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Abstract
Fluid viscosity is considered as constant in several boundary layer analyses, but this fluid property can change remark‑
ably when the temperature difference exists in the boundary layer. The Prandtl number and Schmidt number can also 
change significantly as the fluid viscosity changes depending on temperature. Therefore, this framework is exploring 
the consequences of varying viscosity and varying Prandtl number on Falkner–Skan flow of Williamson nanofluid over a 
wedge, plate and stagnation point. The Buongiorno nanofluid model has been employed to manifest the fluid transport 
properties of the Williamson nanofluid. Similarity transformations are utilized to transform the governing equations 
into ordinary differential equation and solved numerically using Runge–Kutta (RK) Fehlberg method. Williamson fluid 
velocity, temperature, concentration, skin friction factor, rate of heat transfer and rate of mass transfer are investigated 
with emerging parameters, and the outcomes are presented graphically. Computed results manifest that the Williamson 
nanofluid expresses the opposite nature in velocity and temperature for higher values of Weissenberg number param‑
eter. Positive values of variable viscosity parameter diminish the significance of variable Prandtl number and variable 
Schmidt number in the boundary layer. Furthermore, it is noticed that the Williamson nanofluid temperature is higher 
over a plate compared with wedge and stagnation point cases.

Keywords  Williamson nanofluid · Falkner–Skan flow · Variable viscosity · Variable Prandtl number · Wedge/plate/
stagnation point

Nomenclature
x, y	� Cartesian coordinate system [m]

u, v	� Velocity components 
[
ms- 1

]
T	� Temperature of fluid [K]
Tw	� Temperature at the surface [K]
T∞	� Ambient temperature [K]
C	� Nanoparticles concentration
Cw	� Concentration at the surface
C∞	� Ambient nanoparticles concentration
DB	� Brownian diffusion coefficient 

[
m2∕s

]
DT	� Thermophoresis diffusion coefficient 

[
m2∕s

]
NB	� Brownian motion parameter

NT	� Thermophoresis parameter
b	� Constant
C∗
f
	� Skin friction coefficient

Nu∗	� Nusselt number
Sh∗	� Sherwood number
Pr∞	� Prandtl number
Re	� Local Reynolds number
k	� Thermal conductivity 

[
W∕mK

]
m	� Hartree pressure gradient parameter
f	� Dimensionless stream function
We	� Weissenberg number
Sc∞	� Schmidt number
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Ec	� Eckert number
(�C)p	� Heat capacity of nanofluid
(�C)f 	� Heat capacity of base fluid
Cp	� Specific heat at constant pressure 

[
J kg- 1 K- 1

]
Ks	� Slip parameter
Knx	� Local Knudsen number
uSlip	� Velocity slip
�u

�n
	� Velocity gradient normal to the surface

�T

�S
	� Temperature gradient to the wall

Greek symbols
Γ	� Relaxation time [s]
�	� Viscosity [N s∕m2]

�∞	� Infinite viscosity [N s∕m2]

�	� Kinematic viscosity 
[
m2∕s

]
�	� Stream function
�	� Dimensionless temperature
�	� Dimensionless concentration
�	� Dimensionless variable
�∗	� Thermal diffusivity [m2s−1]

�	� Ratio between particle and base fluid
�1	� Total wedge angle
�∞	� Fluid density 

[
kg ∕m3

]
�	� Parameter
�	� Thermal property
�r	� Variable viscosity parameter
�M	� Accommodation coefficient of tangential 

momentum
�T	� Accommodation coefficient of thermal
�0	� Molecular mean free path
�	� Ratio of specific heat

