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Abstract
The quest to synthesize nanomaterials with improved properties, but less undesirable effects on the environment neces-
sitated this research. Zinc Oxide (ZnO) nanoparticles and zinc oxide–silver (ZnO–Ag), zinc oxide–copper (ZnO–Cu) nano-
composites were synthesized with pure eco-friendly dye extracted from Bridelia ferruginea, zinc acetate (Zn(CH3COO)2) as 
host, copper acetate (Cu  (CH3COO)2), and silver nitrate  (AgNO3) as dopant precursors. Phytochemical screening of dyes 
showed high, presence of phenols and terpenoids. The nanomaterials were characterized by Fourier-transform infrared, 
X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy 
and ultraviolet–visible spectroscopy. The results showed the capping agents in the dyes were responsible for reducing 
the bulk materials. The crystallinity of the nanomaterials were found to be 19.02, 18.98 and 18.90 nm for the ZnO, ZnO–Ag 
and ZnO–Cu nanoparticles respectively. The ZnO nanoparticles were flakelike in shape, whereas the Cu and Ag doped 
particles were spherical. An optical bandgap of 4.73 eV was recorded for the dye and 3.24 eV for the ZnO nanoparticles. 
This was narrowed to 3.18 and 3.13 eV by silver and copper dopant respectively. These results showed the nanoparticles 
as a potential agent for photovoltaics and other optical applications.
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1 Introduction

Nanoscience and nanotechnology are divest fields that 
modify bulk materials and improve their optical, electronic, 
magnetic, and catalytic properties [1], these properties are 
targeted at improving human lives. As global warming has 
ravaged the universe, the world scientists are trying hard 
to open new doors to finding novel technologies in the 
development of new materials with unique characteristics 
[2] but of low environmental hazard. The known two types 
of nanomaterials are the organic and inorganic nanopar-
ticles. The former being poly-ɛ-lysine, quaternary ammo-
nium compounds, cationic quaternary polyelectrolytes, 

and Chitosan. The latter being mainly oxides of silver (Ag), 
iron (Fe), titanium (Ti), copper (Cu), zinc (Zn) and other 
transition element. The stability of the inorganic particles 
at variable temperature gave it a wide range of industrial 
applications [3, 4]. Metallic nanoparticles are synthesized 
by different techniques; the more frequently employed 
methods are the chemical and physical methods. Several 
chemical methods had been identified, but researchers 
work more on chemical reduction, electrochemical tech-
niques, and photochemical reactions in synthesizing and 
modifying nanomaterials [1, 3, 5]. The attrition and pyroly-
sis techniques took center stage under physical method, 
although the technique is brand as wasteful due to its 
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high cost, high-energy consumption and low output rate 
[3, 6]. The consciousness of environmental deterioration 
has cautioned scientists to look towards greener approach 
which is an inexpensive nontoxic approach in synthesiz-
ing and fabricating nanomaterials [1]. Recently extracts 
of unicellular organisms, as well as plants have recorded 
tremendous success in the synthesis of nanoparticles of 
different shapes and sizes [7]. However, synthesis of nano-
materials using microorganisms is arduous because of the 
complex and complicated nature of isolating, maintaining 
cell cultures and multiple purification steps. Hence, it is 
advisable to synthesize nanoparticles using plant materi-
als due to their availability and the procedure of biogenic 
synthesis is cost efficient, less tedious as compared to 
biosynthesis using fungal sources [8]. Several metal oxide 
nanoparticles had been produced with possible industrial 
applications. Among these, ZnO is the most exploited at 
nano-dimensions because of its exceptional scientific 
properties attributed to its band gap and large excitonic 
binding energy [9]. It has become a focal point of nowa-
days research considering its tremendous antimicrobial 
activity against a wide range of microorganisms. S. aureus, 
E. coli, Salmonella, Listeria monocytogenes, and the fungus 
Fusarium [10, 11]. Doping ZnO nanoparticles with Copper, 
Cobalt, Nickel, rare earth metals, and transition elements, 
as impurities modified the nanoparticles to enhance their 
electrical, optical and biological activities [12–14]. Silver 
and Copper doped ZnO nanoparticles have gained great 
interest in growing a full scope of innovative applications 
including field effect transistors, field emission arrays, 
ultraviolet lasers, light emitting diode, sensors, biosensors, 
catalyst, energy storage and solar cell [15, 16].

