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Abstract
Electrical power output (PE) for a combined cycle gas turbine (CCGT) consisting of 9568 data records collected over a 
6-year period is evaluated by the transparent open box (TOB) machine-learning method to provide accurate PE predic-
tions and insight to prediction errors. The PE predictions derived by applying the TOB optimized data matching technique 
are more accurate than published predictions for the dataset from fifteen correlation-based, machine-learning algorithms. 
TOB achieves this high-accuracy using a tuning subset of < 150 (~ 1.5%) data records. Its accuracy is confirmed by testing 
the optimized solutions against all dataset records in 15 runs spread across five shuffled datasets. The dataset has a few 
extreme outliers associated with its four independent variables and these negatively impact the prediction accuracy 
of machine-learning methods. Through its transparency and forensic-like auditability of its calculations for individual 
data records, the TOB algorithm is able to mine the dataset to provide useful insight to the interactions of the outliers 
with other data records. This enables a filtered dataset (9533 records), excluding 35 carefully selected data records, to 
be customized to deliver much improved prediction accuracy (RMSE = 2.89 MW). Mining the dataset also reveals signifi-
cant differences in prediction accuracy achieved for different sectors of the PE distribution. This insight identifies that 
prediction accuracy could be further improved by dividing the dataset into separately optimized subsets, three along 
its main PE trend plus a fourth, small subset consisting of the outliers. The TOB algorithm demonstrates its value as a 
machine-learning tool capable of generating accurate predictions and easily auditable data mining. It is well suited for 
CCGT efficiency and performance optimization.

Keywords Gas-to-power predictions · Machine learning transparency · Memetic optimization · Outlier analysis · Data 
filtering · Segmental analysis

1 Introduction

Combined cycle gas turbines (CCGT) are widely exploited 
in modern power supply networks and their capacities and 
configurations as power blocks continue to grow, particu-
larly in the United States due to low-priced shale gas [1]. 
CCGT power plant operators need to routinely predict in 
the medium term and forecast in the short-term the elec-
trical power output (PE) at full load and the natural gas 

consumption of their plants. They do this based on pre-
vailing or expected conditions, in order operate efficiently, 
comply with contractual requirements and achieve maxi-
mum profitability. A CCGT’s PE can be calculated based on 
the thermodynamic relationships governing the complex 
combination of processes involved. However, that is time-
consuming and subject to a number of uncertainties and 
assumptions. Consequently, machine learning algorithms 
assessing historical performance data for specific plants, 
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operating over a range of environmental conditions, are 
useful for providing rapid PE forecasts to operationally 
meaningful levels of prediction accuracy [2].

CCGT’s generate their electricity from a gas turbine (GT) 
driven by high-temperature combustion gases coupled 
with a steam turbine (ST) fuelled by steam generated from 
a heat recovery system fuelled by the exhaust gases from 
the GT. The operational efficiency of CCGT is impacted by 
ambient conditions [3]. Ambient temperature continues 
to be widely studied in relation to the operational perfor-
mance of CCGT [4–6], but other ambient factors such as 
atmospheric pressure, relative humidity, and wind speed 
also have an influence. The operating conditions of the 
equipment, e.g., turbine blade cooling, exhaust tempera-
ture and exhaust steam pressure also influence CCGT per-
formance [7, 8].

A number of studies have applied various regression 
methods and other machine learning techniques to CCGT 
performance prediction [9] and fault detection [10]. The 
application of artificial neural networks (ANN) as reliable 
alternatives for various simulation control modelling and 
fault detection applications for CCGT is now well estab-
lished [11–13]. Other machine learning methods includ-
ing Least Squares Support Vector Machines (LSSVM) [14] 
and adaptive neuro-fuzzy inference system (ANFIS) [15] 
are also applied for modelling and controlling GT. Indeed, 
machine learning is now applied to many aspects of GT 
performance including the optimization of design for 
its components, asset operation and maintenance [16]. 
This typically involves data-driven and deep learning 
approaches [17], in some cases developing networks 
capable of unsupervised learning with input data that 
lacks a structured format. Machine learning regression 
approaches are widely applied to provide reliable per-
formance predictions of compressor components and 
anomaly detection for gas turbine combustors [8, 18–20]. 
Whereas artificial neural networks remain the most com-
monly used for diagnosing fault conditions [21], gas tur-
bine performance is now being more rigorously monitored 
by simulation, optimization [22] and hybrid networks such 
as a combination between ANN and high dimensional 
model representation [23]. However, all of these methods 
involve correlations regressions, correlations and statistical 
relationships between input parameters and dependent 
variables to underpin their machine learning capabili-
ties. The novelty of this method and analysis applied to 
CCGT power output prediction is that it demonstrates that 
meaningful and accurate predictions can be achieved by 
data matching techniques that does not involve regression 
and/or correlations between its variables.

Here, transparent-open-box (TOB) machine learning 
[24–26] applies an optimized-data—matching technique 
to model CCGT performance based on a dataset published 

by UCI [27]. That dataset is already extensively analysed 
to compare the prediction performance of several corre-
lation and regression-based machine learning methods 
[9] including ANN [13]. The TOB method, which does not 
use correlations to make its predictions, offers several 
advantages over neural network and other correlation 
machine-learning methods. Comprehensive data mining 
and an ability to identify and avoid overfitting datasets are 
valuable TOB attributes.

The main objective and contribution of this study are to 
demonstrate that the recently developed optimized data 
matching algorithm employed (the TOB method) provides 
more accurate predictions of electrical power output for 
a large (nearly 10,000 data records) combined cycle gas 
turbine dataset of influencing variables than fifteen pub-
lished correlation-based, machine-learning algorithms 
applied to the same dataset. Additional objectives and 
contributions are to describe how the transparency of the 
TOB calculations facilitates detailed data mining, predic-
tion error analysis and segmental analysis of the dataset, 
providing substantial insight to the dataset that is diffi-
cult to generate with less- transparent machine learning 
methods.

The five remaining sections of this article are organized 
as follows. Section 2 describes the CCGT dataset evaluated. 
Section 3 explains the TOB method and its optimizers. Sec-
tion 4 presents prediction results for 9568 data records 
and assesses their accuracy using standard statistical 
techniques on an individual and segmental basis. Further 
details of the methodology and cases run are provided in 
a supplementary file. Section 5 provides prediction outlier 
error analysis and considers data filtering possibilities to 
improve prediction accuracy. These findings support the 
final conclusions section.

2  Dataset

The dataset studied [27], with some analysis previously 
published [9, 28] contains 9568 data points collected 
from a CCGT operating in Turkey over a 6-year period 
(2006–2011). The plant (480-MW nominal generating 
capacity) involves two 160-MW ABB 13E2 gas turbines, 
two dual-pressure–heat-recovery steam generators, and 
one 160-MW ABB steam turbine. The operational data was 
recorded and filtered to provide information just for the 
periods when the CCGT was operating at full load.

Hourly average values of four independent variables are 
available for each data record. These are:

• Ambient temperature (AT)
• Atmospheric pressure (AP)
• Relative humidity (RH)
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• Steam turbine’s exhaust pressure, referred to as vacuum 
(V)

Additionally, the CCGT’s net hourly electrical energy 
output (PE) in MW is provided for each data record. PE is 
the dependent variable for prediction purposes.

The data for these variables was recorded every second 
and averaged to provide hourly data. Sensors to measures 
variables AT, AP and RH are placed at the air inlet to the 
GT, whereas variable V is measured with a sensor at the 
exhaust on the low-pressure side of the ST. Five shuffled 
versions of the dataset (each with 9568 records) are pro-
vided as part of the UCI dataset that are useful for statisti-
cal and repeatability tests for the prediction models. In this 
study each of the five datasets is sampled independently 
three times for TOB analysis. The ranges, arithmetic means 
and units of the five dataset variables are listed in Table 1. 
See “Appendix” for accessing the complete dataset.

The independent variables in the CCGT dataset show 
distinctive correlations with dependent variable PE 
(Table 2). However, a few data records (< ~ 0.5%) do exist 
as outliers to the main trends as revealed in variable cross 
plots, e.g. AT versus PE (Fig. 1). These outliers have a sig-
nificant impact on PE prediction accuracy, which is inves-
tigated in Sect. 5.

As well as generating accurate predictions of the 
dependent variable (PE) for the entire dataset, the few 
prediction outliers that are generated in the optimum 
prediction models (typically between 1 and 2% of all data 
records) are further assessed using a novel and simple 
data filtering and error analysis technique. This identi-
fies the few outlying predictions that exceed specified 
squared-error (SE) limits. The SE limits applied in this 
study are 100 MW and 200 MW equating to PE prediction 
errors of plus or minus 10 MW and 14.1 MW for individual 
data records. Those data records that exceed this speci-
fied limits are identified as outliers and the data match-
ing involved in their predictions forensically assessed. The 
details of this data filtering and outlier analysis applied to 
the CCGT dataset studied are provided in Sect. 5.

3  Method

3.1  TOB method overview

The TOB learning network is a recently introduced 
machine-learning algorithm involving an optimized data 
matching approach [24]. It has been successfully applied 
to both small and large datasets to provide accurate pre-
dictions and transparent data mining [25, 26]. The TOB 
method is described in detail in the studies cited and is 
not repeated here. A flow diagram summarizing the cal-
culation sequence adapted for application to the CCGT 
dataset summarizes the TOB method (Fig. 2). More details 
about the TOB method and its implementation sequence 
is provided in the supplementary file (Sects S.1 and S.2).