1  Introduction

Rapid heat dissipation is significant in enhancing the effi‑
ciency of industrial processes, power generation, electron‑
ics, and automobile radiators due to a growing demand 
for energy conservation. Engineers and researchers have 
made many attempts to increase the performance of heat 
dissipation. Due to less capability of normal heat transfer, 
the fluids such as ethylene glycol, oil, and water are not 
enough to meet today’s needs. Nanofluids are the new 
generation working fluids with high potential which are 
used in the industries. Nanofluid is a colloidal mixture 
of nanosized particles (less than 100 nm) in regular heat 
transfer fluid which exhibit better heat dissipation than 
ordinary fluids. Such a new class of high heat transfer flu‑
ids was first proposed by Choi et al. [1]. Numerous inves‑
tigations have been carried out to explore the transport 
characteristics and thermal properties of the nanofluids 
that most of them have divulged a positive effect of nano‑
fluids on the heat dissipation. Nanofluid was initially used 

only for heat transfer applications, but in recent days it is 
widely employed in biomedical engineering (drug deliv‑
ery, vivo therapy, photodynamic therapy, neuro-electronic 
interfaces, and chromatography), renewable energy (solar 
thermoelectric devices, solar collector, biomass and geo‑
thermal), etc. Several models have been introduced to 
study the nanofluid; the Buongiorno model is one of the 
nanofluid models which are adopted by many researchers 
to analyze the nanofluid. Buongiorno [2] model consists of 
the momentum, heat and mass transport equations with 
the influence of Brownian motion and thermophoretic dif‑
fusivity. It is noteworthy that the Brownian motion has a 
higher impact when Joule heating is significant and the 
effect of thermophoresis should be ignored when consid‑
ering the energy flux generated by the mass flux caused 
by the temperature gradient. Recently, Animasaun et al. [3] 
delivered a detailed theoretical review of Brownian motion 
in various nanofluids and pointed out that the collision 
between the particles is caused by the increase in the 
Brownian motion of the particles. Wakif et al. [4] provided 
a technical note to emphasize the essential role of partial 
migration and the significance of thermophoresis in vari‑
ous fluids and noted that the impact of thermophoresis 
on non-Newtonian fluids is higher than that of Newtonian 
fluids. Khan et al. [5] utilized the Buongiorno nanofluid 
model to explore fluid transport properties and entropy 
generation of tangent hyperbolic nanofluid with nonlin‑
ear convection and observed that varying thermophoretic 
parameter enhances temperature and mass transfer of 
nanofluid. Ghadikolaei et al. [6] scrutinized the impact of 
nonlinear radiation on magneto Eyring–Powell nanofluid 
by using Buongiorno nanofluid model and found that 
increasing values of Brownian motion parameter declines 
the mass transfer. Ahmed et al. [7] numerically investigated 
the Maxwell nanofluid over a permeable disk in the pres‑
ence of Brownian motion and thermophoresis. Few studies 
on Buongiorno nanofluid model are cited in Refs.[8–12]

When the shear stress and shear rate of the fluid are 
nonlinear, the fluid becomes non-Newtonian and this fluid 
is classified into visco-elastic fluid, dilatant, pseudoplastic, 
micropolar fluid, and Bingham plastic. The boundary layer 
flow with pseudoplastic fluids has a significant application 
in bio-science and engineering systems due to its wide uses 
in biological materials (blood, saliva), chemical materials 
(polymer fluids, pharmaceutical chemicals), food processing 
(ketchup, yogurt), flow in journal bearings, solar collectors, 
etc. The Navier–Stokes equations are unable to elucidate 
the flow characteristics of non-Newtonian fluids because of 
the complex rheological properties of non-Newtonian flu‑
ids. To overcome this shortcoming, many researchers have 
proposed several rheological models such as Cross fluid, 
Carreau fluid, Maxwell fluid, Walter’s B fluid, Casson fluid 
and Williamson fluid. Several authors investigated different 
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types of non-Newtonian models in various aspects [13–17]. 
Williamson fluid is one of the non-Newtonian fluids, and this 
model was proposed by Williamson [18]. It is noticed that 
this fluid model is a classic example of visco-elastic shear 
thinning fluid. It is also noticed that Williamson fluid model 
has represented the exact characteristic of pseudoplastic 
fluids. Furthermore, the viscosity of the Williamson fluids 
decreases while the shear stress rate is improved. Abegunrin 
et al. [19] investigated the influence of the quartic autocata‑
lytic on chemically reacting Williamson nanofluid over an 
upper surface of a horizontal paraboloid of revolution and 
noticed that Weissenberg number has less impact on the 
fluid transport properties. Hashim et al. [20] scrutinized the 
time-dependent Williamson nanofluid over a disk with the 
impact of varying fluid temperature and found that high-
thermal-conductivity parameter uplifts Williamson fluid 
temperature. Abegunrin and Animasaun [21] addressed the 
fluid transport properties of Williamson fluid in the pres‑
ence and absence of partial slip and thermal jump cases 
and observed that the horizontal velocity increases in the 
presence of partial slip and thermal jump. Khan et al. [22] 
examined the variable viscosity and Lorentz force impacts 
on Williamson nanofluid in the presence of dual stratifica‑
tion effect.

