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Abstract
This paper deals with the parametric shape optimization of a simplified model of brake system under squeal noise crite-
ria. As brake squeal phenomenon induces under-quality perception for industrial structures such as cars and trains, its 
understanding and management are important challenges for future systems design. Hence, we expose an optimiza-
tion methodology based on meta-model for a proposed computationally expensive stability criteria representing the 
squeal noise. Sensitivity analysis is first conducted to assess and validate the chosen geometrical parameters. Then, a 
Pareto front is obtained through optimization of the system, leading to a set of optimal solutions for the considered 
multi-objective case.
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Abbreviations
IS  Intrinsic stationary
SOS  Second-order stationary
GA  Genetic algorithm
NSGA  Non-dominated sorting genetic algorithm
EGO  Efficient global optimization

1 Introduction

Brake squeal phenomenon induces under-quality percep-
tion for industrial structures such as cars and trains, and 
its understanding is an important challenge [1, 2, 6, 7, 9, 
14]. Understanding squeal noise requires the analysis of 
brake systems from a “vibration and acoustics” point of 
view. Though the generation of squeal noise is considered 
to be a very complex phenomenon with many mathemati-
cal models defining in their respective sense, one of the 
most common methods which is efficiently used in predic-
tion is using the complex eigenvalue analysis, even if it is 

well known that it can lead to under or over-estimation 
of unstable modes [10, 15, 17]. The main advantage of 
this method remains its speed, especially in the context 
of optimization, where the objective functions have to be 
evaluated several times.

The aim of this paper is to optimize the shape of a sim-
plified brake system consisting of a pad and a disc, both 
described through finite element method for evaluation of 
the proposed criteria through complex eigenvalue analysis. 
As direct shape optimization using the finite element model 
for evaluation of the defined criteria would lead to prohibitive 
calculation costs, the strategy proposed in this paper consid-
ers an efficient global optimization (EGO [8]) algorithm. The 
physical model is represented through a meta-model which 
is computationally inexpensive, in our case a kriging meta-
model [4], refined through EGO, on which a meta-heuristic 
optimistaion is applied, in our case a genetic algorithm (GA) 
[5]. This coordination of algorithms allows to quickly acquire 
a set of Pareto optimal solutions to be considered for the 
choice of the design in a multi-objective context.
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We will introduce the considered brake system model 
and the constraints used in the second section. The third 
section will describe the model reduction technique 
applied in order to reduce the computation time for the 
dynamical system. In section four, we will introduce the 
proposed criteria, followed by a short description of the 
effect of mesh on the criteria in section five. Based on 
this criteria, sensitivity analysis is performed for the geo-
metrical parameters characterizing the model, which is 
described in section six. The computation time required 
for the optimization being very important, we introduce 
in section seven, the use of kriging meta-model, before 
describing the optimization loop in section eight. Results 
of the cross-validation of the meta-model, the sensitivity 
analysis and the multi-objective optimization are analysed 
in section nine and at last we conclude in section ten.

2  Model description

The Fig. 1 shows the considered disc-pad model used for 
the optimization process. The simplified model is pro-
posed since the main objective concerns about optimizing 
the squeal phenomenon with respect to the fundamental 
shape parameters in a typical disc brake system. The brake 
disc is modelled as a disc geometry, where a fixed con-
straint is applied to the cylindrical inner face of the disc. 
The brake pad is modelled as a disc sector. The pad model 
is considered to have one face on contact with the disc 
while the edges along the other face are constrained to 
move only along the surface normal of the disc. The rela-
tive position between the disc and the pad is constrained 
to be concentric.

2.1  Contact law

The contact characteristic between the disc and the pad 
for conforming mesh at the contact interface is modelled 

using node-to-node contact with massless spring ele-
ments, enforcing the condition of no separation at the 
interface. This can be viewed as contact using the penalty 
method, but without the need for the applied force, since 
the main interest only concerns the dynamical interaction 
with respect to squeal noise; the instability causing the 
squeal noise is considered to be due to the phenomenon 
of mode coalescence induced by friction, which can be 
captured by modal analysis of the system in its steady-
state. Hence, the given contact definition represents the 
dynamics at the interface through spring elements of cer-
tain stiffness. Further reference to the use of this type of 
contact in detail can be found in [19] and the review article 
[14]. The contact force using the spring element is defined 
by linear contact stiffness as shown below.

where Kl represents the linear contact stiffness, (xd − xp) 
represents the relative displacement between a contact 
node of the disc and the corresponding contact node of 
the pad, and vz is the normal vector which is collinear for 
the given disc and pad surfaces.