For small data sets (up to a few thousand data records) 
TOB Stage 2 can be efficiently conducted using Excel’s 
Solver optimizers. For mid-sized and large datasets, a fully 
coded memetic firefly optimizer is applied [29]. For the 
CCGT dataset both approaches are utilized. Excel’s Solver 
optimizers are both applied to verify the outcomes for the 
tuning subsets with up to 150 data records. For larger tun-
ing subsets just the memetic firefly optimizer is applied.

An independent testing subset is used to verify that 
the optimum solutions derived by applying the two 
stages of the TOB algorithm to the tuning subset provide 
dependent-variable predictions that are statistically valid 
when applied to the dataset more generally. TOB derives 
two useful predictions of its dependent variable. The first 
(Stage 1) establishes and use the ten best data matches for 
each data records with other records in the dataset. The 

Table 1  Variable characteristics 
of CCGT dataset [9, 27, 28] with 
9568 data records

Variable Symbol Units Min Max Mean

Temperature AT °C 1.81 37.11 19.65
Exhaust vacuum (steam turbine) V cm Hg 25.36 81.56 54.31
Ambient pressure AP Millibars 992.89 1033.30 1013.26
Relative humidity RH Percent 25.56 100.16 73.31
Net hourly electrical energy output PE MW 420.26 495.76 454.37

Table 2  Correlation coefficients (R) between variables in the 
9568-UCI-CCGT dataset [27]. See Table  1 for variable abbreviation 
definitions

R AT V AP RH PE

AT 1.0000 0.8441 − 0.5075 − 0.5425 − 0.9481
V 1.0000 − 0.4135 − 0.3122 − 0.8698
AP 1.0000 0.0996 0.5184
RH 1.0000 0.3898
PE 1.0000
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second prediction (Stage 2) minimizes the squared errors 
between the variables in the best matching data records 
by applying variable weights. Comparisons between these 
two predictions helps to reveal and prevent overfitting 
datasets.

3.2  TOB optimizers applied

The subsets used for tuning the TOB solutions are typically 
of modest size. If they involve about 150 data records or 
less, two of Microsoft Excel’s “Solver” optimizers [30] can 
be usefully exploited for TOB Stage 2 optimization. These 
two optimizers (“Generalized Reduced Gradient” (GRG) 
and “evolutionary”) are distinctive and the solutions they 
derive tend to complement each other. Together they help 
to find the most accurate or “best” optimized TOB Stage 
2 solutions. These solvers can be usefully driven by “vis-
ual basic for application” (VBA) code but cannot be fully 
coded in Excel. They require the calculations of equations 
A3 to A6 (see supplementary file Sect. S2) setup as cell 
formulas in an Excel spreadsheet. For mid-sized and large 
datasets, such as the CCGT dataset evaluated here, with 
tuning subsets containing more than 150 data records it 
is more convenient to fully code a customized optimizer. 
This avoids the need to enter the calculations into a large 
number of Excel cell formulas. For the CCGT dataset a 

customized memetic firefly optimizer [29] coded in VBA is 
applied and the results compared with Excel Solver (GRG 
and evolutionary) results for some of the smaller tuning 
subsets evaluated (Table 3).

The firefly algorithm was developed by Yang and is 
colleagues [31, 32] with computational analogies made 
to the behaviour of fireflies. Fireflies progressively move 
towards brighter individuals in a swarm. However, they 
do so in steps and incorporate a degree of randomness 
in the adjustment to their position in each step. The fire-
fly algorithm adjusts the position of each member of a 
population based on specific rules related to a calculated 
“brightness” metric that is proportional to how close their 
objective function value is to the lowest value achieved 
so far [33]. The fireflies in the best positions are assigned 
the most intense brightness. On the other hand, the fire-
flies in the worst positions are assigned the least intense 
brightness [34, 35]. In addition to the number of fireflies (f), 
three key control variables are used to configure the firefly 
algorithm and control the scale of its solution adjustments 
from one iteration to the next. These control variables are: 
a randomized factor influencing firefly movements (α); an 
attractiveness factor (β) at distance r = 0; and brightness 
coefficient (γ). The pseudocode listed here provides the val-
ues for these control variables used to configure the firefly 
algorithm used for the TOB analysis of the CCGT dataset.

Fig. 1  Independent variables versus PE for the 9568-UCI- CCGT dataset [27]. Numbers identifying outliers refer to sequence positions of data 
records for shuffled set #5. These are addressed in Sect. 5.1



Vol.:(0123456789)

SN Applied Sciences (2020) 2:441 | https://doi.org/10.1007/s42452-020-2249-7 Research Article

The memetic firefly algorithm, customized specifically 
to the requirements of the TOB learning network, involves 
six integrated memes or metaheuristics (Mh) [29]. These 
memes improve its convergence speed to the global mini-
mum (Fig. 3), compared to the standalone firefly optimizer. 
They enhance its ability to resist becoming trapped at sub-
optimal local minima. Optimization algorithms exploring 
large non-linear solution spaces, such as the one gener-
ated by the CCGT dataset studied, have to explore that 
solution space both at coarse granularity for more global 
coverage and at finer granularity for detailed local inves-
tigation. There is a risk of algorithms becoming trapped 
at local optima and failing to find the global optima. Most 
high-performing optimization algorithms attempt to over-
come this problem by involving metaheuristics that focus 
on global exploration and others that focus on local explo-
ration of the solution space. The six memes of the memetic 
firefly optimizer are therefore carefully configured to have 
different focuses with respect to global and local solution 
space exploration. These memes operate on each of the 
multiple iterations applied to a progressively modified 
population of potential solutions:

Mh1: Creates a set of initial solutions randomly (good 
for global exploration of the solution space);
Mh2: Creates some solutions applying the firefly algo-
rithm (good for both global and local exploration of the 
solution space);
Mh3: Creates some solutions by making minor adjust-
ments to several selected variables (Wn or Q) of exist-
ing high-ranking solutions (good for local exploration 
of the solution space);
Mh4: Creates some solutions by adjusting single vari-
able weights to very low (~ 0) or very high values (~ 1) 
for existing high-ranking solutions (good for local 
exploration of the solution space but with some global 
exploration potential);
Mh5: Creates some solutions by mutating one randomly 
selected variable (Wn or Q) in existing solutions of vari-
ous rank; (good for global exploration of the solution 
space); and,
Mh6: Creates some solutions by modifying one vari-
able (Wn or Q) by alternating large and small amounts. 
It is selectively applied to only high-ranking solutions 
(good for local exploration of the solution space but 
with some global exploration potential).

Fig. 2  Transparent open box algorithm workflow with steps configured for combined cycle gas turbine power prediction and data mining. 
See supplementary file for a step-by-step mathematical description of the TOB algorithm
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A pseudo-code for the memetic firefly optimizer configured for this study is as follows:
_________________________________________________________________________
Objective function to minimize f(X), X = (X1, .....Xm)t

Where X is the RMSE for the TOB tuning set dependent variable prediction versus its actual 
values for M data records in iteration t. Each data record m has N independent variables
contributing to the value of X.

Initialise firefly control variables for metaheuristic (Mh)2

α (second iteration); (0.15 used for initial α in this study)
α (last iterations); (0.10 used for final α in this study)
β (second iteration); (0.4 used for initial β this study)
β (last iteration); (0.2 used for final β in this study)
Sliding scales between initial and final α and β values are applied across the iterations
γ can vary between 2 and 10; (2 used for γ in this study)

Initialize population f of random solutions (Mh1) for iteration 1: 

Xi (1,2, ..., f); (f =100 for this study) 

For each solution: constraints applied are  2<=Q<= 10 and 0<=Wn<=1
where Q is the number of top matching data records and Wn are the difference weights 
applied to each of the N variables

While (2<=t<= maximum number of iterations)

Ensure highest ranking solution from iteration t-1 is preserved as part of the population 
generated for iteration t

Evaluate and rank f solutions from iteration t-1
Modify top ranking f2 of those solutions by Mh2; (f2 =50 for this study) 
Modify f3 of lower ranking solutions from iteration t-1by Mh3 (f3 =20 for this study) 
Modify f4 of higher-ranking solutions from iteration t-1by Mh4 (f4 =10 for this study)
Modify f5 of higher-ranking solutions from iteration t-1by Mh5 (f5 =10 for this study)
Modify f6 of higher-ranking solutions from iteration t-1by Mh6 (f6 =10 for this study)

Mh1 to Mh6 modifications collectively generate f-1 new solutions plus the best solution from 
iteration t-1

Rank and sort f new solutions generated for iteration t based on their X values and record 
them

End While

Graphically display best solution for each iteration
Mine solution data set to generate a  metaheuristic profile of the optimization sequence
_______________________________________________________________________

and Mh4 also making significant contributions. Such profil-
ing verifies that all the memes in the memetic algorithm 
are contributing to the performance of the optimizer as a 
whole and facilitating efficient convergence without lead-
ing to entrapment at suboptimal minima. The optimizer 
collects the details (Wn and Q values) for all the solutions it 
evaluates. This is an advantage over the Solver optimizers 
that provide limited details on the interim best solutions 
found.