In heat and mass transfer characteristics, convection is a 
mechanism which is classified into free, mixed and forced. 
Forced convection occurs when the convection is driven by 
an external force like a fan, pump and suction devices. This 
mechanism has great potential in many practical engineer‑
ing applications like growth in electroactive biofilms [23], 
wire-coil inserts [24], vapor explosions [25], solar energy 
[26], electronic device cooling, cooling of gas turbine 
blades and rocket propulsion. Lin and Lin [27] examined 
forced convective Falkner–Skan flow over a wedge, plate, 
and stagnation of a flat plate and introduced a parameter 
to investigate the fluid of any Prandtl number. Bianco [28] 
investigated the forced convection in a circular tube with 
water-based Al2O3 nanofluid and observed that uplifting 
the nanoparticle concentration tends to enhance the heat 
transfer. Sheikholeslami [29] employed lattice Boltzmann 
method to explore the characteristics of heat transfer and 
Lorentz force in a porous cavity with forced convection. 
Rahman et al. [30] numerically studied the forced convec‑
tive flow by accounting the influence of varying viscosity 
and varying Prandtl number and pointed out that static 
wedge has a higher temperature than the moving wedge. 
Chamkha et al. [31] investigated the influence of linear 
radiation on Newtonian fluid over a non-isothermal mov‑
ing wedge and found that by varying the Hartree pres‑
sure gradient parameter (� = 0.0, 0.5, 1.0) declines the 
Newtonian fluid temperature. Uddin et al. [32] scrutinized 
the impact of variable fluid properties on the forced con‑
vective flow of nanofluid by using Buongiorno nanofluid 

model and noticed that Falkner–Skan flow parameter has 
a high temperature and concentration at m = 0(flat plate) 
compared with Falkner–Skan flow parameter m = 1(stag‑
nation point). Further studies on forced convective flow 
can be found in Refs. [33–35]. The solutions for nonlinear 
Boundary Value Problems (BVPs) play a significant role in 
characterizing many science and engineering problems. 
It can be seen that most of the nonlinear BVPs are Partial 
Differential Equations (PDEs). An important issue on solv‑
ing the nonlinear PDEs is computational complexity since 
most of the boundary layer equations are highly nonlinear 
and coupled. When the PDEs are converted to the Ordinary 
Differential Equations (ODEs) using the similarity variable, 
computational complexity is reduced, and the solution 
obtained by the PDEs becomes similar to the ODEs solu‑
tion. As a result, many researchers have used similarity vari‑
ables to solve highly nonlinear BVPs.

The present work reports the forced convective 
Falkner–Skan flow of Williamson nanofluid in the pres‑
ence of thermal jump and viscous dissipation. The variable 
viscosity, variable Prandtl number, and variable Schmidt 
number are considered to investigate the fluid character‑
istic of Williamson nanofluid. The fluid transport equations 
are modeled by using Buongiorno nanofluid model. It is 
to be noted that the employed similarity transformation is 
suitable for any fluid Prandtl number. RK Fehlberg method 
is adopted as a computational tool for characterizing 
the non-dimensional governing equations. Influence of 
diverse pertinent parameters on the velocity, tempera‑
ture and concentration is analyzed through the graphs. 
To the best of the authors’ knowledge, no study has been 
performed to explore the effects of variable viscosity, 
variable Prandtl number, and variable Schmidt number 
on Williamson nanofluid over three different geometry 
cases. Owing to the significance of this kind of problems, 
the present study intends to manifest answers to the fol‑
lowing research questions: (i) What are the characteristics 
of wall Prandtl number and the wall Schmidt number over 
three different geometries due to the impact of variable 
viscosity and thermophoresis? (ii) On which geometry, the 
Williamson nanofluid has a higher heat transfer rate? (iii) 
What is the impact of velocity slip and thermal jump on 
Williamson nanofluid flow over wedge, plate, and stagna‑
tion point?

