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Abstract
Development of unmanned aerial vehicles (UAVs) has become the most important research areas in the field of autono-
mous aeronautical control. This paper proposes a robust and intelligent controller based on adaptive-network-based 
fuzzy inference system (ANFIS) and improved ant colony optimization (IACO) to govern the behavior of a three degree 
of freedom quadrotor UAV. The quadrotor was chosen due to its simple mechanical structure; nevertheless, these types 
of aircraft are highly nonlinear. Intelligent control such as fuzzy logic is a suitable choice for controlling nonlinear sys-
tems. The ANFIS controller is used to reproduce the desired trajectory of the quadrotor in 2D Vertical plane and the 
IACO algorithm aims is to facilitate convergence to the ANFIS’s optimal parameters in order to reduce learning errors 
and improve the quality of the controller. To evaluate the performance of the proposed IACO tuned ANFIS controller, a 
comparison between the proposed ANFIS-IACO controller and other controller’s performance such us ANFIS only and 
proportional–integral–derivative controllers is illustrated using the same system. As expected, the hybrid ANFIS-IACO 
controller gives very satisfactory results than the others methods already developed in the same study.

Keywords  Unmanned aerial vehicle (UAV) · Intelligent control · Adaptive neuro-fuzzy inference system (ANFIS) · 
Improved ant colony optimization (IACO)

1  Introduction

The unmanned aerial vehicles (UAVs) technology has con-
tinuously been evolving with exceptional growth over the 
last years [1], leading to the emergence of a large number 
of services offered and potential applications. Drones are 
not meant to only serve with military purposes [2], but 
have also become widely used in civilian and industrial 
domain such us logistics and transportation [3–5], photog-
raphy and filmmaking [6], safety and security [7], mapping 
[8], agriculture [9, 10], monitoring [11–14], surveillance 
[15–17], architecture [18–20] and others applications. They 
were originally used for missions tedious or too dangerous 
for humans and all this due to their ease of deployment, 

low maintenance cost [21], high mobility and hovering 
capability [22]. In general, UAVs are preferred for their abil-
ity to stabilize at a particular position and altitude [23], 
to fly at various speeds [24–26], to hover in a stationary 
position over a target [22, 27], and to perform all these 
maneuvers in close proximity to obstacles [28, 29].

The selection of the optimal controller parameters is a 
very important issue for every command and control prob-
lems in order to reduce learning errors and improve the 
quality of the controller [30, 31]. Engineers face daily with 
increasingly complex problems which arise in very differ-
ent sectors, such as image processing, design of control 
and diagnostic systems [32, 33]. The problem to be solved 
can often be considered as an optimization problem in 
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which one or more objective functions, are defined that 
one seeks to minimize or maximize by contributing to 
all the parameters concerned. The resolution of such a 
problem has led researchers to propose more and more 
efficient methods of resolution, among which we can cite 
metaheuristics [34–41].

In the artificial intelligence practice, the controller 
parameters are chosen from among knowledge bases 
extracted by learning algorithms [42–45]. By using such 
practices, the obtained parameters are too far to be opti-
mal [46–48]. Therefore, mathematical optimization tech-
niques have received much attention as methods to obtain 
optimized parameters.