To summarize, three distinct optimizers: (1) Excel’s 
Solver GRG—a gradient search optimizer; (2) Excel’s Solver 

The effectiveness of each meme in contributing to a 
solution is monitored by a metaheuristic profiling tech-
nique [36, 37], a graphical representation of which is illus-
trated by Fig. 4 for an optimization solution derived for 
Case 5C.

Figure 4 indicates that the six memes described are able 
to contribute high-ranking solutions in the initial runs of 
the firefly optimizer. I.e., up to iteration #50, or so. On the 
other hand, random solutions only contribute to the ten 
best solutions during the first few passes. Beyond iteration 
50 the top-ten solutions are dominated by Mh3 with Mh2 
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evolutionary optimizer; and, (3) the memetic firefly opti-
mizer are used and their results displayed and compared 
for this study. Many other optimization algorithms (gradi-
ent search and evolutionary) with good global and local 
search capabilities could be successfully deployed for this 
purpose. It is not a necessity for the TOB method to use 
the memetic firefly optimizer but it is beneficial for it to 
do so. This is because the memetic firefly optimizer is spe-
cifically customized to maximize the transparency of the 
intermediate solutions generated, and to facilitate analysis 
exploiting its metaheuristic profiling capabilities.

3.3  Computational performance

For this CCGT power output prediction study, the TOB 
algorithm was executed on a computational platform 

running Excel 365 using VBA code run on a laptop (Intel 
5-core processor/CPU 1.80 GHz) with a Windows 10 oper-
ating system. Exact computation times vary depending 
upon the computational platform used as well as the num-
ber of variables evaluated and the number of data records 
constituting the datasets evaluated.

The approximate computational times, using the plat-
form dataset and TOB configuration described, for the 
component TOB actions are:

• Allocating records to the tuning, testing and training 
subsets: ~ 3.5 s

• Identifying and ranking squared differences of each 
tuning and testing subset data record against all data 
records in the training subset (i.e., more than 9250 data 
records matched for each tuning and testing subset 
record) ~ 168 s

• Calculating TOB stage 1 predictions: ~ 0.5 s
• Executing TOB Stage 2 optimizers (Solver GRG, Solver 

evolutionary, memetic firefly) to train tuning subsets, 
consisting of ~ 150 data records, to reach convergence 
at an RMSE minimum (actual versus predicted PE for all 
data records in the tuning subsets); or be terminated 
after a specified running time: ~ < = 60 s

• Applying the optimized solution to calculate TOB Stage 
2 predictions for the testing subsets consisting of about 
200 data records: ~ 0.8 s

The TOB algorithm deployed for this study is configured 
to maximize the transparency of the intermediate calcula-
tions and to deliver insight to all the data records influenc-
ing those intermediate calculations rather than minimizing 
computation time. The data matching step to establish the 

Fig. 3  Progress of the optimized solution towards a minimum 
RMSE value applying TOB’s memetic optimizer

Fig. 4  A metaheuristic profile 
[36, 37] for the first 110 itera-
tions of the optimizer (Case 
#5C). The top-ten solutions 
found by each meme are 
distinguished
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top-10 best data matches from the large training subset 
is the most computationally expensive. This could be con-
figured to run faster by reducing the data match informa-
tion collected as part of its intermediate calculations, but 
that counters the objective of providing a fully transparent 
algorithm. Similarly, the memetic optimizer could be con-
figured to run faster by restricting the intermediate solu-
tion data it collects but that would undermine the valuable 
metaheuristic profiling information it provides.

3.4  Prediction accuracy statistical measures 
exploited and monitored

The following statistical measures of accuracy are calcu-
lated as part of the TOB analysis:

• Mean square error (MSE)
• Root mean square error (RMSE)—TOBs objective func-

tion
• Percent deviation between measured and predicted 

values (PD)
• Average percent deviation (APD)
• Absolute average percent deviation (AAPD)
• Standard deviation (SD)
• Correlation coefficient (R) between measured and pre-

dicted values
• Coefficient of determination  (R2)

Detailed formulas to calculate these metrics are pro-
vide in Sect. S.3 of the Supplementary File (equations A7 
to A14).

4  Results

4.1  TOB applied through subset training to provide 
rapid and auditable predictions

The TOB learning algorithm evaluates five shuffled sets of 
the CCGT dataset [27] with three cases (A, B and C) run for 
each set. This means that each of the fifteen cases exe-
cuted involves a different set of data records in both its 
tuning and testing subsets. Initial tests were performed 
to establish the appropriate number of data records for 
the small tuning and testing subsets to contain. Such tests 
are straightforward to execute and interpret. If a stage 2 
solution does not lead to better prediction accuracy than 
a stage 1 solution applied to the testing subset, this indi-
cates that the tuning subset used does not include suffi-
cient data records to representatively sample the dataset. 
If that tuning subset solution shows high accuracy for the 
tuning subset records but poorer accuracy than the stage 
1 solution when applied to the testing subset, it is likely to 

be overfitting the limited data records it has at its disposal 
during the tuning process.

For the UCI CCGT datasets the sensitivity analysis sug-
gested that the tuning subset needed to contain about 
100 or more to provide meaningful improvements during 
the TOB Stage 2 optimization. On the other hand. The test-
ing subset need to contain about 150 or more data records 
to meaningfully sample the distributions covered by the 
full dataset. Consequently, for this study, the sample sizes 
of the tuning subsets are all set at 146 data records and 
the testing subsets are all set at 197 data records. In both 
cases the data records are distributed across the entire 
data set in an arbitrary way to avoid potential clustering 
that may occur in random sampling. This means that the 
remainder of each dataset, 9225 data records, with tuning 
plus testing data records removed, becomes the training 
subset for the tuning process. In this study, the tuning sub-
set size (i.e., number of data records) represents just 1.52% 
of the full dataset (9568) and the testing subset just 2.06% 
of each full dataset. Clearly, it is necessary to demonstrate 
that these small subset samples can provide robust and 
reliable predictions for the dataset as a whole. This results 
presented will confirm the repeatability and reliability of 
the method.

Table  3 displays the PE prediction accuracy of TOB 
analysis applied to tuning and testing subsets of selected 
cases for the dependent variable (PE). The results for all 
cases evaluated are listed in Table S4 in the supplementary 
file. RMSE (objective function) and  R2 are used to summa-
rize prediction accuracy for each case and each optimizer 
applied. As should be expected, the stage 2 predictions 
provide higher tuning-subset accuracy than stage 1 in all 
cases evaluated. For all tuning subsets:

• RMSE varies from 2.573 to 3.510 MW
• R2 varies from 0.95950 to 0.98833

The higher RMSE values (least accurate) derived for the 
tuning subset are Stage 1 predictions, plus cases where 
some of the tuning subsets have selected several data 
records that are outliers to the main input data trends 
(Fig. 1). The significance of outliers and prediction accu-
racy is addressed in Sects. 5.1 and 5.2.

All three optimizers found similar optimum solutions 
for each case evaluated. For almost all cases evaluated, 
the memetic firefly and Excel’s Solver GRG optimizer find 
the same minimum RMSE. In several cases those two opti-
mizers slightly outperform Excel’s evolutionary algorithm 
by finding optimum solutions with better accuracy. It is 
reassuring that all three optimizers consistently agree with 
each other. In all cases, two out of the three optimizers 
agree on the Q value for the optimum solution. However, 
as tuning and testing subsets have their data records 
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selected independently, the relative differences between 
the PE prediction accuracies they achieve do not vary 
systematically. This is one of the reasons why it is worth-
while using more than one optimizer and running several 
cases with different independent testing subsets. It is also 
worthwhile testing more than one optimum solution, as 
there are a large number of good but sub-optimal solu-
tions to choose from.

Of more significance than the tuning set prediction 
accuracies, in terms of TOBs prediction performance, is 
the accuracies achieved for the testing subset (right side 
Table 3). RMSE for the testing subset varies from 2.620 to 
3.736 MW. Whereas,  R2 ranges from 0.95422 to 0.97742 for 
the testing subset. Stage 1 predictions for the testing sub-
set are less accurate (higher RMSE). Also, testing subsets 
that sample more outlier data records (Fig. 1) tend to gen-
erate less accurate predictions. However, notice (Table 3 
and S4 in the supplementary file) that most of the tuned 
solutions perform well achieving high prediction accura-
cies when applied to testing subsets. This is so despite 
some of the tuning subsets sampling several outlier data 
records.

These results are extremely encouraging. To place this 
prediction performance in context, the best of fifteen 
regression-based machine learning methods evaluated for 
the same dataset by Tufekci [9], i.e., the Bagging algorithm 
with REPTree, achieved an RMSE of 3.787 MW. Moreover, 
the ANN method applied to the dataset by Elfaki & Hassan 
[13] only achieved an RMSE of 4.32 MW. The remaining 
algorithms evaluated by Tufekci [9] achieved RMSE’s of 
between 3.861 MW (K-lazy -learning) and 8.487 MW (RBF 
function). The TOB Stage 1 testing subset predictions out-
perform all of those methods when applied to this dataset. 
Moreover, the TOB Stage 2 predictions do much better. For 

the independent testing subset for all five datasets shuffles 
they achieve RMSE < 3.3 MW for the best optimized solu-
tion found by one or other of the three optimizers applied. 
The best performance for the testing subset is an RMSE of 
2.62 MW for Case 2C (see Table S4 in the supplementary 
file).