2 � Mathematical formulation

We consider two-dimensional (x, y) forced convective 
Falkner–Skan flow of Williamson nanofluid over a wedge, 
plate and stagnation point of flat plate, as demonstrated 
in Fig.  1. It is assumed that the velocity of the potential 
flow away from the boundary layer is u∞ = bxm where b is 
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the constant. Here, m =
�1

2−�1
 is the Hartree pressure gradi‑

ent. �1 = 0,  0.5 and 1 represents the flow over a plate, 
wedge and stagnation point of a flat plate, respectively. 
The temperature (Tw) and concentration (Cw) of the wall 
are fixed, and it is higher than the ambient temperature 
(T∞) and ambient concentration (C∞).

Based on the above settings, the flow assumptions are

•	 Laminar, steady, incompressible, forced convective flow 
of Williamson nanofluid is considered.

•	 The body force is neglected in the momentum equa‑
tion.

•	 Thermal jump is considered at the boundary.
•	 The dissipation of Williamson nanofluid is considered 

in the energy equation.
•	 Buongiorno nanofluid model is employed to model the 

governing equation.

Within the framework of the aforementioned suppositions, 
the governing equations are [8, 18, 26, 27]

The boundary conditions are [8, 26, 30]

(1)
�u

�x
+

�v

�y
=0,

(2)

u
�u

�x
+ v

�u

�y
= u∞

du∞

dx
+

1

�∞

�
�(T )

�u

�y

�

+
Γ
√
2

�∞

�
�

�y

�
�(T )

�u

�y

�
�u

�y

�
,

(3)

u
�T

�x
+ v

�T

�y
= �∗ �

2T

�y2
+ �

[
DB

�T

�y

�C

�y
+

DT

T∞

(
�T

�y

)2
]

+
�(T )(
�∞CP

)
f

(
�u

�y

)2

+
�(T )(
�∞CP

)
f

Γ

(
�u

�y

)3

,

(4)u
�C

�x
+ v

�C

�y
=DB

�2C

�y2
+

DT

T∞

�2T

�y2
.

where � =
�

�
 , �∗ =

k

(�Cp)f
 , � =

(�Cp)p
(�Cp)f

.

Temperature variation notably affects the nanofluid 
velocity and the rate of heat transfer. As a consequence, 
to accurately infer the nanofluid flow and rate of heat 
transfer, the nanofluid viscosity is considered as inversely 
proportional to nanofluid temperature.

Therefore, this can be expressed as [8, 30],

Eq. (6) can be rewritten as,

where �∞ and � are dynamic viscosity and thermal prop‑
erty of the nanofluid, respectively. B =

�

�∞

 and Tr =
�T∞−1

�
. 

It is essential to note that the positive values of B corre‑
spond to liquid and the negative values of B correspond 
to gases.

Hence, the dimensionless temperature can be 
expressed as

where �r =
Tr−T∞

Tw−T∞
= −

1

�(Tw−T∞)
 is the variable viscosity 

parameter. It is mentioned that the 𝜃r > 0 represents liquid 
and 𝜃r < 0 represents gases.

Using Eqs. (7) and (8), the dynamic viscosity becomes

(5)

u = uSlip = �0

�
�u

�n
+

Γ√
2

�
�u

�n

�2
��

2 − �M

�M

�
+

3v

4Tg

�T

�S
,

v = 0, TJump = Tg − Tw = �0
2�

� + 1

�T

�n

�
2 − �T

�T

�
1

Pr∞
,

DB

�C

�y
+

DT

T∞

�T

�y
= 0 at y = 0,

u = u∞, T → T∞,C → C∞ as y → ∞.