Recently a lot of work based on the optimization of 
controllers can be found in the literature, such as authors 
in [49], proposed a fuzzy controller using a bee colony 
algorithm (BCO) used in order to optimize benchmark 
control problems. In [50] a type-2 fuzzy logic controller 
is optimized with the traditional BCO. In [51], ACO algo-
rithm was implemented as tuning mechanism for propor-
tional integral (PI) controller, applied to a SMAR® didactic 
level plant. An ACO is used to easy search for the optimal 
PI controller parameters, proposed for a speed control 
of switched reluctance motor supplied by photovoltaic 
system in [52]. Using ACO to optimize proportional–inte-
gral–derivative (PID) controller parameters, for wind tur-
bine tower disturbances has been studied in [53]. In [54] 
an ACO is employed to determine the optimal PI controller 
parameters for speed control to get high performance of 
maximum power point tracking. A fully tuned RBF neural 
network controller based on ACO algorithm and Lyapu-
nov functions has been used for ultrasound hyperthermia 
cancer tumor therapy in [55]. In [56] authors presented the 
optimal trajectory tracking control of robotic manipulator 
using an ACO algorithm based PID controller. An optimal 
design of PID using particle swarm optimization algorithm 
(PSO) for the control of five bar linkage robot has been 
introduced in [57]. A PSO algorithm for fuzzy predictive 
control has been developed and applied for quadruple-
tank process in [58]. Authors in [59] have improved a PID 
controller method by ACO optimization in order to find 
the optimal parameters for the stabilization control of 
quadrotor. In [60], a gradient decent optimization is used 
to tune PID parameters for a quadrotor UAV. An optimiza-
tion technique to adjust the LQR and PID controller param-
eters applied to control inverted pendulum was presented 
in [61].

Intelligent tools as neural networks and fuzzy logic are 
now increasingly used in the modeling, design and con-
trol law of complex systems. They attract attention, and 
have become the most important controllers of the last 
decades, and they have been implemented on different 

nonlinear dynamic systems, to solve the input saturation, 
dead-zone, and unmodeled dynamics [62–65].

In this paper, a robust non-linear controller for trajec-
tory tracking tasks accomplished by a three degree of 
freedom quadrotor nonlinear closed-loop. An adaptive 
neuro-fuzzy (ANFIS) controller is implemented to a mul-
tivariable nonlinear quadrotor to accurately reproduce a 
desired trajectory in 2D vertical plane.

This paper is organized as follows. The description of 
the UAV model and the problem formulation are given in 
Sect. 2. ANFIS system with its architecture and learning 
algorithm are introduced in Sect. 3. The conventional ACO 
algorithm is presented in Sect. 4. The purpose of Sect. 5 is 
to present the IACO algorithm that will later be used for 
the optimization of ANFIS parameters. Section 6 details the 
proposed control design and strategy. In Sect. 7, compari-
sons and numerical simulations results are given in order 
to demonstrate the optimal effectiveness of the proposed 
controller. Section 8 gives the conclusions.

2 � Model description and problem 
formulation

2.1 � Description of the quadrotor model

It is primordial to introduce the reference coordinates in 
which we describe the full structure, before describing the 
mathematical model of the quadrotor. The quadrotor body 
is with y, z axes. As shown in Fig. 1, the origin located in the 
center of the quadrotor. It is known that the quadrotor with a 
three degree of freedom (3 DOF). The Euler angle � represent 
the orientation, where it is roll angle about the horizontal axis.

So the quadrotor is modeled to fly in 2 dimensions yz 
plane with an angle � witch is the roll angle as shown in 
Fig. 1.

Fig. 1   Quadrotor configuration design
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The state of the quadrotor is therefore 
[
y, z,�

]T
 and 

there are two inputs u1 and u2 , which represent the thrust 
and the moment about the x-axis respectively.

2.2 � Equation of motion

Since our drone is modeled in two dimensions, we have 
y and z plane and a roll angle � as seen before. The equa-
tions describing the movement are written as follows:

where m and Ixx  are the mass and the moment of inertia, 
respectively.

The equations of motion have been rewriting in the 
form below,

The state space description of the quadrotor,

So, the first derivative of the state vector is presented 
in Eq. (6). The first three parameters of the vector repre-
sent velocities and the last three parameters represent 
accelerations.

The vector 
[
u1, u2

]
 is the input signals that can drive the 

dynamical system, by specifying the properties of u1 and 
u2 we can change the state of the quadrotor.
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Looking at motion equations we know it’s a non-linear 
system, the nonlinearity here comes only from the fact 
that we have cos(�) and sin(�) for both ÿ and z̈ equations 
[Eqs. (1), (2)].