More details for selected solutions are provided in 
Tables  4 and 5. Full solution and prediction accuracy 
details for all 15 cases evaluated are provided in Table S5 in 
the supplementary file. Table 4 lists the Q values and vari-
able weights selected by the optimized TOB Stage 2 solu-
tions for Cases 1B, 4B and 5C. Table 5 shows the full range 
of statistical accuracy metrics for these three cases applied 
to the testing subsets; highlighting that Cases 1B and 5C 
achieve higher levels of prediction accuracy than Case 4B 
(as that subset selected several outlying data records).

The optimum solutions for these selected cases have 
distinctive values of optimization variable Q and for the 
weights applied to the squared errors between the vari-
ables in the closely matching records. These are values 
selected by the optimizers to derive their optimum solu-
tions (Table 4). For Cases 1B and 5C the Q value is high 
(9 or 10) and the highest weight is applied to variable V 
and the weights are arranged V ≫ AP > AT > RH, with the 
RH weight approaching zero. For the sub-optimum testing 
subset Case 4C, Q is much lower (6) and the highest weight 
is applied to variable AP and the weights are arranged 
AP ≫ V>AT > RH. The significance of these distinct solu-
tions will become apparent when they are applied to the 
full datasets.

RMSE (TOB’s objective function) is treated as the most 
important statistical accuracy metric to monitor. However, 
the other statistical accuracy metrics displayed in Table 5) 
usefully express different aspects of the degree of accuracy 

Table 4  Q values (number 
of best matching records 
included) and weights 
for variables for three 
representative shuffles of the 
CCGT dataset evaluated

For the results of all 15 cases (45 optimizer runs) evaluated see Table S5 in the supplementary file

Selected cases run for shuffled full datasets Tuning subset (146 data records) optimum solutions

Case solutions Q AT V AP RH

Case 1B TOB stage 1 10 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 10 1.96E−02 1.00E+00 3.73E−01 1.25E−04
TOB stage 2 Excel GRG 9 2.42E−02 1.00E+00 6.82E−01 2.02E−04
TOB stage 2 Excel evolutionary 9 1.09E−02 1.00E+00 9.44E−02 3.72E−04
Case 4B TOB stage 1 10 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 6 1.02E−01 8.01E−01 1.00E+00 3.65E−02
TOB stage 2 Excel GRG 6 1.02E−01 8.02E−01 1.00E+00 3.65E−02
TOB stage 2 Excel evolutionary 6 1.02E−01 7.99E−01 1.00E+00 3.65E−02
Case 5C TOB stage 1 10 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 10 1.17E−02 1.00E+00 2.87E−02 0.00E+00
TOB stage 2 Excel GRG 10 1.08E−02 1.00E+00 3.44E−02 5.40E−05
TOB stage 2 Excel evolutionary 10 1.58E−02 9.66E−01 2.49E−02 1.36E−04
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achieved by the optimum solutions. It would be possible 
to configure TOB to use AAPD % or SD as its objective to 
minimize. Such configurations do lead to similar (particu-
larly using SD) but not identical solutions and prediction 
accuracies.

4.2  Applying optimum solutions to all 9568 data 
records in the CCGT data set

The robustness of the stage 1 and 2 solutions derived 
for the tuning subsets in terms of the Q and squared 
error weights derived need to be verified. This is done 
by applying those optimum tuning subset solutions to 
the full datasets. Computationally that is quite a signifi-
cant task, as each record needs to be tested against every 
other data record in its dataset and the sum of its squared 
errors calculated. However, such an analysis provides the 
best means of verifying that the prediction accuracy sug-
gested by the testing subset evaluations is repeatable for 
the entire CCGT UCI dataset. Tables 6 and 7, in the same 
format as Tables 4 and 5, summarise the results. Table 6 
lists the optimum solutions derived by the memetic fire-
fly optimizer. Optimum solutions derived from the other 
optimizers are not displayed but are very close to those 
listed for the memetic firefly optimizer.

It is noticeable in Table 6 that most of the solutions 
displayed apply variable squared-error weights in the 
magnitude order V ≫ AP > AT > RH and select Q values 
at or close to 10. Solutions for Cases 4B and 5B (the poor 
performers with the testing subsets, Table 3) stand out in 
Table 6, because they have lower Q values and the vari-
able weights derived for their optimum solutions are in 
the magnitude order AP ≫ V>AT > RH. It is interesting to 
evaluate how these two quite different type of “optimum” 

solutions derived perform with respect to all records in 
the CCGT dataset.

The low correlations with PE (Table 2) and the data dis-
persion (Fig. 1) explain why the variable RH is assigned 
such low weights by the TOB Stage 2 optimizers. It is inter-
esting to consider why the TOB’s optimizers impose higher 
squared-error weights on variables V and AP, in most cases, 
than to AT. Both AT and V have strong negative correlations 
with PE (Table 2). However, V shows less dispersion due 
to outliers than AT. By applying small weights to AT this 
potentially minimizes the impact of some that dispersion 
in the ranking of the matches. Also, the moderate posi-
tive correlation between AP and PE versus the negative 
correlation between V and PE work effectively together 
to exploit contrasting and complex relationships between 
the data records. It is less productive for the optimizers to 
assign high weights to both V and AT that display more 
similar relationships with PE. Assigning a small, but non-
zero weight to a variable can often be an effective way 
for TOB Stage 2 to distinguish between quite similar data 
records. Lower weight, therefore, does not necessarily 
equate to lower significance in a variable’s contribution 
to the prediction accuracy.

Table  7 reveals that the prediction performance 
results fall within quite a narrow range for all the data-
sets and cases evaluated. The TOB Stage 1 performance 
is almost identical for all five shuffled datasets, as should 
be expected (RMSE = 3.53; AAPD % = 0.55; SD = 3.53), sig-
nificantly outperforming the best of the regression algo-
rithms evaluated by Tufekci [9] and ANN analysis of Elfaki 
and Hassan [13]. All cases, except Case 5B, show improve-
ments on that accuracy by applying the optimized solu-
tions. Average prediction accuracy achieved for all data 
records (including all the outliers, Fig.  1) of all fifteen 

Table 5  Detailed prediction 
accuracy measures for the 
three representative case 
optimum solutions listed in 
Table 4

For results of all 15 cases evaluated see Table S5 in the supplementary file

Selected cases run for shuffled 
full datasets

Applying optimum TOB tuning subset solutions applied to inde-
pendent testing subset (197 data records)

Case solutions RMSE MSE APD % AAPD % SD R R2

Case 1B TOB stage 1 3.4076 11.6119 − 0.0358 0.5387 3.4134 0.9806 0.9615
TOB stage 2 Memetic firefly 2.6839 7.2033 − 0.0446 0.4220 2.6841 0.9880 0.9762
TOB stage 2 Excel GRG 2.7312 7.4593 − 0.0407 0.4300 2.7329 0.9876 0.9753
TOB stage 2 Excel evolutionary 2.7312 7.4593 − 0.0407 0.4300 2.7329 0.9876 0.9753
Case 4B TOB stage 1 3.5856 12.8566 − 0.0731 0.5417 3.5815 0.9786 0.9576
TOB stage 2 Memetic firefly 3.2688 10.6852 − 0.0530 0.4940 3.2700 0.9822 0.9647
TOB stage 2 Excel GRG 3.2687 10.6845 − 0.0530 0.4939 3.2699 0.9822 0.9647
TOB stage 2 Excel evolutionary 3.2690 10.6865 − 0.0530 0.4940 3.2702 0.9822 0.9647
Case 5C TOB stage 1 2.9551 8.7325 0.0133 0.4776 2.9617 0.9854 0.9710
TOB stage 2 Memetic firefly 2.8556 8.1547 − 0.0093 0.4506 2.8627 0.9865 0.9731
TOB stage 2 Excel GRG 2.8336 8.0295 − 0.0094 0.4484 2.8407 0.9867 0.9735
TOB stage 2 Excel evolutionary 2.8691 8.2316 − 0.0075 0.4522 2.8763 0.9863 0.9728
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Table 7  Detailed prediction accuracy achieved applying TOB’s optimum solutions (Table 6) to the entire CCGT UCI datasets (9568 records)

TOB applied to five shuffled datasets Statistical measures of prediction accuracy