In recent times nanomaterials are synthesized with tem-
plates which are perceived easy with simplified procedures 
to give room for better fabrication of more sophisticated 
nanomaterials [17]. Templates are categorized into two 
groups of soft and hard. Porous solids like anodic alu-
minium oxide (AAO) membranes, colloid beads, ordered 
mesoporous inorganic materials, and zeolites are regarded 
as hard templates. Soft templates are organic molecules, 
long-chain polymers, supermolecular aggregates, struc-
ture-directing agents, surfactants, gels, micelles, and 
different types of biological species (biotemplates). Soft 
templates did not only render more sufficient synthetic 
processes, but also have the ability to be easily removed, 
these have proven their effectiveness and shown their abil-
ity in high quality encapsulation techniques [18, 19]. Dyes 
were believed to be substances that only impact colour 
to textiles, sequel to the dominance of synthetic dyes. But 
with the arrival of natural dyes, their benefits and values 
have been appreciated in all areas of life, especially in 
natural medicine, food and recently nanotechnology [20]. 
Natural dyes are usually not a single entity, but a variety 

of closely related chemical compounds, which enhance 
their therapeutic roles in natural medicine, impact colour 
to fabrics, reduce and cap ions in nanoscience. The com-
plex chemical constituents in natural dyes are Anthraqui-
nones, Naphthoquinones, Benzoquinones, Flavonoids, 
Carotenoids and Tannins [21]. Synthesis of nanoparticles 
by solvent extracted dyes from B. ferruginea is sparingly 
reported, implying the plant is underexploited on nanodi-
mension. This motivated our interest in this research. Our 
focus is to extract dyes from B. ferruginea that belongs to 
the family Euphorbiaceae and found mostly in Savannah 
regions. It has dark grey, rough and oftentimes marked 
scaly bark [22]. The plant is a major actor in traditional 
medicine; with its extract playing a significant role in the 
formulation of a traditional gargle “egun efu” and water 
treatment [23]. A handful of reports on the bark extract has 
proven its high anti-typanocidal, anti-molluscidal, antimi-
crobial and anti-inflammatory properties [24]. The leaves 
also demonstrated curative effecst towards the treat-
ment of diabetes and as a purgative. [25, 26]. The curative 
strength of B. ferruginea has been attributed to its high 
antioxidants and phytochemicals, hence it can serve as 
an excellent agent in the reduction of Zn(CH3COO)2, Cu 
 (CH3COO)2 and  AgNO3 to their nanoparticles and nano-
composites, as well as capped the ions to their states.

2  Materials and methods

2.1  Chemicals

The following chemicals Zn(CH3COO)2, Cu  (CH3COO)2, 
 AgNO3,n-hexane and methanol were obtained from 
Sigma-Aldrich and used without further purification. All 
solutions were prepared with deionize water.

2.2  Sample collection and preparation

The bark of Bridelia ferruginea used as the source of the 
dye was collected from a farmland at Ido Usi, Ekiti State 
of Nigeria, Sun dried, ground, sieved to have uniformed 
particles and were stored in an airtight container for the 
extraction of the dye.

2.3  Extraction of dye

Soxhlet apparatus was used for the extraction of dyes. The 
Pulverized sample was loaded in the thimble and mounted 
on the round bottom flask. The sample was first defatted 
with n-Hexane for 6 h at a heating rate of 68 °C. The defat-
ted samples were offloaded from the thimble, sundried to 
remove the trapped n-hexane and reloaded for the dyes 
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extraction using methanol at the heating rate of 65 °C. The 
dyes were oven dried at 40 °C to powder.