Since system is not linear, we need to perform a lin-
earization, let’s consider that the motion equations have 
a hover configuration.

2.3 � Equilibrium hover configuration

Only when the thrust vector u1 and the gravity vector are 
opposed, the hover configuration will be in equilibrium. 
The system is linearized near the hover point, where the 
properties are:

2.4 � Linearized dynamics model

We know that the  sin(�) and cos(�) are the two sources of 
the non-linearity, so when � is close to zero sin(�) behave 
basically like � and cos(�) becomes nearly constant.

If we replace sin(�) by � and cos(�) by 1 we get the lin-
ear equations see below,

3 � ANFIS system

The proposed neuro-fuzzy network is a five-layer archi-
tecture that includes the elements of a fuzzy Sugeno-type 
system [66–68] (Fig. 2). Looking at Fig. 3, let’s explain how 
the network works layer-by-layer.

Layer 1 (Fuzzification): This layer contains adaptive 
nodes. The outputs are the fuzzy membership grade of 
the inputs, which are given by:

y0, z0,�0 = 0, u1,0 = mg, u2,0 = 0,

(7)̈y = mgm ⋅ sinΔ𝜙 → g𝜙.

(8)z̈ = g −
u1

m
⋅ cosΔ𝜙 → g −

u1

m
.

(9)𝜙̈ =
u2

Ixx
.

(10)ÿ = g𝜙.

(11)z̈ = g −
u1

m
.

(12)𝜙̈ =
u2

Ixx
.
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where μAi
, μBj denote the membership degrees obtained 

from this layer.
Fuzzifying the inputs is conducted by MF such as Piece-

wise linear, triangular, trapezoidal, Gaussian and Singleton. 
Among the abovementioned MFs, this paper has used the 
Gaussian function because of its smooth and concise nota-
tion. Therefore as �Ai

(x) , given that.

where ai , bi , ci and �i are the premise parameters.

(13)O1
i
= �Ai

(x), i = 1, 2.

(14)O1
j
= �Bj

(y), j = 1, 2.

(15)
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(
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(
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,
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ci − bi

)
, 0

)
, i = 1,2.

(16)
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, 1,
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, 0

)
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(x) = exp

(
−

(
x − ci

)2
�i

2

)
, i = 1,2.

Layer 2 (Weighting of fuzzy rules): The symbol M shows 
every fixed node in this layer. This layer calculates the fir-
ing strength wk by using membership values computed in 
fuzzification layer, and the outputs are computed as the 
following:

Layer 3 (Normalization): Every node is fixed node and 
called by N. Each node obtains the normalization by cal-
culating the ratio of the kth rule’s firing strength (truth val-
ues) to the sum of all rules firing strength. The output O3

k
 at 

this step is given by:

Layer 4 (Defuzzification): weighted consequent values 
of rules are calculated in each node of this layer as given 
in Eq. (21).

where wk represents the output of the third layer, and {
pk , qk , rk

}
 are consequent.

Layer 5 (Summation): The actual output is obtained by 
summing the outputs of all incoming signals that com-
ing from the defuzzification layer to produce the overall 
ANFIS output.

4 � Ant colony optimization algorithm

ACO is a biomimetic optimization technique inspired by 
the work of a biologist [69] taken up by computer scien-
tists [70], and exploited and developed by Marco Dorigo in 
the 1990s [71], 1991 [72]. The idea is to mimic the behavior 
of the real ants that collaborate, for example for the search 
for food sources by mixing random exploration behavior 
and monitoring the chemical traces left by their sisters. 
These chemical traces, the “pheromones”, are used by ants 
to communicate indirectly, through the environment, a 
general technique known to entomologists as stigmergy. 
It is this form of communication as well as the idea of co-
operating a host of simple and localized agents that forms 
the basis of the heuristics developed by Dorigo.