9568 records Applied to full dataset Q RMSE MSE APD % AAPD % SD R R2

Set 1 TOB stage 1 10 3.5288 12.4525 − 0.0084 0.5450 3.5290 0.9784 0.9572
Case 1A Memetic firefly 7 3.3465 11.1993 − 0.0124 0.4850 3.3465 0.9806 0.9616
Case 1B Memetic firefly 10 3.3261 11.0630 − 0.0141 0.4874 3.3260 0.9809 0.9621
Case 1C Memetic firefly 10 3.3204 11.0251 − 0.0110 0.4884 3.3204 0.9809 0.9622
Set 2 TOB stage 1 10 3.5287 12.4520 − 0.0083 0.5450 3.5289 0.9784 0.9572
Case 2A Memetic firefly 9 3.4867 12.1569 − 0.0206 0.5339 3.4861 0.9789 0.9583
Case 2B Memetic firefly 8 3.5105 12.3233 − 0.0200 0.5342 3.5100 0.9786 0.9578
Case 2C Memetic firefly 10 3.4990 12.2427 −−0.0187 0.5339 3.4986 0.9788 0.9580
Set 3 TOB stage 1 10 3.5288 12.4523 − 0.0084 0.5450 3.5289 0.9784 0.9572
Case 3A Memetic firefly 10 3.2864 10.8007 − 0.0105 0.4862 3.2865 0.9813 0.9629
Case 3B Memetic firefly 8 3.3918 11.5042 − 0.0110 0.4948 3.3918 0.9802 0.9608
Case 3C Memetic firefly 10 3.3759 11.3970 − 0.0124 0.5087 3.3760 0.9802 0.9609
Set 4 TOB stage 1 10 3.5282 12.4483 − 0.0085 0.5449 3.5284 0.9784 0.9573
Case 4A Memetic firefly 5 3.4705 12.0445 − 0.0106 0.5083 3.4706 0.9792 0.9588
Case 4B Memetic firefly 6 3.4528 11.9218 − 0.0117 0.5129 3.4528 0.9794 0.9591
Case 4C Memetic firefly 10 3.4002 11.5613 − 0.0133 0.5107 3.4002 0.9800 0.9603
Set 5 TOB stage 1 10 3.5284 12.4493 − 0.0085 0.5449 3.5285 0.9784 0.9573
Case 5A Memetic firefly 10 3.2703 10.6951 − 0.0131 0.4735 3.2703 0.9815 0.9633
Case 5B Memetic firefly 6 3.5425 12.5495 − 0.0110 0.5261 3.5426 0.9783 0.9570
Case 5C Memetic firefly 10 3.2678 10.6784 − 0.0114 0.4732 3.2678 0.9815 0.9634

Table 6  Values of Q and 
variable squared-error weights 
derived for all fifteen cases 
applied to the five shuffled 
CCGT datasets

Only the optimized solutions obtained with the memetic firefly optimizer are displayed and evaluated 
with the full datasets

TOB applied to five shuffled datasets Optimum solution weights applied

9568 records Applied to testing subset Q AT V AP RH

Set 1 TOB stage 1 10 0.5 0.5 0.5 0.5
Case 1A Memetic firefly 7 1.10E−02 1.00E+00 9.43E−02 3.77E−04
Case 1B Memetic firefly 10 1.96E−02 1.00E+00 3.73E−01 1.25E−04
Case 1C Memetic firefly 10 8.69E−02 1.00E+00 6.25E−02 0.00E+00
Set 2 TOB stage 1 10 0.5 0.5 0.5 0.5
Case 2A Memetic firefly 9 3.28E−02 1.00E+00 7.58E−03 1.21E−03
Case 2B Memetic firefly 8 9.54E−03 1.00E+00 3.19E−01 2.37E−03
Case 2C Memetic firefly 10 4.53E−02 1.00E+00 1.64E−01 0.00E+00
Set 3 TOB stage 1 10 0.5 0.5 0.5 0.5
Case 3A Memetic firefly 10 4.55E−02 1.00E+00 1.53E−02 8.13E−03
Case 3B Memetic firefly 8 1.92E−05 1.00E+00 0.00E+00 0.00E+00
Case 3C Memetic firefly 10 2.03E−02 1.00E+00 1.78E−01 8.14E−02
Set 4 TOB stage 1 10 0.5 0.5 0.5 0.5
Case 4A Memetic firefly 5 2.16E−02 1.00E+00 2.28E−03 2.42E−03
Case 4B Memetic firefly 6 1.02E−01 8.01E−01 1.00E+00 3.65E−02
Case 4C Memetic firefly 10 1.28E−02 1.00E+00 8.93E−01 6.34E−02
Set 5 TOB stage 1 10 0.5 0.5 0.5 0.5
Case 5A Memetic firefly 10 6.60E−03 1.00E+00 5.93E−02 4.05E−04
Case 5B Memetic firefly 6 1.14E−01 2.45E−01 1.00E+00 2.66E−04
Case 5C Memetic firefly 10 1.17E−02 1.00E+00 2.87E−02 0.00E+00
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cases is RMSE = 3.40; AAPD % = 0.5038 and SD = 3.39. For 
those performance-accuracy metrics, the five datasets 
are ranked as follows (best to worst performance): for 
RMSE and SD, Case 1 < Case 3 < Case 5 < Case 4 < Case 2; 
for AAPD % Case 1 < Case 5 < Case 3 < Case 4 < Case2. So, 
for those metrics, Case 1 provides slightly better accuracy 
than the rest, whereas Case 2 clearly provides slightly 
worse accuracy than the rest. Interestingly datasets 4 and 
5, with the somewhat problematic results with the testing 
subsets associated with Case 4B and Case 5B, lie in the 
middle and do not underperform the other cases.

It is not surprizing that the performance accuracy met-
rics for the full dataset applications are slightly poorer than 
for the small, 197-data-record, testing subsets, because all 
the outliers in the datasets are included in this full-dataset 
analysis. The possibility to significantly improve upon this 
accuracy, by careful analysis and selective filtering of the 
outliers, is addressed in Sect. 5.1. Firstly, in order to con-
duct that analysis, it is necessary to consider the wealth of 

additional information the calculated TOB learning net-
work cases provide on each data record. This makes it pos-
sible to gain significant insight to the datasets as a whole; 
something that is not possible with neural network meth-
ods. The availability of such information makes it possible 
to conduct various meaningful data mining tasks on such 
datasets that have the potential to assist CCGT operators 
in improving plant performance.

4.3  Segmental analysis of the CCGT dataset

It is generally useful to know how machine-learning-pre-
diction algorithms are performing over different segments 
of a datasets. The CCGT dataset is evaluated in twelve seg-
ments of incremental ranges of electrical power output 
(PE). Table 8 displays prediction accuracy by segment in 
terms of RMSE, AAPD and SD for two representative cases 
(Case 2C and Case 5C).

Table 8  Segmental analysis of 
the datasets for two selected 
case evaluated: Case 2C and 
Case 5C

Such information is routinely generated as part of the TOB algorithm configured for this study

Dependent vari-
able segment

Data records in 
segment

Min PE (MW) Max PE (MW) RMSE AAPD % SD

From case 2C TOB stage 2 solution
1 800 420.26 432.62 3.9576 0.6786 2.9507
2 800 432.64 436.37 3.4531 0.5118 3.3726
3 800 436.37 439.78 3.7963 0.6026 3.7986
4 800 439.78 443.06 3.2299 0.5553 3.2319
5 800 443.06 446.92 3.7172 0.5483 3.6752
6 800 446.93 451.71 3.5875 0.5468 3.5383
7 800 451.74 457.67 3.6070 0.5794 3.6092
8 800 457.68 463.86 3.7348 0.5687 3.6901
9 800 463.86 468.58 3.1643 0.4745 3.1655
10 800 468.60 474.16 3.2191 0.5033 3.1956
11 800 474.17 480.54 2.8805 0.4117 2.8522
12 768 432.64 495.76 3.4870 0.4212 3.2253
Total 9568 Full set: 3.4990 0.5339 3.4986
From case 5C TOB stage 2 solution
1 800 420.26 432.62 3.6544 0.5919 3.1370
2 800 432.64 436.37 3.4042 0.4884 3.3477
3 800 436.37 439.78 3.5446 0.5271 3.5466
4 800 439.78 443.06 3.1780 0.5230 3.1789
5 800 443.06 446.92 3.5459 0.5183 3.5293
6 800 446.93 451.71 3.4162 0.4844 3.3902
7 800 451.74 457.67 2.9775 0.4613 2.9777
8 800 457.68 463.86 3.4435 0.4681 3.4268
9 800 463.86 468.58 2.7706 0.4027 2.7723
10 800 468.60 474.16 2.8952 0.4109 2.8935
11 800 474.17 480.54 2.7350 0.3883 2.7184
12 768 432.64 495.76 3.4762 0.4113 3.2569
Total 9568 Full set: 3.2678 0.4732 3.2678
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It is quite clear for the cases shown in Table 8 that seg-
ment 1, at the lower end of the PE scale achieves lower pre-
diction accuracy than the other segments. Indeed, the low-
est three segments, collectively, typically underperform 
the other segments in terms of RMSE and AAPD %. How-
ever, in terms of SD the lowest segment generally displays 
a lower SD than the other segments in the lower half of the 
distribution. At the other end of the distribution, segments 
9–11 show the lowest RMSE, AAPD % and SD compared to 
other segments. These relationships are observed for all 15 
cases evaluated. Careful scrutiny of the spreads of the dis-
tributions for the AT and V variables in Fig. 1 go some way 
to explaining these relationships. From a plant operator’s 
perspective, a case could be made for reconfiguring the 
predictions for these datasets into at least three group-
ings: (1) from PE = ~ 425 to ~ 440 MW; (2) from PE ~ 440 
to ~ 465 MW; and (3) from ~ 465 to ~ 495 MW. A case can 
also be made for separating out a fourth, smaller group 
of outliers (see Sects. 5.1 and 5.2). By approaching predic-
tions in this way greater accuracy would likely be achieved. 
It would be a straightforward exercise for TOB to conduct 
the analysis in that way.