2.4  Green synthesis of nanoparticles 
and nanocomposites

The nanoparticles were synthesized using green synthesis 
method as reported by Yedurkar et al, [27], with the exclu-
sion of NaOH that acted as a pH stabilizing agent. 10 g of 
the dye was dissolved in 100 ml of methanol, filtered with 
Whatman filter paper to remove any undissolved parti-
cles. 50 ml of the dye’s filtrate was added 100 ml (0.5 M) of 
Zn(CH3COO)2 was allowed to stand for 2 h at room tem-
perature. The initial light brown colouration of the solu-
tion became a deep brown crowded solution indicating 
the complete formation of the precipitate. This affirmed 
the reduction of zinc acetate to zinc oxide nanoparticles. 
The mixture was stirred for 1 h, centrifuged for 30 min and 

washed severally with deionized water and ethanol. The 
pure reduced ZnO nanoparticles were oven dried at 80 °C 
for 6 h and calcined at 500 °C for 1 h. The nanocomposites 
were synthesized by mixing 100 ml (0.5 M) of Zn(CH3COO)2 
with 100 ml (0.05 M) of  AgNO3 or Cu  (CH3COO)2 for the 
synthesis of ZnO–Ag and ZnO–Cu respectively. The solu-
tion was stirred for 2 min on a magnetic stirrer and the 
methanolic extract of the dye was added to the mixture. 
The finishing protocol for ZnO was adopted for the com-
posites. Figure 1 presents a schematic representation of 
the synthetic pathway for the particles (Scheme 1).

2.4.1  Reaction mechanism for the synthesis of ZnO 
nanparticle and ZnO–Ag nanocomposite

The presence of tannins, terpenoid and flavonoids in the 
dye extract which behave as ligands and their special abil-
ity to chelate various metal ions enhance the reduction 

Fig. 1  FTIR of a ZnO Nanoparticle b ZnO–Ag Nanocomposite c ZnO–Cu Nanocomposite d dye of B. ferruginea 

Scheme 1  Schematic representation of the synthetic pathway of ZnO nanoparticles (NP) and ZnO–Ag and ZnO–Cu nanocomposite
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and subsequent stabilization of the ions to their nano 
form. Among the phytochemical constituents, flavonoids 
readily chelate metal ions and create complex compounds 
due to their ability to donate electrons and hydrogen 
atoms. Zinc acetate, Copper acetate and silver trioxonitrate 
(V) dissolved in water to become freely moving ions as 
shown in the Eqs. (1 and 2) for Zinc acetate.

The free ions attack the active sites on the phenolic 
compound present in the dye extract to gain stability 
hence, reducing it to its nano form. The large number of 
“OH” functional groups in phytochemical is a major factor 
in the reduction process. This factor favours the formation 
of a hydrophilic surfaces arising from the dissolved oxygen 
(from air) molecules, that are suitable for the growth of 
nanoparticles [28]. The Mechanism pathway for the syn-
thesis of ZnO–Ag nanocomposite is the same as ZnO–Cu 
nanocoposite synthesis (Scheme 2).

2.5  Phytochemical analysis of the dye

Phytochemical screening was performed on the dye to 
ascertain the presence of reducing and capping agent 
present in the dye extracts. The assays to investigate are; 
tannins, steroids, phlobatannins, saponins, flavornoids, 
phenols, anthocyanins and terpenoids and using estab-
lished methods [30–32, 33].

2.5.1  Test for tannin

10 ml of bromine water was added to the 0.5 g aqueous 
extract. Decoloration of bromine water comfirmed the 
presence of tannins

2.5.2  Test for steroids

2 ml of chloroform and concentrated H2SO4 were added 
with the 5 ml aqueous plant crude extract. In the lower 
chloroform layer red color appeared that indicated the 
presence of steroids

2.5.3  Test for phlobatainin

1% aqueous HCl acid was added to 5 ml of the extract, 
it was then boiled with the help of Hot plate stirrer. The 
absence of a red precipitate was evidence for the absent 
of phlobatannins in this sample.
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2.5.4  Test for saponins

5.0 ml of distilled water was vigorously mixed with aque-
ous crude plant extract in a test tube. Few drops of olive 
oil was added to the mixture upon froth appearance and 
vigorously mixed. The appearance of foam confirmed the 
presence of saponins.

2.5.5  Test for flavonoids

Alkaline Reagent Test were used to confirm the presence of 
flavonoids in bark of B. ferruginea. 2 ml of 2.0% NaOH mix-
ture was mixed with crude aqueous extract of the plant; 
concentrated yellow color was produced, which became 
colorless when 2 drops of diluted acid was added to the 
mixture. This result showed the presence of flavonoids.

