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Abstract
In pavement engineering, the data sets that are typically obtained from experiments are small and cannot be classified 
as big data. The effective use of machine learning techniques such as artificial neural networks (ANN) for small data is 
a challenge because of poor accuracy of models. This paper presents a method of multiple structure multiple run and 
ranging to optimize ANN to produce models with small data sets with high accuracy. In this method, a large number of 
data fitting ANNs, with different number of neurons, layers, training and validation ratios, and randomized layer weights 
and biases are run in parallel, and the most accurate ANN is filtered out on the basis of the lowest MSE or highest R. The 
process is demonstrated with weather and pavement temperature data for a hot mix asphalt (HMA) and an open graded 
friction course (OGFC) pavement. Models are generated to predict the temperature at a depth of 12.5 mm below the 
surface. For the HMA pavement, an accuracy of 99.73% was obtained and an optimum structure was found to be with 4 
layers, 11 neurons, 70% training ratio, 15% validation ratio. In the case of the OGFC pavement, an accuracy of 99.75% was 
obtained for an optimum structure with 3 layers, 11 neurons, 75% training ratio, 15% validation ratio. Furthermore, the 
fitting/regression problem was converted to a classification problem with different ranges, and then ANNs were utilized 
to develop very accurate classification models with small datasets.
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1 Introduction

Analysis of data is critical for material characterization, and 
building constitutive and predictive models in pavement 
engineering. To date, most of the analyses in pavement 
engineering are conducted with conventional statistical 
methods. This approach makes several assumptions such 
as linearity, independent inputs and normal residuals, 
which in many cases may not be true for the data. Machine 
learning (ML) can help researchers overcome such prob-
lems, and techniques such as artificial neural networks 
(ANNs) are particularly helpful in prediction and/or clas-
sification in the case of data with high degree of non-lin-
earity, complex boundaries and with many dimensions or 

features (predictors). Furthermore, the accuracy of prop-
erly trained ANNs have been demonstrated to be much 
greater than that of statistical or empirical models [1]. Soft 
computing methods such as neuro-fuzzy models and ANN 
have been used to predict shear capacity and compressive 
strength of concrete structures with high accuracy [2, 3]. A 
literature review indicates examples of application of the 
use of ANNs in a variety of cases for pavement engineering 
such as for predicting moduli from falling weight deflec-
tometer (FWD) testing [4–6], spectral analysis of surface 
waves [7], prediction of laboratory permeability of hot 
mix asphalt (HMA) [8] and pavement performance [9–11], 
estimation of laboratory dynamic modulus of HMA [12, 13] 
and pavement temperatures [14], prediction of non-linear 
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material response [15], in-place layer moduli [16], foam-
ing qualities of mixers [17], moisture damage of modified 
binders [18], field permeability of asphalt pavements [19] 
and in pavement management [20]. Ceylan et al. [21] has 
summarized the application of ANN in pavement engi-
neering in the following areas: “(1) prediction of pavement 
condition and performance, (2) pavement management 
and maintenance strategies, (3) pavement distress fore-
casting, (4) structural evaluation of pavement systems, (5) 
pavement image analysis and classification, (6) pavement 
materials modeling, and (7) other miscellaneous transpor-
tation infrastructure applications.”

However, the biggest drawback of using ML is that the 
effective use of the most commonly used ML method, 
ANN, requires the use of a significant amount of data. In 
fact, most, if not almost all of the developments and appli-
cations have been for “Big Data” which typically consists of 
relatively large datasets, with thousands of observations. 
These data are generally used for identifying associations 
between parameters, and pattern and trends in behaviors 
[22, 23]. Unfortunately, in pavement engineering, the data 
that are available from most laboratory or field experimen-
tal studies consist of relatively small or “constrained” data 
sets, and cannot be classified as “Big Data”. This is because 
experiments in pavement engineering are labor- and time-
intensive, and costly. The application of extensive amount 
of instrumentation/sensor networks is costly, and may be 
possible only for a few pooled or nationally funded stud-
ies. This means that pavement engineers cannot avail the 
benefits of ANN with most of their data. A similar concern 
has been recognized in the medical sciences [24–27].