The level of detail generated by each TOB prediction 
is available for more in-depth data mining to evaluate in 
more detail all outlying predictions. Indeed, all interim cal-
culation details for each data record and its predictions are 
recorded. In this study, such details are recorded for the 
full dataset as part of the Sect. 4.2 analysis. These details 
are made available for complete inspection and forensic 
analysis with each execution of the TOB algorithm. Section 
S.4 of the Supplementary File (Tables S1 to S3) provides 
a detailed example of TOB’s forensic auditing capabilities 
using this information to gain insight to the prediction 
made for an arbitrarily selected data record (#4370). The 
independent variables of the selected best data record 
matches make different relative contributions to the PE 
predictions. Understanding how these contributions are 
calculated opens up data-mining possibilities, which is 
addressed next in Sect. 5.1 for outlier analysis.

5  Discussion

5.1  Outlier analysis of the CCGT dataset

The UCI dataset of long-term CCGT performance data 
includes a number of outlier data records. These few out-
liers limit the prediction accuracy that can be achieved by 
optimized data matching (Table 7), regression and other 
machine-learning algorithms. The extent of that impact is 
illustrated by Fig. 5 for Case 5C showing the predicted ver-
sus measured PE predictions applying the memetic firefly 
optimized TOB Stage 2 solution.

A simple filter can be applied to identify and remove 
data records from the dataset that exceed a specified 
squared-error (SE) magnitude between predicted and 
measured PE values. For Case 5C, a filter of SE = 200 MW 
(maximum SE accepted for Stage 1predictions). Applying 
this SE filter excludes between 35 and 38 data records, 
depending on the dataset. That represents < 0.4% of the 
entire dataset. For a lower filter threshold, SE = 100 MW, 
more data records breach the filter’s threshold. About 126 
data records (~ 1.3% of the CCGT dataset) are identified 
and excluded applying SE = 100 MW. The 36 outliers iden-
tified for dataset 5 with the filter SE = 200 MW are shown 
in Fig. 6.

TOB’s PE predictions for each of these outlying data 
records, when analysed in detail, reveal that there are 
different factors influencing the anomalous predictions 
versus measured values for these data-record outliers. 
Moreover, there are interesting interactions between some 
of these outliers. Considering the two outliers #3231 and 
#1684 (Fig. 6), an analysis of the TOB data records, summa-
rized in Table 9, reveals that #3231 is indeed anomalous, 
but record #1684 is only anomalous because it is closely 
matched by ∑wSE with #3231. Figure 1a reveals that #3231 
is an extreme outlier in terms of AT with respect to the on-
trend #1684. the PE values of the top-ten matching records 
for #3231 are all quite different from the anomalous PE 
value for #3231 (column 4 top part of Table 9). Unfortu-
nately for #1684, it has the closest ∑wSE match with #3231, 
meaning that the AT, V, AP and RH values for these two 
records are very similar. Consequently, #1684 contributes 
92.07% to the PE prediction for #3231. A more undesirable 
consequence of the close match between these records 
is that #3231 contributes 90.59% to the PE prediction 
of #1684. Note that the other nine matching records for 

Fig. 5  Predicted (TOB Stage 2) versus measured PE for Case 5C for 
full dataset #5 including all outliers
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Fig. 6  36 outlying data records 
identified with filter SE maxi-
mum limit of 200 MW applied 
to dataset 5. Data record 
numbers identify the specific 
outliers

Table 9  TOB calculation data 
records reveal that outlying 
data records do sometimes 
interfere with and disrupt the 
predictions for on-trend data 
records

The prediction of #1684 (on-trend data record) is disrupted because it closely matches (∑wSE values) 
with the true outlier #3231

∑wSE Measured nor-
malized PE

Contributions to 
PE prediction

Predicted 
normalized 
PE

Rank of match to #3231 3231 − 0.5942 0.7318
1 1684 0.00034 0.7343 0.9207 0.6761
2 8803 0.00177 0.6940 0.0311 0.0216
3 709 0.00264 0.6702 0.0233 0.0156
4 5037 0.00392 0.8143 0.0144 0.0117
5 9455 0.01003 0.6109 0.0016 0.0010
6 5308 0.0105 0.5597 0.0006 0.0004
7 6706 0.01168 0.6975 0.0006 0.0004
8 7027 0.01172 0.4135 0.0022 0.0009
9 4252 0.01215 0.7502 0.0049 0.0037
10 1671 0.01242 0.7160 0.0006 0.0005
Rank of match to #1684 1684 0.7343 − 0.4721
1 3231 0.00034 − 0.5942 0.9059 − 0.5382
2 8803 0.00169 0.6940 0.0390 0.0271
3 709 0.00302 0.6702 0.0278 0.0186
4 5037 0.00404 0.8143 0.0166 0.0135
5 9455 0.00707 0.6109 0.0016 0.0010
6 7027 0.00845 0.4135 0.0022 0.0009
7 5308 0.00847 0.5597 0.0006 0.0004
8 6706 0.00857 0.6975 0.0006 0.0004
9 4252 0.00861 0.7502 0.0051 0.0038
10 1671 0.01051 0.7160 0.0006 0.0005
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#1684 have normalized PE values closer to that measured 
for #1684. If record #3231 is excluded from the dataset 
the PE prediction for #1684 would fall on trend with a low 
squared error from its measured value. On the other hand, 
if record #1684 is excluded from the dataset record #3231 
would still plot as an extreme outlier. In this case applying 
the SE error filter correctly removes #3231 from the dataset 
but also unfortunately removes the on-trend record #1684.

Three other pairs of data records in the 36 excluded 
behave in a similar way. The outlier #2206 negatively 
impacts on-trend record #5525. The outlier #1581 nega-
tively impacts on-trend record #7718. The outlier #1164 
negatively impacts on-trend record #9198. If records 
#3231, #2206, #1581 and #1164 are excluded from the 
dataset, when the analysis is re-run (Stage 1 and Stage 
2), records #1684, #5525, #7718 and #9198 plot on-trend 
with low prediction errors. This analysis highlights that 
there are interactions between outliers and data records 
that they match closely with in terms of their independ-
ent variable values. For every true outlier that is removed 
a beneficial outcome should be observed for those other 
data records that it potentially impacted. Such impacts are 
likely as the outliers can be selected as one of the top-ten 
highest matches for some other data records.

5.2  Impacts achieved by mildly filtering the CCGT 
dataset

Figure 7 plots the PE prediction analysis that excludes 35 
of the outliers associated with dataset 5 (Case 5C) and 
retunes it to become Case 8C. Note that the RMSE for the 
9533-dataset for the Case 8C solution (retuned) is 2.945 
compared to the full dataset (9568 data records) displayed 
in Fig. 4 for Case 5C with a RMSE of 3.268. Note that the 

RMSE of this filtered dataset is quite close to the RMSE of 
2.856 achieved for the testing subset of Case 5C (Tables 3 
and 5). This is extremely encouraging as it confirms the 
validity of the TOB methodology. I.e., training small and 
representative tuning subsets with large training subsets 
leads to optimum solutions that is not unduly impacted 
by outliers. The average of three or so such tuning/test-
ing subset runs can be considered as providing realistic 
predictions for all data records.

Table  10 displays the prediction accuracy statistics 
for all 15 cases evaluated with a 200 maximum SE filter 
applied, removing some 36 records consisting of genu-
ine outliers and some data records influenced by outliers. 
Clearly, there is further scope for more detailed outlier 
analysis, adjustment and filtering to fine-tune and clean 
up the dataset for operational usage. The TOB calculated 
dataset provides the key information to do this in an easy-
to-access and interpret format.

Table 10 reveals that the prediction performance results 
fall within quite a narrow range for all the filtered data-
sets and cases evaluated. The TOB Stage 1 performance is 
almost identical for all five shuffled datasets, as should be 
expected (RMSE = 3.23; AAPD % = 0.53; SD = 3.33), show-
ing significant improvements from the results for the full 
dataset shown in Table 7. All cases, including Case 5B, 
show improvements on that accuracy by applying opti-
mized solutions originally tuned and evaluated using 
the complete dataset. The average prediction accuracy 
achieved for filtered datasets by re-evaluating all fifteen 
cases is RMSE = 3.07; AAPD % = 0.4876 and SD = 3.07. For 
those performance-accuracy metrics, the five datasets are 
ranked as follows (best to worst performance) for AAPD %, 
RMSE and SD, Case 1 < Case 5 < Case 3 < Case 4 < Case2.

Fig. 7  Predicted (TOB Stage 1 left; TOB Stage 2 right) versus measured PE for Case 8C for dataset #5 excluding 35 of the outliers identified in 
Fig. 5 and for the tuning subset for Case 5C retuned by sampling only the filtered dataset (9533 records)
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For the filtered dataset metrics, Case 1 provides slightly 
better accuracy than the rest, whereas Case 2 clearly pro-
vides slightly worse accuracy than the rest. Case 5 consoli-
dates its position in second place despite the problematic 
results applying the optimum solution found for the Case 
5b tuning subset to the testing subset.

The question arises as to what should be done about 
the excluded outliers. Although plotting in anomalous 
positions in Fig. 1, and resulting in poor PE predictions, 
they are genuine cases accepted by the data cleansing 
process applied by Tufekci [9]. A case can be made that 
at least some of the 36 outliers excluded by the filtering 
process constitute one or more data sets that should be 
treated separately as a special case(s). For instance, data 
records 1581, 1884, 2206, 3540, 3765, 6561, 8592, 9496 
and some others plot in a particular region of the PE distri-
bution < 435 MW. These records have anomalously low AT 
and AP values and, for the most part, anomalously high V 
values (Fig. 1). This suggests that these records are related 
to a specific set of operating and/or climatic conditions. 
Although those conditions rarely occur, there is a chance 
that they will occur from time to time. This suggests that it 
is appropriate, from an operational standpoint, to identify 
and define these specific conditions. Such defined condi-
tions can then be treated as limited special cases. These 
small subsets can then be evaluated separately from the 

main dataset using their own TOB feature selection to 
derive more appropriate tuned solutions focused on the 
outliers.