First applied to the travelling sales person (TSP) prob-
lem as a multi-agent solution, colony optimization of 
ants has quickly proved its effectiveness in the context 
of combinatorial optimization in general and has been 

(18)O2
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Fig. 2   The equivalent typical ANFIS architecture

Fig. 3   A 2 inputs first order Sugeno type model with 2 rules
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particularly beneficial for the problem of routing informa-
tion packets in large interconnection networks. Ant colony 
optimization now forms, with its twin sister particle swarm 
optimization [73], a field of research in its own right, swarm 
intelligence [74], or even, as its scope goes beyond com-
binatorial problems to tackle multi-purpose problems or 
design problems cognitive and parameters tuning as is the 
case in this study, a new manner to design agents-based 
artificial intelligence.

The fundamental idea of ACO algorithm is based on the 
behavior of natural ant colonies, that of a parallel search 
through numerous computational threads based on a 
problem data and on a dynamic memory structure. This 
memory contains informations on the quality of the dif-
ferent solutions previously obtained to the optimization 
problem under consideration. The communication of the 
different search agents is a collective behavior that has 
proved to be highly effective in solving combinatorial opti-
mization problems.

Ants will work in parallel to try different solutions to a 
given problem until they find a better one. We proceed 
as follows:

At the start of each iteration, the ants are randomly 
placed on the nodes. Each ant starts its “tour”: it moves 
from node to another node without ever visiting one that 
it has already seen and until it has visited all the nodes of 
the graph. The choice of the transition from a node i  to a 
node j is randomly based on a probability given by the 
Eq. (22).

�ij(t) : The amount of pheromones on the edge (i, j).
�ij : Visibility value between edge (i, j) or heuristic infor-
mation value, and also called it the desirability of edge 
(i, j).
� : Constant factor that control the influence of �ij . If 
� = 0 , the probability of selecting the closer nodes is 
higher. In fact, in this condition ACO is converted to a 
stochastic search algorithm.
� : Constant factor that control the influence of �ij . If 
� = 0 , only the pheromone information is utilized. In 
this case, there will be a faster convergence of the algo-
rithm.
Ni : Set of the node points that haven’t visited yet.

Ants will move from any node i  to another node j with 
this probability. Once all ants have complete their tours 
or iterations, after all the nodes are visited. Amount of 

(22)Pk
ij
(t) =

��
�ij(t)

���
�ij
���

∑
i∈Ni

�
�ij(t)

���
�ij
�� .

pheromone is updated by increasing the pheromone lev-
els, according to the Eq. (23) [69].

� : Coefficient of pheromone evaporation (0 < 𝜌 < 1).
Δ�ij(t) : The amount of pheromone on edge (i, j) . This 
amount is calculated by Eq. (24).

m : Total number of ants.
Δ�k

ij
 : The quantity of pheromone deposited by ant k on 

edge (i, j).

Equation (25) shows the contribute amount of the (k) 
ant to the pheromone trace at the any edge (i, j) [74].

Q : A constant, often equal to 1.
Lk : The tour length (cost) of the kth ant.
If the ant used the edge (i, j) along the tour, trace 

amount is calculated according to Eq. (25). Otherwise, the 
trace amount is zero [74].

The fact that the pheromone evaporates over time is 
extremely important because it allows the ant colony to 
rely on constantly updated information. In an artificial ants 
system, it is important to implement a form of evaporation 
to avoid the system remaining “stuck” in a local optimum 
and to open the door to the expected characteristics of 
dynamic adaptivity.

The ACO metaheuristic algorithm is shown in Fig. 4. 
The advantage of using the ACO over other optimiza-

tion methods;

(1)	 Search among a population in parallel.
(2)	 Give a rapid discovery of good solutions.
(3)	 Adapt to changes, such as new distances.
(4)	 Have guaranteed convergence.
(5)	 Used in dynamic applications.