2.5.6  Test for phenol

5 ml of the methanolic plant extract was mixed with 2 ml 
of 2%  FeCl3 solution. A blue-green or black coloration indi-
cated the presence of phenols

2.5.7  Test for cyanogenic glycoside

Sodium picrate test or Guignard reaction was used to con-
firm the presence of anthocyanins. A soaked filter paper 
strips was first in 10% picric acid and then in 10% sodium 
carbonate and dried. The extracts were taken in small bot-
tles and the strips were suspended from the mouth of the 
container and the lids were tightly closed with portion of 
the s trip stuck in the lid. The strips did not turn brick red 
nor maroon indicating the absence of cyanogenic glyco-
sides (anthocyanins)

2.5.8  Test for terpenoids

Chloroform (2 ml) was added to aqueous plant extract 
(5 ml) and evaporated on a water bath and then boiled 
with 3 ml of concentrated H2SO4. A grey coloration attests 
to the presence of terpenoids.

2.6  Characterization of biosynthesized ZnO 
nanoparticles and ZnO nanocomposite of Silver 
or Copper

The FTIR (Shimadzu Co. Ltd., Kyoto, Japan) was used with 
KBr pellets in the wavelength range 4000–500 cm−1 for 
identification of the functional groups involved in the 
reduction of the precursors to nanoparticles and nano-
composites. The phase formation, purity and crystallin-
ity of the nanoparticles were recorded using XRD (GBC 
eMMA). The visual properties of ZnO nanoparticles 
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and nanocomposites were investigated, based on 
UV–Vis absorption spectra in the wavelength range of 
200–800 nm. The morphologies, elemental composition 

and particle size were investigated using SEM equipped 
with an EDX (Quanta 200—FEI coupled to EDS probe) 
and TEM (TECNAI G2 SPIRIT-FEI).

Scheme 2  Schematic mechanism for the synthesis of a ZnO Nanoparticles and b ZnO–Ag nanocomposite (Idea from work of Ahmad et al. 
[29] and Mohammed et al. [28])
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3  Results and discussion

3.1  Phytochemical analysis

The methanolic dye extract was screened for major phy-
tochemicals as shown in Table 1. Aside the biological and 
the therapeutic properties, the metabolites are reported 
to have excellent reducing and stabilizing ability towards 
the reduction of bulk metals to the nano forms [34]. High 
extract yields of phenols and terpenoids were recorded in 
the dye. This is ascribed to the high polarity of methanol 
solvent to a variety of plant constituents [31]. The presence 
of these molecules gives the dyes the expected self-assem-
blage and ability to cap the metal nanoparticles formed, 
thereby inducing controlled morphology [35].

Among the metabolites, terpenoids and phenols iso-
lated from plants are implicated in successfully catalyzing 
the reduction of bulk material to nano ions [30, 34]. The 
ability of phenol to act as capping agent lies in the pres-
ence of hydroxyl and carboxylic group which makes it a 
good chelator [36], impacting it with ability to stabilize 
metal ions [37]. The presence of the two metabolites gave 
the dye the expected strength to reduce bulk materials 
and stabilize the metal ions. The absence of anthocyanine 
confirmed report in literatures that, it can only exist in stor-
age tissues of the plants [38].

3.2  FTIR spectroscopy of the synthesized 
nanoparticles and nanocomposites

FTIR (Fig.  1) was used to identify the possible func-
tional groups that are actively involved in the reduc-
tion of Zn(CH3COO)2,  AgNO3 and Cu(CH3COO)2 to vari-
ous nanoparticles and nanocomposite. A broad peak at 
3394.83 cm−1 for B. ferruginea dyes is assigned hydrogen 
O–H band stretching, but shifted to 3618.58 cm−1 on the 
spectra of ZnO nanoparticles, ZnO–Ag and ZnO–Cu nano-
composites [39]. The dyes have a crest at 1635.69 cm−1 