1.1  Problem statement

Despite their tremendous success, ANNs have been strictly 
restricted in pavement engineering for only those rela-
tively few cases where big data exists, such as those from 
the Long Term Pavement Performance (LTPP) Study in the 
US (Infopave, https ://infop ave.fhwa.dot.gov/). These stud-
ies are few in number because of their significant costs. 
On the other hand, there are several reasons that prevent 
researchers from applying ANN to solve problems with 
small datasets. The primary reasons, which affect the abil-
ity of a ANN to reach convergence to an objective function 
(cost function) and produce repeatable results, are the fol-
lowing: (1) ANNs consist of parameters that are randomly 
initiated, and big datasets are needed to avoid prediction 
variabilities, and achieve stable behavior; (2) depend-
ence of the results on the training and validation data, 
and (3) the need for sufficient data points for developing 
the parameters for fitting highly nonlinear and complex 
models.

1.2  Objective

The objective of this paper is to present a method that 
could be utilized to apply artificial neural network (ANN) as 
a machine learning (ML) technique to develop sufficiently 
accurate results from analyses of relatively small data sets, 
which are frequently encountered in the field of pavement 
engineering.

2  Artificial neural network (ANN)

The structure of an ANN consists of one or more layers of 
neurons (input, hidden and output layers) through which 
the input is processed and the outputs are obtained at the 
end. The structure and the process mimic the biological 
neural process that is responsible for all brain functions 
[28, 29]. The process of transmitting the inputs through 
the layers is manipulated through the use of appropriate 
layer weights and biases, which dictate the impact of one 
layer of neurons on the other. The basic process of training 
an ANN for supervised learning (fitting or classification) 
consists of iteratively altering the layer weights until an 
object function such as error between the target value 
and the predicted value is minimized. The training pro-
cess can be conducted through various algorithms such 
as the Levenberg–Marquardt (LM) algorithm [30, 31] or 
the Bayesian regularization technique [32]. Typically, the 
dataset is divided into training, validation and test ratios. 
The training dataset is used to develop the model, which 
is tested with the validation dataset to ensure the accuracy 
and then further checked with the test dataset. The check-
ing can be done with various parameters—but typically 
the mean square error (MSE) and the coefficient of correla-
tion (R) are used for fitting, whereas a confusion matrix is 
used for classification.

2.1  Example of a relevant pavement engineering 
problem

The authors have selected the prediction of temperatures 
at different pavement depths from weather data as a rel-
evant problem for this paper. The topic has been a subject 
of interest and research for a number of years, since such 
prediction is crucial for the selection of the appropriate 
stiffness/strength properties (such as dynamic modu-
lus) of pavement materials, which are used for predic-
tion of pavement performance through mechanistic or 
mechanistic-empirical modeling and analysis. Over the 
last few decades, a number of researchers have carried 
out investigations on predicting maximum temperatures 
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and temperature at different depths of pavement layers 
from weather data (for example, [33–39]), and a number 
of statistical models are available in the literature. Some 
researchers have also used ANN for prediction of pave-
ment temperatures; Abo-Hashema [14] and Matić et al. 
[40] have used data from LTPP and that from a year-long 
study at a University campus, respectively. Researchers of 
both studies have reported excellent accuracy in predic-
tion of pavement temperatures using ANN.

