and aggregation of 
platelet and promote glucose uptake [40, 41].

Furthermore, oxidation of macromolecules such as 
lipids, DNA and proteins by ROS plays an important role in 
diabetes, cardiovascular disease and other diseases relat-
ing to aging like inflammation, cancer. Findings from epi-
demiology and experiment as well as clinic provided evi-
dence on supportive role of reactive oxygen species (ROS) 
such as singlet oxygen, superoxide anions  (O2), hydrogen 
peroxide  (H2O2), and hydroxyl radical (OH) in the etiol-
ogy of diabetes, cardiovascular diseases, aging etc. [42]. 
No significant difference between the methanol extracts 
of the plants as well as the butanol extracts while a sig-
nificant difference is observed among the three solvents 
with aqueous extract possessing poor thiol protein protec-
tion activity and a fair active of thiol protein protection 
is observed for butanol extracts of both plants. The high 
concentration of thiol proteins methanol extracts indicates 
high potency for the methanol extracts of the plants and 
could help to reduce the effect of oxidative damage on the 
sulphydryl group thus protecting the human body from 
lipid peroxidation that causes cardiovascular disease, a 
secondary complication of diabetes.

To substantiate the glycation inhibition findings, 
the inhibition of β-amyloid fibril formation in glycated 

albumin was carried out since glycation has been reported 
by Emendato et al. [43] to increase the level of amyloid 
cross β structure, thus aggravating the cytotoxicities of 
protein aggregation and in general hyperglycaemia.

5  Conclusion

In an attempt to search for a novel phytomedicine for 
the prevention of secondary complications such as neu-
ropathy, nephropathy, retinopathy etc. arising from dia-
betes, anti-amyloid aggregation potential of P. amarus 
and A. conyzoides extracts using different solvents were 
evaluated. The result of the present study showed that P. 
amarus exhibited stronger inhibitory potential in all three 
solvents against amyloid formation when compared 
with A. conyzoides fibrillation-inhibiting potential except 
with butanol extracts where there is no significant differ-
ence. Although P. amarus and A. conyzoides may be sug-
gested as a potential therapeutic drug for prevention and 
treatment of secondary complications arising from DM, 
bioactive compounds of methanol extract of P. amarus 
could probably prevent secondary complications in dia-
betes compared to A. conyzoides methanol extract based 
on the results obtained from the docking studies and 

Table 2  Evaluation of binding energies (kcal/mol) for the selected molecules from dried leaves of A. conyznoides and P. amarus 

Methanolic extracts Molecules PubChem CID MW (g/mol) α-Amylase 
(1SMD)

Sucrase-iso-
maltase (3LPO)

α-Glucosidase 
(3WY1)

A. conyzoides Neophytadiene 10446 278.5 − 3.9 − 5.6 − 5.3
Caryophyllene 5354499 204.35 13.1 − 5.3 − 6.2
Phytol 5280435 296.5 − 5.2 − 5.8 − 6.8

P. amarus 9,12,15-Octadecatrienoate 860 278.4 − 4.3 − 6.4 0.0
Oxazolone 1712094 217.22 − 5.7 − 6.1 0.0
9,17-Octadecadienal 5365667 264.4 − 4.0 − 5.2 0.0

Control Acarbose 41774 645.6 0.7 − 7.0 − 9.8

Table 3  Oxidation of thiol, 
anti-glycation and β-amyloid 
aggregation inhibitory 
properties of dried leaves of A. 
conyznoides and P. amarus 

Values are expressed as mean of 3 replicates ± standard deviation of mean. Values with different super-
scripts within a column are significantly different (p < 0.05)

ARE aqueous residual extract, BPE butanol partitioned extract, CE methanol crude extract (A A. cony-
zoides, P P. amarus)

Extracts Inhibition of albumin 
glycation (%)

Inhibition of thiol groups oxidation 
(nmol/mg protein)

Inhibition of 
β-amyloid aggrega-
tion (%)

AREA 48.67 ± 0.88a 1.76 ± 0.06a 6.67 ± 0.33a

BPEA 64.33 ± 0.88b 2.02 ± 0.09b 16.00 ± 0.58b

CEA 74.67 ± 1.45c 2.92 ± 0.04c 26.33 ± 0.33c

AREP 53.67 ± 0.33d 1.87 ± 0.02d 9.00 ± 0.58d

BPEP 69.67 ± 0.33e 2.17 ± 0.06b 16.67 ± 0.88b

CEP 77.67 ± 0.33f 2.89 ± 0.13c 28.00 ± 0.58c
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the biochemical estimations carried out by the present 
researchers. However, there is a need to carry out further 
investigations on other reported compounds in the plant 
with the help of the in silico approach to generate more 
effective and potential drug through ligand-based drug 
designing approaches.
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