which is characteristic of aldehydes C=O stretches, but 
slightly moved to higher frequencies on the spectra of 
ZnO nanoparticles, ZnO–Ag and ZnO–Cu nanocom-
posite. A H-C˗H asymmetric and symmetric stretch 
peak was found at 2931  cm−1 on the dye’s spectrum, 
but at 2924.18 cm−1 for ZnO–Cu and 2808.92 cm−1 for 
ZnO–Ag nanocomposites. The peak at 1527 cm−1 on the 
dye spectra is for N–H bends. This however appears as N–H 
stretching at 3286 cm−1 for ZnO–Ag. The spectral bands 
at 1419.66 cm−1, 1427.37 cm−1 and 1450.52 cm−1 con-
firmed the presence of C-H bending, while 1103.32 cm−1, 
1072.46 cm−1, 1095.60 cm−1 correspond to C-O stretch-
ing for ZnO, ZnO–Ag, ZnO–Cu respectively. The crest at 
1411.94 cm−1 on the FTIR spectra of the dyes is typical of 
S=O stretching, but this appeared on a lowered frequency 
of 1404.22 cm−1 on ZnO–Ag nanocomposite. The func-
tional groups between 686.68 and 879.57 cm−1 correlates 
to metal oxide bands [5].

The absence of S=O, N–H bends, H-C-H asymmetric 
and symmetric bands on the spectra of ZnO nanoparti-
cles and ZnO–Cu nanocomposite spectra confirmed that 
the functional groups were used up in the reduction of 
the zinc acetate and Copper acetate [40]. All the band and 
functional groups identified are peculiar to the phytocon-
stituents identified in the phytochemical screening [41].

3.3  UV–visible spectroscopy

Figure 2 presents the UV–Vis absorption spectra of ZnO 
nanoparticles, ZnO–Ag and ZnO–Cu nanocomposites 
and the dye. There is an excitonic peak between 206 nm 
for the dyes and 251 nm for the ZnO–Ag, these peaks 
are characteristic of the polyphenolic compounds which 
acted actively during the synthetic and reduction pro-
cesses between the phyto-compounds of B. ferruginea, 
and metal precursors [42]. These peaks also pointed to 
presence of ZnO nanoparticles, which lies much below 
the bandgap wavelength [41]. Peaks between 300 and 
400 nm are characteristic of ZnO nanoparticles which 
may be due to the electron transition from the valence 
band to the conduction band. The appearance of distinc-
tive peaks of low absorption intensity on the spectra of 
ZnO nanoparticles, ZnO–Ag and ZnO–Cu nanocompos-
ite between 320 and 360 nm confirmed the formation of 
ZnO nanoparticles [43]. The reduction in the peak inten-
sity in the spectra of the ZnO–Ag and ZnO–Cu indicated 
the inclusion of  Ag2+ and  Cu2+ in the matrix of the nano-
composites and suggested some level of agglomeration 
with irregular shapes [44]. The region of absorption of 
the spectrum suggested the suitability of the nanoma-
terials for both UV and visible region [45].

Table 1  Phytochemical constituents of Bridelia ferruginea 

Phytochemical test Absent present Slightly 
present

Heavily present

Tannin ++
Steroids ++
Phlobatainins +
Sapoins +
Flavonoids +
Phenols +++
Anthocyanins −
Terpenoids +++
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The optical band gap (Fig. 3), was estimated using 
Tauc’s plot for direct transition semiconductor, by 
extrapolating the straight line of (αhν)2 versus hν graph. 
High band gap energy of 4.73 eV is recorded for the dye, 
but was reduced to 3.24 eV in ZnO nanoparticles. The 
introduction of Ag and Cu impurities in the nanocom-
posite narrowed the band gap to 3.18 eV and 3.12 eV for 
ZnO–Cu and ZnO–Ag respectively.