Although researchers have used different types of pre-
dictors, such as surface temperatures, the quest through 
the different years has always been for the ability to pre-
dict the temperature at a relevant pavement depth from 
the data that could be obtained easily. However, it is also 
true that the pavement temperature at the surface and at 
different depths are dependent on a number of weather 
factors as well as thermodynamic properties such as heat 
capacity and conductivity, and on the thermal history of 
the location. On the basis of the above considerations, 
and the availability of data, the authors had selected the 
following relevant predictors for analyses from two differ-
ent types of pavement sections, a dense graded hot mix 
asphalt (HMA) and an open graded friction course (OGFC): 
solar radiation, wind speed, air temperature, rainfall and 
surface temperature. Additionally, following the work of 
Abo-Hashema [14] the authors also calculated and used 
the thermal history (average air temperature from 24 h 
preceding the time of testing) as one of the predictors in 
the ANN model. The temperature at a depth of 12.5 mm 
was selected as the target parameter.

3  Methodology

In this paper, the use of a multi-structure-multi-run range 
(MSMRR) approach is proposed, demonstrated and evalu-
ated for the effective use of ANN for fitting and classifi-
cation with small data. The basis of this approach is the 
hypothesis that multiple runs with multiple structures, ini-
tial weights, and bias of layers with ANN, and grouping of 
targets into data ranges and predicting ranges rather than 
exact values can yield sufficiently accurate results from the 
analysis of small datasets compared to those from analy-
sis with larger datasets. The analysis has been carried out 
using small and large data sets.

The approach consists of using multiple structures (dif-
ferent number of neurons and layers) in ANN and running 
them multiple times [27], while initializing the weights 
and biases every time, to come up with combination of 
various ANNs, from which the best structure (lowest MSE) 
is identified. Furthermore, the targets in different runs 
were grouped into different ranges, starting from nar-
row to broad. Statistical tests were conducted between 

the results of the different runs to determine significant 
differences in the results if any. The results from the analy-
sis of the smaller datasets were compared against those 
from analyses of the entire dataset, to detect differences in 
accuracy, if any, and hence determine the loss in accuracy 
of prediction for using smaller datasets. Finally, an opti-
mum MSMRR method was proposed that could be used 
with relatively smaller datasets.

4  Data and analysis

For this paper, the two datasets corresponding to the 
two pavement sections, consisting of weather data and 
pavement surface temperature, and the temperature at 
a depth of 12.5 mm below the surface, were utilized. The 
sections consisted of 100 mm HMA and 100 mm OGFC lay-
ers over 150 mm and 300 mm of aggregate base, respec-
tively over the same existing soil subgrade. The data were 
collected from a year-long study at the UC Davis Pave-
ment Research Center as part of a bigger study [41]. Each 
dataset consists of 8000 observations of solar radiation 
(SR), wind speed (WS), rainfall (RF), air temperature (AT), 
thermal history (TH) and surface temperature (ST) (predic-
tors), and the temperature at a depth of 12.5 mm (target). 
A small portion of the data is shown in Table 1 as exam-
ple. The maximum and minimum values for the data are 
shown in Table 2. The weather data were obtained from 
weather stations with different sensors on each of the two 
test sections, while the pavement temperature data were 
obtained from thermocouples installed at the surface and 
different depths.

4.1  Use of artificial neural network (ANN)

A higher number of observations (that are used for train-
ing the model) has been always found to result in better 
(more accurate) ANN models. In addition, techniques such 
as early stopping and k-fold cross validations are gener-
ally used for avoiding overfitting. The hypothesis adopted 
in this study is that the impact of the relative differences 
(sometimes referred to as volatilities) between the ANNs 
with different properties for small data sets could be 
reduced by running multiple structures multiple times. 
Multiple structures refer to multiple layers and different 
number of neurons in the layer. Furthermore, the layer 
weights and biases are initialized randomly according to 
the Nguyen–Widrow [42] algorithm, which distributes the 
active region of each neuron in the layer evenly across the 
layer’s input space and reduces the wastage of neurons. 
This algorithm is widely used to increase the accuracy 
of ANN network [43, 44]. Lastly, the training and valida-
tion ratios of the total dataset were also varied. These 
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parameters have been found to be very significant in 
affecting the performance of ANNs specifically for cases 
with relatively small data sets and recommendations have 
been made for using multiple splits (as opposed to a sin-
gle split) of the data for the development of ANN mod-
els [45]. Finally, the algorithm used to generate the ANNs 
included a step for filtering out the optimum ANN, based 
on minimum MSE and maximum R. The algorithm is shown 
schematically in Fig. 1. All analyses were conducted using 
 MATLAB® software [46].