5.3  Exploiting ratios of input variables to enhance 
data characterization

In datasets with relatively few independent variables, the 
discrimination between closely matching data records can 
sometimes be enhanced by considering the inclusion of 
ratios between those variables as potential additional data 
input variables for the TOB Stage 2 optimizers to exploit. 
Prediction accuracy benefits are most likely to be achieved 
in this way for datasets where the independent variables 
show much poorer correlations with the dependent vari-
ables than their ratios.

Table 10  TOB applied to 
filtered datasets (9532 data 
records; just a few records 
removed) leads to improved 
prediction accuracy in the five 
shuffled CCGT UCI datasets

TOB applied to five shuffled datasets Statistical measures of prediction accuracy

9532 or 
9533 
records

Applied to full dataset Q RMSE MSE APD % AAPD % SD R R2

Set 1 TOB stage 1 10 3.2258 10.4059 0.0040 0.5287 3.2257 0.9820 0.9643
Case 1A Memetic firefly 7 3.0056 9.0339 − 0.0008 0.4687 3.0058 0.9844 0.9690
Case 1B Memetic firefly 10 2.9870 8.9221 − 0.0024 0.4712 2.9871 0.9846 0.9694
Case 1C Memetic firefly 10 2.9869 8.9215 0.0011 0.4721 2.9870 0.9846 0.9694
Set 2 TOB stage 1 10 3.2257 10.4054 0.0040 0.5286 3.2256 0.9820 0.9643
Case 2A Memetic firefly 9 3.1893 10.1718 − 0.0080 0.5179 3.1895 0.9824 0.9651
Case 2B Memetic firefly 8 3.1889 10.1692 − 0.0077 0.5178 3.1890 0.9824 0.9651
Case 2C Memetic firefly 10 3.1803 10.1145 − 0.0064 0.5175 3.1805 0.9825 0.9653
Set 3 TOB stage 1 10 3.2258 10.4057 0.0040 0.5287 3.2257 0.9820 0.9643
Case 3A Memetic firefly 10 2.9632 8.7808 0.0014 0.4700 2.9633 0.9848 0.9699
Case 3B Memetic firefly 8 3.1182 9.7230 0.0018 0.4806 3.1183 0.9832 0.9668
Case 3C Memetic firefly 10 3.0488 9.2953 − 0.0007 0.4923 3.0489 0.9839 0.9681
Set 4 TOB stage 1 10 3.2252 10.4017 0.0038 0.5285 3.2251 0.9820 0.9643
Case 4A Memetic firefly 5 3.1615 9.9953 0.0019 0.4918 3.1616 0.9827 0.9657
Case 4B Memetic firefly 6 3.1222 9.7479 0.0003 0.4962 3.1223 0.9831 0.9665
Case 4C Memetic firefly 10 3.0799 9.4858 − 0.0015 0.4946 3.0800 0.9836 0.9674
Set 5 TOB stage 1 10 3.2253 10.4027 0.0038 0.5285 3.2252 0.9820 0.9643
Case 5A Memetic firefly 10 2.9225 8.5410 − 0.0016 0.4573 2.9226 0.9852 0.9707
Case 5B Memetic firefly 6 3.2190 10.3619 0.0013 0.5095 3.2190 0.9821 0.9644
Case 5C Memetic firefly 10 2.9207 8.5308 0.0002 0.4569 2.9208 0.9853 0.9707

Table 11  Correlation coefficients (R) among ratios of variables and 
PE for the 9568-UCI- CCGT dataset [19]

R AP/AT V/AT RH/AT PE

AP/AT 1.000 0.945 0.971 0.832
V/AT 1.000 0.931 0.676
RH/AT 1.000 0.796
PE 1.000
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Correlation coefficients (R) for the ratio variables with 
AT as the denominator for the CCGT datasets are shown in 
Table 11. AP/AT and RH/AT show better correlations with 
PE than AP and RH (Table 2). For this reason, dataset #5 is 
analysed using six input variables (AT, V, AP, RH, AP/AT and 
RH/AT) instead of the four independent variables used in 
the other cases evaluated.

Tables  12 and 13 show the results of that analysis. 
Table 12 considers prediction accuracy when the solu-
tions are applied to the testing subsets. Table 13 focuses 
on accuracy when those solutions are applied to the entire 
dataset. Filtered and filtered plus retuned datasets for 
Cases 6A, 6B, 6C and 6D are also evaluated. These cases, 
involving six input variables, are using the same data 
records as Cases 5A, 5B, 5C, 5D but with which they are 
compared (Tables 6 and 7).

The optimum solutions derived for Case 6 still assign 
the highest variable weight to variable V (Table  12). 
For Case 6A (weights V ≫ AP/AT > AP > RH > RH/AT) the 

optimizer assigns the second highest weight to ratio AP/AT 
and assigns no weight to variable T. For Case 6 B (weights 
V ≫ AP/AT > AP > AT > RH > RH/AT) the optimizer assigns 
higher weights to AP/AT than AT. For Case 6 C (weights 
V > AP > AT) no weights are assigned to the ratio or RH. Of 
course, for all cases the ratios are assigned equal weight to 
the other variables in selecting the top-ten record matches 
for TOB Stage 1.

The prediction performance results for Cases 6A, 6B and 
6C displayed in Table 13, when compared with Cases 5A, 
5B, 5C (Tables 7 and 10) show that the Case 6 prediction 
accuracy is very similar but slightly poorer than for Case 5 
based on just 4 independent variables. For the full data-
set the average RMSE for Cases 5 and 6 are both 3.360, 
whereas, for the filtered dataset the average RMSE for 
Case 6 is 3.025 versus 3.021 for Case 5. For the filtered and 
retuned datasets, the average RMSE for Case 7 (6 input 
variables) is 2.99 versus 2.89 for Case 8 (4 input variables).

Table 12  Solution-selected values for Q and squared-error weights applied to variables for optimized solutions applied to Cases 6A, 6B, 6C, 
6D and 7 (retuned)

These cases use dataset 5 but with six input variables including two ratios. Case 5C (four input variables) is retuned for the filtered dataset is 
shown for comparison and labelled Case 8

197 records Applied to testing subset Q AT V AP RH AP/AT RH/AT

Optimum solutions for tuning subset applied to training subset (both including outliers)
Case 6A TOB stage 1 10 0.5 0.5 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 10 0.00E+00 1.00E+00 7.64E−02 1.36E−04 3.41E−01 6.79E−05
TOB stage 2 Excel GRG 10 0.00E+00 1.00E+00 7.61E−02 1.35E−04 3.39E−01 0.00E+00
TOB stage 2 Excel evolutionary 10 0.00E+00 9.62E−01 9.91E−02 1.38E−04 4.11E−01 3.25E−03
Case 6B TOB stage 1 10 0.5 0.5 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 10 1.47E−02 1.00E+00 3.74E−01 1.47E−04 7.61E−01 0.00E+00
TOB stage 2 Excel GRG 10 1.35E−02 1.00E+00 3.10E−01 1.18E−04 5.47E−01 0.00E+00
TOB stage 2 Excel evolutionary 7 1.84E−01 7.50E−01 1.00E+00 1.81E−03 1.09E−01 2.46E−06
Case 6C TOB stage 1 10 0.5 0.5 0.5 0.5 0.5 0.5
TOB stage 2 Memetic firefly 6 1.79E−02 1.00E+00 5.48E−02 0.00E+00 0.00E+00 0.00E+00
TOB stage 2 Excel GRG 6 1.81E−02 1.00E+00 5.51E−02 0.00E+00 0.00E+00 0.00E+00
TOB stage 2 Excel evolutionary 6 1.85E−02 9.84E−01 5.84E−02 0.00E+00 0.00E+00 3.66E−05
Optimum solutions from tuning subset applied to both full (9568 records) and filtered data sets (9532 records)
Dataset #5 TOB stage 1 10 0.5 0.5 0.5 0.5 0.5 0.5
Case 6A Memetic firefly 10 0.00E+00 1.00E+00 7.64E−02 1.36E−04 3.41E−01 6.79E−05
Case 6B Memetic firefly 10 1.47E−02 1.00E+00 3.74E−01 1.47E−04 7.61E−01 0.00E+00
Case 6C Memetic firefly 6 1.79E−02 1.00E+00 5.48E−02 0.00E+00 0.00E+00 0.00E+00
Optimum solutions from tuning subset applied to re-tuned filtered data sets (9533 records)
Dataset #5 TOB stage 1 10 0.5 0.5 0.5 0.5 0.5 0.5
Case 7A Memetic firefly 9 1.14E−03 1.00E+00 6.94E−03 3.12E−05 1.24E−05 0.00E+00
Case 7B Memetic firefly 9 0.00E+00 1.00E+00 1.22E−03 8.26E−05 4.73E−03 4.86E−05
Case 7C Memetic firefly 10 9.92E−05 1.00E+00 0.00E+00 1.44E−04 3.25E−05 0.00E+00
Dataset #5 TOB stage 1 10 0.5 0.5 0.5 0.5 No ratios used
Case 8A Memetic firefly 9 7.68E−04 1.00E+00 4.11E−03 1.36E−04
Case 8B Memetic firefly 9 4.78E−04 1.00E+00 8.00E−04 7.88E−05
Case 8C Memetic firefly 9 1.98E−04 9.45E−01 0.00E+00 5.52E−05
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Although prediction accuracy improvements were not 
achieved by adding the variable ratios for this dataset, it 
is worth conducting sensitivity analysis to establish their 
impact. Frequently, data mining and data characteriza-
tion benefits are achieved by including ratio variables, 
particularly for datasets where the dependent variable 
to be predicted is poorly correlated with the input vari-
ables. The challenge with the CCGT dataset is for TOB 
Stage 1 calculations. As stage 1 predictions assigns equal 
squared-error weightings to all input variables, the choice 
for the ten-best matches will be quite different using six 
variables rather than four variables. Even if the subsequent 
optimized solutions choose not to apply weights to the 
squared errors of certain variables, those variables have 

already influenced the selection of the best-matching 
records to be used in the stage 2 prediction analysis. Addi-
tional sensitivity analysis could investigate replacing some 
of the independent variable with ratios to avoid increasing 
the total number of variables above four or five.