This narrowing of band gap became prominent as 
 Zn2+ is gradually substituted by  Cu2+ and  Ag2+ in the 
matrix of the materials and systematically increased the 
number of oxygen vacancies due to their ion radii and 
electronegativity [46]. More so, the impurities created 
a special defect, which simulates the Fermi level to rise 
towards the conduction [41, 45, 47, 48]

Figure 4 is the XRD diffractogram of ZnO nanoparti-
cle, ZnO–Ag and ZnO–Cu nanocomposites. The peaks at 

2θ of 31.62°, 34.30°, 36.11°, 47.41°, 56.47°, 62.75°, 67.83° 
and 68.95° for ZnO nanoparticles diffractogram lie in the 
crystallographic planes of (100), (001), (101), (102), (110), 
(103), (112) and (201). These agree with standard JCPDS 
card No. 89-0510, and correspond to the Hexagonal wurtz-
ite [42, 49–51]. The crystallography of ZnO–Ag showed 
peaks that correspond to 2θ values 26.84°, 29.46°, 31.95°, 
44.96°, 47.42°, 50.89°, 53.33°, 56.28°, 63.45° and 68.82° and 
within the crystallographic planes of (111), (111), (200), 
(220), (220), (311), (222), (311), (400) and (331). These are 
concordant with JCPDS No. 89-4937. The peaks at 26.84°, 
29.46° and 31.95° are due to the presence of bio-organic 
phases on the surface of the particles [44], these would 
have been contributed by the polyphenolic compounds. 
Characteristic peaks of  Ag+ signal appeared at 2θ 4.96° and 
63.45°. This attest to the presence of  Ag+ in the ZnO–Ag 
nanocomposite. A similar diffractogram was reported by 

Fig. 2  UV-Vis Absorption spec-
troscopy of ZnO nanoparticles, 
ZnO–Ag nanocomposite, ZnO–
Cu nanoparticles and dyes
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Dinesha et al.,when he dope ZnO with Ag [52]. However, 
there is an overlap of  Ag+ signals with the wurtzite plane 
at (311), (400) and (331). The influence of doped Ag onto 
ZnO significantly altered the peak orientation, due to 
replacement of  Ag+ into host ZnO crystal lattice [53]. All 
the other peaks confirmed in the XRD graph of ZnO–Ag 
nanocomposite are assigned to ZnO nanoparticles. The 
diffractograms of ZnO–Cu nanoparticles show peaks in the 
crystallographic plan of (002) and (101) which are typical 
of ZnO nanoparticles. The crystallographic peaks of 2θ at 
35.55°, 38.65°, 47.47°, 48.66° lies in the plane of (−1 1 1), (1 
1 1), (−2 0 2). These are in consonance with the XRD pat-
tern, with the presence of copper doped on the ZnO [3]. 
There is an overlapping of the Cu and Zn signals, especially 
at a 2θ value of 62.81°, 66.02° and 67.95°. The extra peaks 
are plant phytoconstituents which probably escaped the 
washing of ZnO–Ag during the synthesis.

The Highly absorbed diffraction peaks confirmed the 
significant crystallinity of ZnO, ZnO–Ag and ZnO–Cu nano-
materials. The unavailability of other diffracted peaks on 
the diffractogram of ZnO and ZnO–Ag authenticates 
the high purity of the synthesized ZnO nanoparticles [7, 
41]. The decrease in peak’s intensity on the ZnO–Ag and 

ZnO–Cu diffractograms, is a behavioural pattern peculiar 
to decreased crystallite sizes in the presence of the dopant. 
There is a slight shift on the ZnO peaks accounting for the 
present AgO and CuO fussed in the ZnO wurtzite lattice. 
The secondary phase of AgO and CuO diffraction peaks 
indicated the formation of AgO- ZnO and CuO–ZnO nano-
composite. The change in the crystallite size and a shift on 
ZnO on the diffractogram is the confirmation of the pres-
ence of Ag and Cu incorporated into the Zn site [3, 17, 54].

The average grain size of the sample, was calculated 
using the Debye Scherer’s equation

where D is Crystal size (nm), is the wavelength of the XRD 
used, is FWHM, and is Bragg’s angle [40, 45, 55]. X-ray dif-
fractogram was analyzed to obtain information about vari-
ous crystalline aspects of ZnO nanoparticle, ZnO–Ag and 
ZnO–Cu nanocomposite materials. The average crystallite 
size of ZnO, ZnO–Ag and ZnO–Cu is about 19.02 nm, 18.98 
and 18.90 nm respectively.