4.2  Impact of number of observations

First, the impacts of the amount of data on MSE and R were 
evaluated by running ANNs with different structures and 
number of neurons and by initializing the weights and 
biases randomly in each run, for multiple runs. The ANN 
parameters that were varied for different simulations are 
shown in Table 3. The reduced data sets (from a total of 
8000 observations) consisted of 1000, 500 and 100 obser-
vations, all of which were selected randomly from the 
entire data set.

A total of 1800 runs were conducted for the different 
combinations. The MSE and R values obtained for each 
amount of data were compared using the Mann–Whit-
ney test (which compares the median values). The 

Table 1  Example of 
temperature and weather data

Observations (at 
30 min interval)

Air tem-
perature 
(°C)

Solar radia-
tion (W/
m2)

Rainfall (mm) Wind 
speed 
(m/s)

Surface 
tempera-
ture (°C)

Temperature at a 
depth of 12.5 mm 
(°C)

HMA
1 8.9 0 0.0 1.3 15.5 15.3
2 8.6 2 0.0 1.0 15.3 15.1
3 10.1 36 0.0 1.2 15.8 15.5
4 11.0 128 0.0 0.9 16.5 16.0
5 12.4 252 0.0 1.9 20.6 19.0
OGFC
1 9.3 0 0.0 0.6 12.13 14.82
2 9.3 0 0.0 0.4 11.78 14.51
3 10.2 9 0.0 0.3 12.4 14.71
4 12.8 98 0.0 0.8 13.15 15.13
5 13.0 192 0.0 0.5 15.48 15.48

Table 2  Maximum and 
minimum parameters for 
OGHC and HMA pavement 
data

Sample Parameter ST AT SR RF WS TH T12.5

OGFC Maximum 67.48 40 1420 6.35 12.9 40.27 62.9
Minimum − 6.322 − 7.6 0 0 0.278 − 38.71 − 3.879
Total 8000

HMA Maximum 71.5 41.01 1292 9.91 12.29 46.93 59.46
Minimum − 1.701 − 4.781 0 0 0.278 − 40.78 − 0.894
Total 8000

Number of runs

Range of number of
neurons

Range of number of
layers

Range of training
ratios

Range of validation
ratios

Check Mean Square
Error and evaluate R

Identify optimum
ANN

Fig. 1  Schematic flowchart of the ANN algorithm
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results indicated relatively lower R and higher MSE val-
ues for the models with the smaller data sets (Fig. 2).

As expected, the MSE increased and the R value 
dropped progressively from the model with 8000 data 
points to the model with 100 data points, although 
the R value for the 100 data points model was still 
found to be quite high (0.963). An Analysis of Variance 
(ANOVA) showed a significant effect on the R value 
[F(6,1793) = 8.69, p < 0.0001] but insignificant effect 
on the MSE value [(F(6,1793) = 1.05, p = 0.39. However, 
a regression analysis did not yield meaningful results 
 (R2 = 0.03), which indicates that the impact of the differ-
ent parameters on the MSE and R of the different mod-
els cannot be explained with a generalized linear model. 
In fact, the impact of the parameters such as number of 
neurons on the performance of ANN models is not well 
understood, and the trial rule has been the most widely 
used method [47]. This effectively means that although 
one knows the significant impacts, it is not possible to 
draw a conclusion regarding the optimization of the dif-
ferent parameters in the ANN.