5 � Improved ant colony optimization

5.1 � Ant path selection

IACO is a probabilistic method designed to solve complex 
problems as ACO. The optimal combination problems 

(23)�ij(t + 1) = (1 − �)�ij(t) + Δ�ij(t).

(24)Δ�ij(t) =

m∑
k=1

Δ�k
ij
.

(25)Δ�k
ij
=

Q

Lk
.
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which can be solved by IACO can be represented by a 
graph G(N, E), where, N denotes the nodes, and E denotes 
the edges linking with the nodes. The difficulties of IACO 
are the construction of ant colony search paths and values 
of corresponding parameters.

Ants carry a certain amount of pheromone, during the 
process of visit the next nodes, ants will release the phero-
mone on the path between the visited nodes. Pheromones 
will evaporate over time, therefore, the shorter paths will 
have more pheromones, and more pheromones and more 
ants will attracted to select in the next iteration. The prob-
ability that ants choose the next node to be visited is

Where Jk is the set of unvisited states of the kth ant in the 
ith population.

In the ACO algorithm, the pheromone updating is a 
key problem, it includes the local pheromone updating 
and the global pheromone updating. In order to improve 
the optimization performance of the ACO algorithm in 
solving complex optimization problem, the new strat-
egy to update the increased pheromone and pheromone 
diffusion mechanism are proposed to improve the ACO 
algorithm.

(26)Pk
ij
(t) =

⎧⎪⎨⎪⎩

��
�ij (t)

���
�ij
���

∑
i∈Ni

�
�ij (t)

���
�ij
�� , j ∈ Jk

0, otherwise

5.2 � The local pheromone updating strategy

Before the first iteration of the ACO algorithm is executed, 
the pheromones on each edge are equal constants. When 
any ant in the ACO algorithm completes the current itera-
tion, the strategy to update local pheromone is carried out 
on the each passed edge for ant. The expression of the 
local pheromone updating strategy is described as follow:

Where, ρL (0 < ρL < 1), is local pheromone evaporating 
coefficient, 1 − ρL is the pheromone residue factor.

Here, Q is the total number of pheromone taken by ant, 
LK denotes the total length of the paths gone through by 
ant k in this iteration.

5.3 � The global pheromone updating strategy

In one iteration, after all ants in the ACO algorithm com-
plete their solutions, the passed nodes are carried out the 

(27)�ij(t + 1) = (1 − �L)�ij(t) + �LΔ�ij(t).

(28)Δ�ij(t) =
∑m

k=1
Δ�k

ij

(29)Δ�k
ij
(t) =

{
Q

LK
, ant k go through edge (i, j),

0, otherwise

Fig. 4   An experimental demonstration which proves the captivity of the ants to find the shortest way leading to a food source
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global pheromone updating strategy. The expressions of 
the local pheromone updating strategy are described as 
follows:

Where,  ρG (0 <  ρG < 1), is global pheromone evaporat-
ing coefficient, 1 − ρG is the pheromone residue factor, LS 
is the total length of the current optimal paths.

The ways of ending the algorithm as follows:

(a)	 Setting the maximum number of iteration;
(b)	 Setting the error of the system;
(c)	 The optimal paths not change, that is to say, the algo-

rithm is convergent.

The advantages of IACO as follows:

(1)	 IACO inherits the inherent advantages of ACO, such 
as strong robustness, multiple objective coordination, 
positive and negative feedback, parallelism and fast 
convergence speed.

(2)	 Global update of the pheromone trail is helpful to 
increase the probability that ants choose the current 
optimal paths, and thus, attracts more ants transfer to 
the current optimal paths. By this way, it will reduce 
the search scope to improve the efficiency;

(3)	 The strategy of updating the global pheromone trails 
is easy, and not complex as the elite ant colony sys-
tem, which is based on ranking. Therefore, perform-
ing the global pheromone trails update has not affect 
on improving the whole efficiency of the algorithm.