3.4  SEM and EDX analysis of ZnO nanoparticles, 
ZnO–Ag and ZnO–Cu nanocomposites

The morphological feature and the elemental composi-
tion of the nanomaterials synthesised were investigated 
using SEM equipped with an EDX as shown in Fig. 5. The 
SEM picture of ZnO nanoparticles confirmed the forma-
tion of nanoparticles with approximate nodular like shape. 
There was no significant change in the morphology upon 
the addition of Ag dopant but with the addition of Cu 
impurities, the nodular like shape aggregated into larger 
particles with pores but no well-defined morphology. This 
aggregation may be due to the presence of secondary 
metabolites in the leaf extracts [39] as confirmed by the 
XRD. The presence of Zn, O, Ag and Cu were confirmed by 
EDX Fig. 5(a1–c1).

A strong peak for O appeared at about 0.5 keV with  Zn2+ 
ion on 1.08 keV, 8.59 keV and 9.82 keV.  Ag2+ is at 3.09 keV 
and  Cu2+ peak appeared on binding energy 8.1 keV. A 
strong signal of O on the EDXs of the synthesized nano-
materials, is partly contributed by X-ray emission from the 
phytochemicals of the dye.

3.5  TEM and SAED pattern of the materials

The TEM images in Fig. 6 give detailed structural analysis 
of the synthesized materials. The image (Fig. 6a shows 
the presence of nanorods coexisting with nanoflakes in 
ZnO nanoparticles. Image of ZnO–Ag in Fig. 6b revealed 
a polyhedral shape of ZnO with Ag dots on the surface 
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of the metrics. The introduction of Cu impurities to form 
ZnO–Cu nanopcomposite, changed the nanorods and 
the flakes in ZnO to a spherical shape as shown in Fig. 6c. 
The close link between Ag and ZnO makes a strong elec-
tronic interaction that will improve the charge separa-
tion [55], this accounts for its low energy band gap when 
compared with ZnO–Cu nanocomposite. The average 
particle sizes of ZnO, ZnO–Ag and ZnO–Cu which are 

< 50 nm are in consonance with XRD results. The selected 
area SAED pattern in Fig. 6(a2–c2) show distinct bright 
centric ring with further ring in Fig. 6(a2) being partially 
illuminated confirming the irregular orientation of its 
nanocrystals unlike in Fig. 6(b2, c2) which indicated a 
regular orientation of nanocrystals [41].

Fig. 5  SEM images of a ZnO 
nanoparticles, b ZnO–Ag 
nanocomposite, c ZnO–Cu 
nanoparticles and the EDX of 
(a1) ZnO nanoparticles (b1) 
ZnO–Ag nanocomposite (c1) 
ZnO–Cu nanocomposites
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4  Conclusion

Nanoparticles and nanocomposites were effectively syn-
thesized by a green method using Soxhlet extracted dye of 
B. ferruginea as a reducing and capping agent. O–H, C=O, 
N–H, C–O and S=O were ascertained to be the functional 

groups that, were involved in the reduction and stabilizing 
of the nano ions. The optical studies revealed a narrow-
ing of band gap from 3.24 to 3.13 eV as  Ag2+ and  Cu2+ 
gradually substituted the  Zn2+ ions in the ZnO matrix. 
High level of crystallinity and the average crystallite size of 
19.02, 18.98 and18.90 nm was recorded for ZnO, ZnO–Ag 

Fig. 6  TEM Image of a ZnO, 
b ZnO–Ag and c ZnO–Cu 
and SEAD Image of (2a) ZnO 
nanoparticles, (2b) ZnO–Ag 
nanocomposite, (2c) ZnO–Cu 
nanocomposite
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and ZnO–Cu respectively. SEM and TEM analysis clearly 
indicated the formation of flakes with nanorods for ZnO, 
polyhedral shape with Ag dots and spherical shape upon 
doping of ZnO with Ag or Cu. The elemental analysis con-
firmed peaks for Zn, Ag, Cu and O. The bright centric ring 
and other non-luminous ring of the SAED revealed an 
irregular orientation. These findings inferred the viability 
of the dye extracted from B. ferruginea as a reducing and 
capping agent capable of synthesizing nanoparticles and 
nanocomposites that are eco-friendly with potentials in 
photovoltaic, electronics and photocatalytic applications.
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