(6)1

�
=

(
1 +�

(
T − T∞

))
�∞

,

(7)
1

�
= B

(
T − Tr

)
,

(8)� =
T − Tr

Tw − T∞
+ �r ,

Fig. 1   Flow geometry for 
wedge, plate and stagnation 
point
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A parameter � is given by Lin and Lin [27] which is used to 
apply for any fluid Prandtl number � = �

√
Re , where 

Re =
u∞x

�∞
 is Reynolds number, � =

√
Pr∞

(1+Pr∞)
n,n =

1

6
 for plate, 

wedge and stagnation of flat plate, Pr∞ is Prandtl 
number.

Now, the similarity transformations are introduced as 
follows:

Based on Eq. (6), Eqs. (2)–(4) are transformed to

Velocity boundary can be written as [8],

(9)� =

(
�r

�r − �

)
�∞.

(10)

� =
�

y

x

�
�,

f (�) =
�(x,y)

�∗ �
,

u =
f �(�) bxm

(1+Pr∞)
2n ,

v = −
�

�∗

x

�
�

�
m+1

2
f (�) +

m−1

2
� f �(�)

�
,

T =
�
Tw − T∞

�
�(�) + T∞,

C =
�
Cw − C∞

�
�(�) + C∞.

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(11)
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���

[
1 + 2Wef

��

(
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+

[
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��
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(
m + 1

2

)
f f

��

(
1 −

�

�r

)

+m

((
1 + Pr∞

)4n
−
(
f
�
)2)(

1 −
�

�r

)
= 0,

(12)

��� + Pr∞NB�
� � � + Pr∞NT

�
��
�2

+
�
m + 1

2

�
f ��

+
Pr∞�

1 + Pr∞
�4n EC

�
f ��
�2 1�

1 −
�

�r

�
�
1 + Wef ��

�
Pr∞√

2
�
1 + Pr∞

�3n
��

= 0,

(13)� �� +
(
m + 1

2

)
f� �

Sc∞

Pr∞
+

NT

NB

��� = 0.

(14)

f �(�) =

√
Pr∞ f ��(�)�
1 + Pr∞

�n
�
2 − �M

�M

�
Knx

√
Re =

√
Pr∞ Ksf

��(�)�
1 + Pr∞

�n .

where Ks = Knx

�
2−�M

�M

�√
Re is the slip parameter and 

Knx =
�0

x
 is the local Knudsen number.

Thermal boundary can be written as

Here, it is assumed that momentum and thermal accom‑
modation coefficients are equal, i.e., �M = �T .

Using Eqs. (14) and (15), then the transformed boundary 
condition becomes

where We = Γ

√
2u3

∞

�∞ x
 , NT =

�DT (Tw−T∞)
T∞�∞

 , EC =
u2
∞

(Cp)f (Tw−T∞)
 , 

NB =
�DB(Cw−C∞)

�∞
 , Pr∞ =

�∞CP

k
 and Sc∞ =

�∞

DB

.

It is noticed that the viscosity of the nanofluid within 
the boundary layer varies, based on that the Prandtl num‑
ber and Schmidt number also changes. Due to this reason, 
the Prandtl number and Schmidt number are considered 
as variables.

Variable Prandtl number can be written as [8, 30],

Variable Schmidt number can be written as,

It is mentioned that when �r
(
�r → ∞

)
 has a higher value, 

the Prv and Pr∞ are equal. A similar behavior is observed 
for Schmidt number.

Based on Eqs. (13) and (14) , Eqs. (11)–(14) can be writ‑
ten as
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(19)
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The boundary conditions also transform as

(21)� �� +
(
m + 1

2

)
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Table 1   Comparison result of 
C∗
f
 with dsolve (Maple)

Parameter �r C∗
f
Re

−1∕2

Plate Wedge Stagnation point

RKF Dsolve RKF Dsolve RKF Dsolve

Method (Maple) Method (Maple) Method (Maple)

2 0.905262 0.905262 1.448131 1.448132 1.297994 1.297995
3 0.761932 0.761932 1.184679 1.184683 1.354163 1.354164
4 0.705068 0.705068 1.079093 1.079093 1.445044 1.445046
5 0.674288 0.674289 1.022070 1.022070 1.616838 1.616839
6 0.654953 0.654957 0.986375 0.986375 1.297994 1.297994

Table 2   Comparison result of 
Nu∗ with dsolve (Maple)