6  Conclusions

The transparent open box (TOB) machine-learning 
method is successfully applied to a published CCGT data-
set of 9568 data records. It is used to predict the hourly 
full-load electrical power output (PE). It does this utiliz-
ing four independent variables: ambient temperature 

Table 13  Detailed prediction accuracy measures established for case 6 applied to CCGT UCI dataset 5 utilizing 6 input variables including 
ratios AP/AT and RH/AT

The optimized solutions applied for these cases are displayed in Table 12

197 records Applied to testing subset Q RMSE MSE APD % AAPD % SD R R2

Performance accuracy for optimum tuning subset solution applied to testing subset (including and excluding outliers)
Case 6A TOB stage 1 10 3.2631 10.6477 − 0.0210 0.5384 3.2707 0.9822 0.9647
TOB stage 2 Memetic Firefly 10 2.8115 7.9044 − 0.0105 0.4659 2.8185 0.9868 0.9738
TOB stage 2 Excel GRG 10 2.8115 7.9046 − 0.0105 0.4659 2.8185 0.9868 0.9738
TOB Stage 2 Excel evolutionary 10 2.8140 7.9186 − 0.0115 0.4665 2.8210 0.9868 0.9737
Case 6B TOB stage 1 10 3.6711 13.4767 − 0.0011 0.5600 3.6803 0.9774 0.9552
TOB stage 2 Memetic firefly 10 3.3885 11.4816 0.0116 0.4855 3.3963 0.9808 0.9620
TOB stage 2 Excel GRG 10 3.3662 11.3316 0.0111 0.4806 3.3741 0.9811 0.9625
TOB stage 2 Excel evolutionary 7 3.5789 12.8082 − 0.0044 0.5070 3.5880 0.9786 0.9576
Case 6C TOB stage 1 10 3.0050 9.0302 0.0150 0.4833 3.0115 0.9849 0.9700
TOB stage 2 Memetic firefly 6 2.9174 8.5110 0.0193 0.4613 2.9233 0.9860 0.9722
TOB stage 2 Excel GRG 6 2.9172 8.5100 0.0194 0.4613 2.9232 0.9860 0.9722
TOB stage 2 Excel evolutionary 6 2.9144 8.4939 0.0193 0.4608 2.9204 0.9860 0.9723
Optimum solutions applied to the full dataset (9568 records) including outliers
Dataset #5 TOB stage 1 10 3.5363 12.5055 − 0.0068 0.5467 3.5365 0.9783 0.9571
Case 6A Memetic firefly 10 3.3229 11.0419 − 0.0054 0.5017 3.3231 0.9809 0.9621
Case 6B Memetic firefly 10 3.3391 11.1494 − 0.0077 0.4936 3.3392 0.9807 0.9617
Case 6C Memetic firefly 6 3.4168 11.6743 − 0.0109 0.4953 3.4168 0.9798 0.9600
Optimum solutions applied to the filtered dataset (9530 records) excluding outliers (38 data records)
Dataset #5 TOB stage 1 10 3.2369 10.4777 0.0057 0.5301 3.2367 0.9818 0.9640
Case 6A Memetic firefly 10 3.0120 9.0723 0.0069 0.4855 3.0117 0.9843 0.9688
Case 6B Memetic firefly 10 3.0034 9.0206 0.0043 0.4765 3.0033 0.9844 0.9690
Case 6C Memetic firefly 6 3.0588 9.3560 0.0006 0.4775 3.0589 0.9838 0.9679
Optimum solutions applied to the filtered & re-tuned dataset (9533 records) excluding outliers (35 data records)
Dataset #5 TOB stage 1 10 3.2035 10.2622 − 0.0052 0.5253 3.2036 0.9822 0.9648
Case 7A Memetic firefly 9 2.8594 8.1762 − 0.0077 0.4498 2.8595 0.9859 0.9720
Case 7B Memetic firefly 9 3.1478 9.9087 − 0.0018 0.5122 3.1480 0.9829 0.9660
Case 7C Memetic firefly 10 2.9749 8.8497 − 0.0087 0.4687 2.9749 0.9848 0.9697
Dataset #5 TOB stage 1 10 3.1894 10.1722 − 0.0071 0.5232 3.1895 0.9824 0.9651
Case 8A Memetic firefly 9 2.8520 8.1336 − 0.0119 0.4481 2.8518 0.9860 0.9721
Case 8B Memetic firefly 9 2.8696 8.2349 − 0.0118 0.4501 2.8695 0.9858 0.9718
Case 8C Memetic firefly 9 2.9445 8.6701 − 0.0095 0.4637 2.9445 0.9851 0.9703



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:441 | https://doi.org/10.1007/s42452-020-2249-7

(AT), atmospheric pressure (AP), relative humidity (RH) 
and steam turbine exhaust pressure or vacuum (V). The 
TOB Stage 2 calculations achieved PE prediction with 
average accuracy for 15 executions tested against all 
the data points in five shuffled versions with an RMSE of 
3.4 MW. This compares with the best RMSE achieved by 
fifteen machine learning regression methods and by arti-
ficial neural network, published for the same dataset, of 
3.79 MW and 4.32 MW, respectively. Indeed, even the TOB 
Stage 1 preliminary average prediction for PE achieved an 
RMSE of 3.53 MW. This is additionally impressive because 
the TOB established its optimum solutions using a tuning 
subset of just 146 data points trained against a training set 
of 9225 data records. The verification testing showed that 
these optimum solutions (found by the small tuning sub-
sets) were also effective over the full datasets. Moreover, 
their prediction accuracy was not excessively distorted by 
data outliers. A memetic firefly optimization algorithm is 
effective at generating the TOB stage 2 solutions. However, 
Microsoft Excel’s Solver optimizers, run in parallel for this 
study, are also effective in generating high-performing 
TOB optimized solutions.

In addition to demonstrating its highly-accurate predic-
tion capabilities the CCGT dataset is analysed to demon-
strate its detailed data mining and auditing capabilities. 
The data set has significant outliers in its variable distri-
butions. About 0.35–0.5% of the total data records can 
be considered as outliers. These outliers are shown by 
detailed analysis of the TOB prediction calculations to neg-
atively impact the accuracy of the PE predictions. The out-
lier analysis identifies different types of outliers and leads 
to effective filtering of the dataset. The majority are out-
liers in the prediction-error distribution because of their 
anomalous independent variable values. However, some 
data records generate outlying predictions because their 
prediction calculations are influenced by the former group 
of outliers. Filtering the datasets by removing just 36 outly-
ing data records achieves notable PE prediction accuracy 
improvements: TOB Stage 1 (RMSE = 3.23 MW) and TOB 
Stage 2 (RMSE = 3.07 MW). By removing 35 outliers and 
retuning the TOB analysis with the filtered datasets, pre-
diction accuracy is improved further (Case 8) TOB Stage 
1 (RMSE = 3.19 MW) and TOB Stage 2 (RMSE = 2.89 MW).

Data mining of the CCGT dataset also reveals that cer-
tain sectors of the PE distribution achieve different levels 
of prediction accuracy. This makes it possible to refine the 
TOB optimum solutions for specific segments of that dis-
tribution if required. Adding two ratios AP/AT and RH/AT 
as input variables (6 input variables in total) and applying 
the TOB model to a filtered dataset of 9533 data records 
achieved further improvements to prediction accuracy 
and repeatability. The detailed analysis, accuracy and 
reliability of the machine-learning predictions achieved 

by the TOB algorithm demonstrated with the CCGT data-
set are possible because of its transparency and forensic 
auditing capabilities. This provides TOB with a significant 
data mining advantage over correlation-based, machine-
learning methods.
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Appendix

A supplementary file provides more details regarding 
the mathematical calculations required for the transpar-
ent open box method, examples of its forensic auditing 
capabilities and statistical measures of its performance 
accuracy.

An additional supplementary Excel data file is also 
available to download for the filtered CCGT dataset used 
for TOB analysis in this study. The file include the 9533 
data records of the filtered dataset (35 outliers excluded) 
divided between TOB-selected training, tuning and test-
ing subsets.
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