6 � Controller design

An adaptive controller represented by an automatically 
tuning ANFIS by an IACO algorithm for a better and opti-
mal choice of those parameters whose parameter adapta-
tion law is responsible for reducing the tracking errors and 
which is due to the simplified dynamics.

The auto-tuning (self-optimization) of ANFIS param-
eters is specifically to find the optimal design of the mem-
bership functions (MFs) in the neuro-fuzzy controller by an 
ant colony algorithm leads to automatically adjusting the 
fuzzy rules because the two parts (membership functions 

(30)�ij(t + 1) = (1 − �G)�ij(t) + �GΔ�ij(t).

(31)Δ�ij(t) =
∑m

k=1
Δ�k

ij

(32)Δ�k
ij
=

{
1

LS
, (i, j) ∈ the optimal paths,

0, otherwise

and fuzzy rules) cannot be dissociated. Moreover, the opti-
mization by the IACO, whose sole objective is the improve-
ment of a numerical criterion, often leads to the presence 
of more precise fuzzy rules at the end of the optimization 
process which leads to better results. It is within this frame-
work that our motives and interests lie in the design of 
neuro-fuzzy controllers by ant colony algorithms.

In our study an ANFIS controller applied to a totally 
autonomous UAV tracking trajectory, modeled to fly in 2 
dimensions (yz) plane with an angle � which is the roll 
angle, both y and z equations that describe the trajec-
tory and the roll angle � are considered as an objective 
function. To improve controller, an optimization method 
based on the evolutionary algorithms. IACO is proposed 
to obtain the optimal parameters leading to the optimal or 
ideal trajectory and therefore to completion of the speci-
fied movement resets the control.

The trajectory to follow is defined by the vector RT  , 
which consisting of two elements {y(t), z(t)} as shown in 
Fig. 5.

Given the reference trajectory

And the measured trajectory is defined by the vector RC

where yC(t) and zC(t) are the calculated parameters by the 
controller.

For each parameter defining the trajectory, we consider 
a controller with two inputs, the error e(t) and its variation 
Δe(t) and an output Δu(t) , the variation of the command, 
which allows to adjust to each moment the command u(t) , 
applied to the system (Fig. 6). The fuzzy rules constituting 
the base of the controller, in this case, have two premises.

The proposed controller uses to represent the objec-
tive function which is allows optimal control of the intel-
ligent UAV and an IACO algorithm to obtain the optimal 

(33)RT (t) =

[
y(t)

z(t)

]
.

(34)RC(t) =

[
yC(t)

zC(t)

]
.

Fig. 5   Quadrotor trajectory tracking in 2D plane
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objective value. The optimization process of the ANFIS 
controller by ACO block schema is given in Fig. 7.

To optimize the parameters of the ANFIS controller 
by improved ACO, we first need to create the controller 
design. This hybridization can be represented as a graph, 
which is given in Fig. 7. All the values of the parameters (
iMF1i , iMF2i , oMFi

)
 can be considered as three vectors and 

each parameter contains three parameters that define the 
membership functions as shown above, which iMF1i , iMF2i 
and oMFi are the MFs of the first input, the second input 
and the output respectively. In order to create a represen-
tation in graph form correspond to the problem, these 
three vectors represent paths between the start node and 
the end node. To make a complete tour, each ant must visit 
the three nests by following path between start node and 

end node. IACO’s objective is to find the optimal tour that 
has the lowest cost function.

In a neuro-fuzzy controller, each linguistic variable is 
defined by a set of membership functions of the language 
terms, and fuzzy rules are applied to linguistic terms. These 
terms, which qualify a linguistic variable, are defined 
through MFs.

The membership function is defined by parameters 
like the triangular one as shown in Fig. 3, it is defined by 
three parameters x1, x2 and x3 which take their values in 
the interval 

[
a, b

]
 . The Fig. 3 illustrates an example of fuzzy 

partitioning with 2 triangular MFs.
The optimization procedure consists in finding the best 

adjustment of the parameters of the MFs of each control 
variable.