Parameter NT Nu∗Re
−1∕2�−1

Plate Wedge Stagnation point

RKF Dsolve RKF Dsolve RKF Dsolve

Method (Maple) Method (Maple) Method (Maple)

0.1 0.261681 0.261681 0.379869 0.379869 0.561115 0.561115
0.3 0.236547 0.236547 0.343955 0.343956 0.512008 0.512009
0.5 0.210186 0.210186 0.306561 0.306562 0.461037 0.461038
0.7 0.182640 0.182639 0.267930 0.267930 0.408644 0.408644
1.0 0.139513 0.139510 0.208814 0.208814 0.329213 0.329217
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The dimensionless local skin friction coefficient 
(
C∗
f

)
 , 

dimensionless local rate of heat transfer (Nu∗) and dimen‑
sionless local rate of mass transfer (Sh∗) at the wall are 
defined as

(22)

f (�) = 0, f �(�) =

�
Prv

�
1 −

�

�r

�
Ksf

��(�)

�
1 + Prv

�
1 −

�

�r

��n

⎛⎜⎜⎜⎜⎝
1 +

We

2

�
Prv

�
1 −

�

�r

�
f ��(�)

�
1 + Prv

�
1 −

�

�r

��3n

⎞⎟⎟⎟⎟⎠
,

�(�) = 1 +
2�

� + 1

1�
Prv

�
1 −

�

�r

�
Ks�

�(�)�
1 + Prv

�
1 −

�

�r

��n ,

NB�
�(�) + NT�

�(�) = 0 at � = 0,

f �(�) =

�
1 + Prv

�
1 −

�

�r

��2n

, �(�) → 0,�(�) → 0 as � → ∞.

(23)

C∗
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�
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,

Nu∗Re1∕2�−1 = −��(0),

Sh∗Re1∕2�−1 = −� �(0).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

3 � Numerical method and code validation

Dimensionless Eqs. (19)–(21) with corresponding bound‑
ary conditions Eq.  (22) have been solved by using RK 
Fehlberg scheme. The step size in the numerical solution is 
fixed as 0.001 (� = 0.001), and ten-decimal (1 ×10−10 ) place 
accuracy is fixed for the criterion of convergence. To check 
the validity of the present model, the numerical results 
are compared with dsolve comment in Maple, which 
are given in Tables  1 and 2. It is noticed that the dsolve 
incorporated with midpoint is a Maple package which is 
widely employed to solve boundary value problems. The 
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comparison results reported in Tables  1 and 2 received a 
good agreement. This evidences that the adopted numeri‑
cal simulation gives precise results. The computation time 
of the dimensionless flow equations was evaluated using 
the “tic toc” command in MATLAB. It is observed that CPU 
has taken approximately 9–12 s to obtain the solution for 
flow over a plate, wedge and stagnation point cases using 
windows operating system with Intel Core i3 processor.

4 � Results and discussion

The main goal of the present section is to exhibit the 
impact of active parameters like Weissenberg num‑
ber (We = 0.2, 0.4, 0.6) , variable viscosity parameter 
(�r = 2, 3, 4) , Brownian movement (NB = 0.3, 0.5, 0.8) , 
thermophoresis (NT = 0.1, 0.3, 0.5) and slip parameter 
(KS = 0.0, 0.2, 0.4) on velocity (f �) , temperature (�) , con‑
centration (�) , skin friction factor, rate of heat transfer and 
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rate of mass transfer via graphs. The value of the ambient 
Prandtl number 

(
Pr∞

)
 and Schmidt number 

(
Sc∞

)
 is taken 

as 7 and 2 when the Williamson nanofluid viscosity is not 
dependent on temperature. In this study, the viscosity of 
Williamson nanofluid is dependent on temperature, so 
that the variable Prandtl number and variable Schmidt 
number values are considered at the surface correspond‑
ing to 10.4112 and 2.9860, respectively, for �r=3. The 
non-dimensionalized governing flow equations subject 
to boundary conditions have been computed by RK Feld‑
berg method. It is noteworthy that the results are obtained 
by taking �1 = 0, 0.5 and 1.0 for the cases of plate, wedge 

and stagnation point. Solid, dashdot, dash lines in order 
represent the Williamson nanofluid characteristics over a 
plate, wedge, and stagnation point. Figures  2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13 and 14 depict the characteristics of fluid 
transport properties, and Figs.  18, 19, 20 and 21 illustrate 
the variable Prandtl number and rate of heat transfer for 
the cases wedge, plate and stagnation point.