4.3  Multiple run multiple structure and ranging 
(MSMRR)

To overcome this problem, the method of multiple run 
multiple structure and ranging (MSMRR) is proposed. In 
this method, the small data set is used for running multiple 
ANNs in parallel using the different parameters listed in 
Table 3. Next, the optimal structure is extracted from the 
runs on the basis of the highest R value. For the HMA pave-
ment data, this technique was applied on the 100-sam-
ple dataset and the best structure was identified as one, 
which gave the high test R value of 0.99. The optimum 
ANN was found to be with three layers, 9 neurons, 80% 
training ratio, 15% validation ratio. The technique was also 
applied for the OGFC pavement data and the optimum 
ANN was found to be with three layers, 5 neurons, 80% 
training ratio, 15% validation ratio (R = 0.99). Figure 3a, b 
show the optimum structures of the prediction models for 
HMA and OGFC pavements, including layer weights and 
biases.

Comparisons between the predicted and the actual val-
ues for the two pavements are shown in Fig. 4. It can be 
seen that a high R value is obtained for the prediction of 
the temperature at a depth of 12.5 mm for both HMA and 
OGFC pavements.

5  Results and discussion

Note that while an accurate prediction of temperatures is 
desirable, the accuracy that is required is dependent on 
the sensitivity of the critical performance based property 
to temperature. For example, research data shows that 
the dynamic modulus (a critical property that is utilized 
for prediction of strain in the HMA layers in the mecha-
nistic-empirical analysis and design of asphalt pavements, 
AASHTO [48] values of HMA exhibit distinct sets of values 
at five different temperature ranges: > 30 °C, 20–30 °C, 
10–20 °C, 0–10 °C and < 0 °C. At both extremes of tem-
perature (high and low) the dynamic modulus values tend 
to level off. At lower temperatures, beyond a certain level, 
the change in calculated critical strain becomes practi-
cally insensitive to further changes in the dynamic modu-
lus (because of a relatively high dynamic modulus), while 
beyond a certain high temperature, the dynamic modu-
lus values are typically very low, and correspondingly, 
extremely high strain values are expected. The shorter 
the temperature range of the location, the less number 
of ranges need to be specified. For example, in the case of 
the current data set from Davis, California, USA, the lowest 
temperature that was recorded was − 1 °C, and the range 
need not extend beyond that temperature. For a region 
with a wide range of temperature, the number of ranges 

Table 3  Dataset and ANN parameters

a Each run corresponds to an initialized random set of layer weights 
and bias; Z-score normalization has been considered; single layer 
ANN did not show any reduction in MSE

Parameter Values

Data (rows of observations) 8000; 1000; 500; 100
No. of neurons in hidden layers 3, 5, 7, 9, 11
Percent of training data 70, 75, 80
Percent of validation data 15, 10
Number of hidden layers 2, 3, 4
Number of  runsa 5

Fig. 2  Median R and MSE values for the different datasets (HMA 
pavement)
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can be relatively large, such as ten. What is important here 
is to note that instead of trying to predict whether the 
temperature is either one of the 30 values ranging from 
say 0 to 30 °C (at 1-degree interval), it may be sufficient to 
predict to which of the three or ten ranges it belongs to. 
Prediction of temperature of a HMA layer at one of those 
ranges will be sufficient for the selection of the appro-
priate dynamic modulus values. The advantage is that 
a reduction in number of targets or “bins” by effectively 

using ranges (and broader ranges) instead of actual values 
can enable us to use ANNs that work well with a relatively 
small dataset. To give a similar example, one needs a small 
number of data to fit a simple curve (say a quadratic poly-
nomial) and a relatively large number of data points to fit 
a more complex curve (say a sine wave).