Fig. 6   Optimization of ANFIS controller with IACO block diagram

Fig. 7   IACO for ANFIS tuning 
process
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Table 1   Parameters of 
quadrotor

Symbol Value

m 0.2 kg

Ixx 0.1 kgm2

g 9.81m∕s2

In general, the objective of a control system is to mini-
mize the difference e(t) between the output of a system 
and a desired output. This difference may be due either to 
a setpoint change or to disturbances acting on the system. 
This objective can be defined by several numerical indices. 
Only the desired behavior can be a paramount parameter 
to take into account to make a good choice among these 
indices. In our remarks, we have opted for the minimi-
zation of the mean squared error (MSE) and root mean 
squared error (RMSE).

After selecting the IACO parameters, an equal number 
of pheromones were given to the roads that all artificial 
ants can use and this value was kept at the pheromone 
matrix. When the first artificial ant leaves the nest, it 
chooses a random path because there is an equal amount 
of pheromone on accessible roads and completes the tour 
by visiting three nests. At the end of the tour, the simu-
lation was performed and executed with selected ANFIS 
parameters, and the value of the roads passing by the 
artificial ants at pheromone matrix was updated by cal-
culating the RMS error between the reference path input 
and output of the simulation, which is the cost function. 
To ensure that the following artificial ants do not go the 
same way on the road, the pheromone table has also been 
updated by multiplying a random number. Thus, the ants 
tried to track the given reference trajectory by different 
ANFIS parameters in each tour. When some artificial ants 
complete the tour, the pheromone amount at the path of 
the artificial ant that has the least RMS error in this tour is 
increased and the pheromone amount at the path of the 
artificial ant that has a maximum RMS error in this tour is 
reduced than the amount of the good ant. In addition, the 
pheromone amount at the roads taken by all artificial ants 
are evaporated with an evaporation constant (ρ). If the 
RMS error is low with selected ANFIS parameters, the next 
ants try to complete their work of winding these param-
eters. When the maximum lap is completed, the routes 
with a maximum value at the pheromone table, that is, 
the selected ANFIS parameters, are recorded as a result of 
the optimization. When the maximum tour is completed, 
the roads that have a maximum value at the pheromone 
table, that is, the selected ANFIS parameters, are recorded 
as a result of the optimization.

The evolution of the cost function of the IACO is 
reduced after each iteration until it reaches the optimal 
controller ANFIS parameters.

7 � Simulation results

In order to control an UAV moving along a specified tra-
jectory. The model was implemented in Matlab/Simulink 
programming software, a simulation was made for illustra-
tive purpose. The UAV is commanded to flight following 
a pre-defined trajectory as a function of time defined by 
y(t) and z(t).

The proposed approach involves two main steps. First, 
the experimental data are ready to train and test the 
ANFIS system to represent the objective function. Finally, 
an improved ACO algorithm is used to obtain the optimal 
objective value. In this study, all MFs have been chosen 
to be Gaussian-shaped. During the learning of ANFIS, the 
experimental data sets were used to perform 100 training 
cycles.

We build an ants population from the starting set and 
we try to perform an exploration to find good subsets and 
retain those that have a good accuracy rate. It is a proce-
dure for setting ANFIS parameters in an automatic way.

The control performance obtained by the proposed 
control system is compared with those obtained by, PID 
and ANFIS controllers to validate the superior performance 
of the studied controller.

The simulation results are obtained with a vertical tra-
jectory in 2D space. The desired trajectory input is defined 
as:

yd(t) = 2sin(t) and zd(t) = 5sin(t)

The parameters of the quadrotor used in the following 
simulations are shown in Table 1.
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Fig. 8   PID z measured

Fig. 9   PID y measured

Fig. 10   PID � measured
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Fig. 11   PID trajectory measured

Fig. 12   ANFIS z measured

Fig. 13   ANFIS y measured
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Finally, the three control inputs y, z,� were shown 
below.