Figures  2, 3 and 4 are plotted to explore the impact 
of �r on f ′ , � , Prv and Scv for the plate, wedge, and stagna‑
tion point cases, respectively. Figure  2 illustrates that f ′ 
increases with an increase in �r . It is vivid from this fig‑
ure that for a larger value of �r , change in fluid velocity 
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is negligible. Physically, when �r → ∞ , fluid viscosity 
(
�∞

)
 

and dynamic fluid viscosity (�) are equal 
(
�∞ = �

)
 at the 

ambient temperature and this represents the case of the 
constant viscosity. Figure  3 depicts the effect of �r on � . 
From these figures, it is found that � lessens by uplifting 
values of �r and asymptote to zero as � → ∞ . This outcome 
also exhibits that when �r tends to a higher value, � leads 
to decrease, because of � → �∞ as �r → ∞ . The graph 
in Fig.  4 shows that a rise in �r results in decline in Prv , 
whereas it is the opposite behavior for negative values 
of �r . It is seen from figure that variable Prandtl number 
asymptotically converges with the value of an ambient 

Prandtl number at � → ∞ . The reason for that is an incre‑
ment in �r provokes the surface of the plate, wedge and 
stagnation Prv to approach Pr∞ . Through Fig.  5, the aug‑
mentation of Scv is reported for positive and negative val‑
ues of �r . It is evident that Scv manifests a similar character 
of Prv . Furthermore, it is noticed that there are decays in 
Scv by increasing �r , whereas there is an enhancement of 
Scv for negative values of �r.

f ′ and � for distinct values of We are depicted in Figs  6 
and 7 for the plate, wedge, and stagnation point cases, 
respectively. From these figures, it is seen that the fluid 
velocity diminishes for growing values of We, whereas it 

0 1 2 3 4 5 6 7 8 9 10

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

N
B

 = 0.3, 0.5, 0.8

Plate           : Solid
Wedge        : DashDot    
Stagnation :Dash

Fig. 14   � for increasing values of NB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
S

0.5

1

1.5

2

2.5

3

C
f* We = 0.2, 0.4, 0.6

Plate           : Solid
Wedge        : DashDot    
Stagnation :Dash

Fig. 15   C∗
f
 for increasing values of KS and We 

0.2 0.4 0.6 0.8 1 1.2 1.4

E
c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
u*

r
 = 2, 3, 4

Plate           : Solid
Wedge        : DashDot    
Stagnation :Dash

Fig. 16   Nu∗ for increasing values of EC and �r

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

N
T

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
Sh

*

N
B

 = 0.3, 0.5, 0.8

Plate           : Solid
Wedge        : DashDot    
Stagnation :Dash

Fig. 17   Sh∗ for increasing values of NT and NB



Vol.:(0123456789)

SN Applied Sciences (2020) 2:477 | https://doi.org/10.1007/s42452-020-2216-3	 Research Article

Fig. 18   3D plot and contour with the impact of �r and KS on Prv for 
Williamson nanofluid when �1 = 0,0.5,1 Fig. 19   Contour with the impact of �r and KS on Prv for Williamson 

nanofluid when �1 = 0, 0.5, 1
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Fig. 20   3D plot and contour with the impact of �r and NT on Nu∗ for 
Williamson nanofluid when �1 = 0, 0.5, 1