To evaluate the impact of ranging, the HMA and the 
OGFC pavement data were divided into different inter-
vals, and the 100 observations data set was utilized for 

Fig. 3  Optimum structures of prediction models of HMA and OGFC temperatures. Note: Inputs are solar radiation (SR), wind speed (WS), 
rainfall (RF), air temperature (AT), thermal history (TH) and surface temperature (ST); output is  T12.5 temperature at a depth of 12.5 mm
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Fig. 4  Plots of actual versus 
predicted temperatures for a 
HMA, b OGFC pavement
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the training of the ANN. The data was grouped as narrow 
range, broad range and very broad range. Narrow range 
had five groups: very low (< 9 °C), low (10–19 °C), medium 
(20–29 °C), high (30–39 °C) and very high (> 40 °C). The 
broad range consisted of low (< 15 °C), medium (16–30 °C), 
high (31–45 °C) and very high (> 46 °C) groups. The very 
broad range had low (< 19 °C), medium (20–39 °C) and 
high (> 40 °C) groups. Although the 100 observations were 
selected randomly, it was made sure that the data was 
well balanced in terms of all of the ranges. In practice, it is 
expected that if one has 100 data points to begin with, the 
ranges will be well represented in the data. The ANN was 
then trained as a classification net, using Levenberg–Mar-
quardt algorithm. The number of layers and neurons were 
varied according to the range presented in Table 3. For 
the HMA this technique was applied on the 100 sample 
dataset and the best structure was identified as one which 
gave the lowest test error percentage of 0.27% (Accuracy 
99.73%). The optimum structure was found to be with 4 
layers, 11 neurons, 70% training ratio, 15% validation ratio. 
The technique was also applied for the OGFC pavement 
data and the optimal structure was found to be with 3 lay-
ers, 11 neurons, 75% training ratio, 15% validation ratio, 
with the lowest test error percentage of 0.25% (accuracy 
of 99.75%). The optimum networks and error rates for the 
different ranges from classification models are presented 
in Table 4.

6  Summary and conclusions

The use of machine learning (ML) techniques provides a 
significantly better method of analysis compared to con-
ventional statistical methods, specifically for complex and 
highly non-linear data. However, the use of the most com-
mon machine learning (ML) technique, artificial neural net-
works (ANN) for analysis of small data sets is challenging 
because of poor accuracy and repeatability. Due to time 
and budget limitations, most data sets that are obtained 
from pavement engineering experiments are relatively 
small and cannot be classified as Big Data. To overcome the 
volatility of results of ANN using small datasets, a method 
of multiple structure multiple run and ranging (MSMRR) 
is proposed and demonstrated in this paper. The multiple 
runs and multiple structures, along with randomly gener-
ated layer weights and biases were used with a filtering 
algorithm to select the best ANN on the basis of a govern-
ing criterion of global minimum mean square error (MSE). 
A method of changing an appropriate small-data problem 
from a fitting to a classification analysis was also proposed. 
The method was demonstrated with an example of predic-
tion of pavement subsurface temperature from weather 
and pavement surface data.

The following conclusions are made from this study.

1. The multiple structure multiple run and ranging 
(MSMRR) method is capable of producing ANN models 
with good accuracy for small data sets.

2. Models with good accuracies can be developed from 
small datasets by transforming fitting problems to 
appropriate classification problems.

Table 4  Optimum networks and error rates for the different ranges from classification models

Group HMA data Number of 
runs

Number of 
neurons

Number of 
layers

Training ratio Validation ratio Error rate

Broad Overall 2 9 2 0.8 0.15 0.0030
Test 2 7 2 0.8 0.15 0.0046

Narrow Overall 5 11 3 0.7 0.15 0.0193
Test 1 11 2 0.8 0.15 0.0202

Very broad Overall 3 5 4 0.8 0.1 0.0013
Test 5 11 4 0.7 0.15 0.0027

Group OGFC data Number of 
runs

Number of 
neurons

Number of 
layers

Training ratio Validation ratio Error rate

Broad Overall 5 5 2 0.8 0.15 0.0049
Test 1 7 2 0.8 0.15 0.0062

Narrow Overall 2 5 2 0.8 0.1 0.0155
Test 5 7 2 0.8 0.15 0.0249

Very broad Overall 5 7 2 0.8 0.1 2.32 × 10−6

Test 2 11 3 0.75 0.15 0.0025
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3. A combined use of MSMRR and classification problems 
can be made successfully in pavement engineering 
to utilize ANN to develop accurate prediction models 
with small datasets.
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