Trajectory tracking simulation has been presented 
in this section, and some simulation results are given to 
illustrate the control performances of the developed con-
troller. The trajectory tracking responses of the three used 
controllers are shown in Figs. 11, 15 and 25 from which 
it can be observed that the desired reference trajectory 
can be tracked effectively by the proposed ANFIS-IACO 
controller.

Fig. 14   ANFIS � measured

Fig. 15   ANFIS trajectory measured

Fig. 16   ANFIS-IACO z measured
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With the evaluation of the results, it’s seen that ANFIS-
IACO controller has successfully followed the reference 
but PID controller has given the poor results compared to 
other controllers.

Figures 8, 9, 10 and 11 showed the PID results, this con-
troller can reproduce the tracking trajectory with error of 
MSE = 6.42 × 10−2 and RMSE = 0.25.

The simulation result obtained by the neuro-fuzzy sys-
tem is given in Figs. 12, 13, 14 and 15. It can be seen that 
realizes a good approximation of the system with an error 
MSE = 5.47 × 10−10 and RMSE = 2.34 × 10−5.

Figures 16, 17 and 18 showed the ANFIS-IACO simu-
lation results. The tracking performance is illustrated in 
Fig. 25, where the measured trajectory of the UAV and 
the reference trajectory are shown together. The results 
obtained show that the performances of our hybrid 
approach are superior to those of the other models. The 
validity of the proposed model was proved by mean 
square error MSE < 10−29 and MSE < 10−14 . Figures 19, 20, 
21, 22, 23 and 24 shows the trajectory tracking parameters 
errors of the proposed controller. It can be clearly seen that 
the trajectory tracking errors is zero.

The improved ACO algorithm provides an improve-
ment, by comparing ANFIS performances with the same 
ANFIS optimized by improved ACO, a significant increase 
in accuracy. A clear improvement of the precision in the 
trajectory tracking is thus visible. The RMSE used to meas-
ure the accuracy of the control model, decreases by 109 
times (Fig. 25).

We used an evolutionary algorithm approach that is 
ACO. An improved ACO exploration of this search space 
is performed to identify subsets of more relevant param-
eters, and accurate by a new membership function distri-
bution, that adapts well to each linguistic variable, that 
leads to minimizing the error between the desired trajec-
tory and the calculated one.

Fig. 17   Error test data ( z parameter) 

Fig. 18   Error train data ( z parameter)
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Fig. 19   ANFIS-IACO y measured

Fig. 20   Error test data ( y parameter) Fig. 21   Error train data ( y parameter)
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Fig.22   ANFIS-IACO  � measured

Fig. 23   Error test data ( � parameter) Fig. 24   Error train data ( � parameter)
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8 � Conclusion

The tracking performance using tuned fuzzy neural net-
work parameters with ant colony optimization (ANFIS-
IACO) algorithm of a quadrotor unmanned vehicle is inves-
tigated in this study.

The computer simulation results depict that the pro-
posed optimized fuzzy ANFIS-IACO controller perfor-
mance outperforms the PID and ANFIS controllers. Sev-
eral reference signals were tested to evaluate the tracking 
performance where the outcomes demonstrate that the 
proposed ANFIS-IACO controller was able to minimize the 
error and bring the quadrotor to the desired trajectory and 
reached to a steady state in short time period. In addition, 
RMSE error was reduced significantly using the proposed 
controller.

Through this study which was based on the develop-
ment and the application of artificial intelligence tech-
niques in nonlinear systems control, it is showed that:

•	 Neuro-fuzzy networks like ANFIS present a powerful 
tool in the control of non-linear systems.

•	 The evolutionary algorithm IACO is dedicated to the 
optimization of the ANFIS parameters and represents 
a precise intelligent solution.

•	 The correct choice of the parameters of the ANFIS algo-
rithm, IACO is subject to the robustness of the laws 
based on last.
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