Fig. 21   Contour with the impact of �r and NT on Nu∗ for Williamson 
nanofluid when �1 = 0, 0.5, 1
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is the reverse nature in temperature. An increment in the 
value of We tends to enlarge material relaxation time, and 
thus the velocity of the Williamson nanofluid lessens and 
the Williamson nanofluid temperature enhances. Figures  8 
and 9 exhibit the influence of KS on f ′ and � for the cases 
of plate, wedge and stagnation. An increasing trend in f ′ 
is depicted for higher values of KS . It is noticed that while 
KS = 0 , the surface of the boundary represents no slip. As 
the nanofluid flow becomes more rarefied, the surface 
friction reduces, resulting in an increase in the nanofluid 
velocity. Hence, the nanofluid velocity enhances with the 
increases in rarefaction influence whether the nanofluid 
characteristics are variable or constant. Figure  9 portrays 
how KS affects � . There is a decay in � when KS is rising 
because of the strong rarefaction highly diminishing the 
surface � . Figures  10 and 11 demonstrate the effect of NT 
on � ,  � ,  Prv and Scv for plate, wedge, and stagnation point 
cases, respectively. The thermophoretic force generated 
as a result of the temperature gradient leads to rapid flow 
beyond from the plate, wedge and stagnation. Hence, the 
heated fluid is moved beyond the surfaces of the plate, 
wedge and stagnation. As a result, the thermal-related 
boundary layer rises with NT  increase. Variation of NT  on 
� is illustrated in Fig.  11. It is evident from this figure that 
� increases with higher values of NT  . The thermophore‑
sis force triggers the nanoparticles to move from the hot 
surface to the cold surface which causes the mass-related 
boundary layer thickness to upsurge. The variation of the 
Prv and Scv is represented through Figs.  12 and 13 for dis‑
tinct values of NT . It is found that both the figures show an 
increasing behavior for uplifted values of NT . Figure  14 dis‑
plays the results for Williamson nanofluid � for distinct val‑
ues of NB . It is seen from the figure that � shows decreas‑
ing behavior over the plate, wedge and stagnation as NB 
increases. Brownian movement occurs in nanofluid sys‑
tems due to contact of nanoparticles with the base fluid. 
This leads to enhancing the heat conduction, and hence 
the concentration boundary layer thickness diminishes.

Figure  15 shows the impacts of We and KS on C∗
f
 . It is 

observed that C∗
f
 of Williamson nanofluid at the surface 

reduces by augmenting KS . It is shown that increasing val‑
ues of We declines C∗

f
 of Williamson nanofluid over a plate, 

wedge and stagnation point cases. Figure  16 is drawn to 
explore the influence of �r on Nu∗ against EC . It is noticed 
that Nu∗ of nanofluid at the surfaces of the plate, wedge 
and stagnation point enhances by enhancing �r . However, 
an increase in EC restricts the augments of Nu∗ at the sur‑
face. Figure  17 displays the influences of NT and NB param‑
eters on the rate of mass transfer. It is evident that the rate 
of mass transfer declines at the surface by enhancing NT . It 
is also noticed that NB increases the rate of mass transfer. 
Figures  18 and 19 elucidated Prv for various values of �r 
and KS over the plate, wedge and stagnation point. It is 

noticed that the Prv is a decreasing function of �r and KS . 
Figures  20 and 21 are drawn to explore the influence of 
�r on Nu∗ against NT , respectively. It is manifested that �r 
and NT have an opposite trend on Nu∗ over a plate, wedge 
and stagnation point.

5 � Conclusion

The present communication has been carried out to exam‑
ine the variable viscosity, variable Prandtl number and var‑
iable Schmidt number impacts on Williamson nanofluid 
over a plate, wedge and stagnation point. A Williamson 
model has been employed to explore the flow character‑
istics in the presence of heat and mass transfer. The RK 
method has implemented to elucidate the governing flow-
field mathematical equations. The outcomes are demon‑
strated in terms of 2-dimensional plot, 3-dimensional 
surface plot and contour plot. Key points of the present 
analysis are listed below.

•	 Larger values of variable viscosity parameter enhance 
the nanofluid velocity and lessen the temperature.

•	 Variable Prandtl number and variable Schmidt number 
exhibit a similar behavior for variable viscosity param‑
eter.

•	 Weissenberg number has the opposite behavior on 
nanofluid velocity and temperature.

•	 An increment of the slip parameter and thermophoresis 
enhance the temperature.

•	 The plate contains higher fluid temperature than the 
wedge and stagnation point cases.

•	 Thermophoresis parameter and Brownian motion 
parameter on the concentration profile are reverse in 
nature.

•	 Compared to wedge and stagnation point, the plate 
has less skin friction factor and rate of heat transfer.
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