The contact definition directly relates to the definition of 
friction which in turn dictates the stability criteria consid-
ered for optimization. Hence the influence of the variation 
of the contact stiffness should be reduced in effecting the 
stability criteria with respect to the shape parameters dur-
ing optimization, which leads to the definition of global 
contact stiffness KGl . Global contact stiffness is chosen to 
be independent of the dimensions of the contact interface, 
and the contact stiffness between any two corresponding 
contact nodes is defined by local contact stiffness Kl . The 
global contact stiffness is hence defined as a constant and 
a multiple of local contact stiffness, depending on the num-
ber of pairs of contact nodes at the interface n.

The global contact stiffness KGl is chosen considering the 
numerical stability with respect to the eigenvalue analysis. 
Further the convergence of the stability criteria for a given 
design point based on the choice of the number of contact 
pairs is also discussed in Sect. 4.

2.2  Friction law

The classic Coulomb’s law of friction is considered to define 
the friction characteristics. The steady state condition to 
describe the friction force ����� is considered to be product 
of the coefficient of friction � and the normal force ����� 
as defined in the previous section and hence the friction 
force ����� is given as follows:

(1)Fcont = Kl(xd − xp).vz

(2)KGl = Kln

Z
Y

X

Fig. 1  Representation of the considered brake system in finite ele-
ment modeling
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Hence the effect of friction is modeled at the interface 
through the relative displacement (xd − xp) of the contact 
pairs of nodes, making it in a also sense suitable for modal 
analysis in relation to contact conditions. With respect to 
the motion of the disc, the friction force can be resolved 
in to tangential and radial directions. The relative sliding 
velocity is negligible in the radial direction and hence the 
friction effects from the radial direction is also negligible 
and hence, ignored to simplify the model. The net effect of 
friction is described with the dot product of unit tangential 
vector vt at a given node of disc, as follows:

The reaction force �����.��� on the pad of the above friction 
component �����.���� can be similarly defined as negative 
of �����.����.

2.3  Description of the system

The equation describing the dynamics of the system in 
steady-state is given as follows.

where � and � represents the mass and the damping 
matrices respectively for the system. � represents the 
stiffness matrix of the system with the contact definition, 
described as mentioned in the Sect. 2.2 and �� is the fric-
tion definition, defined as described in the Sect. 2.2. � 
is the vector representing the displacement degrees of 
freedom of the system, and its subsequent derivatives 
denoted with overdots.

2.4  Parameters description and range

Table 1 shows the parameters and the permitted varia-
tions for defining the shape of the model.

(3)����� = ������

(4)�����.���� = ������ .vt

(5)𝐌�̈� + CU̇ + (K + Kf )U = 0

3  Model reduction

The evaluation of the stability criteria involves expensive 
computation for eigenvalues evaluated at various friction 
coefficients to capture the evolution of the instability. 
While only the major unstable modes constituting the 
squeal noise is required to be identified, the model can 
be simplified by dynamic model reduction techniques. 
This further allows us to simplify the damping definition 
of the dynamic model with the method of modal damp-
ing. The method of Craig & Bampton reduction is applied 
to the model, which is considered to be effective since it 
captures the dynamic properties at the contact interface 
and also the internal dynamic properties of the models 
involved in contact. More detailed description of Craig & 
Bampton method used in brake squeal application can 
be found in literature [3] and [12]. In accordance with the 
Craig and Bampton theory, the vector � and the matrices 
� and � are split between internal and interface degrees 
of freedom as follows:

where �� and �� are internal and interface degrees of free-
dom respectively. The transformation matrix � is defined 
as composition of static transformation �s and Eigen vec-
tors �d , as follows.

where Φn is the nth eigenvector obtained from the eigen-
value problem defined as (�ii − �2

n
�ii)Φn = 0 . The choice 

of the number of eigenvectors n considered for reduc-
tion depends on the convergence required with respect 
to prediction of the eigenvalues for the unstable modes 
obtained by the reduced model.

The reduced mass matrix �r and stiffness matrix �r are 
respectively obtained through the transformation matrix 
� applied as �t�s� and �t�s� , where �s is the stiffness 
matrix of the system with friction definition. The matrix �r 
is largely uncoupled, defined in the modal coordinates, 
except for the non-diagonal terms which can be viewed as 

(6)� =

{
�i

�j

}
; � =

[
�ii �ij

�ji �jj

]
; � =

[
�ii �ij

�ji �jj

]

(7)

� =

[
�d �s

� �

]
; �s = �−1

ii
�ij ; �d = [Φ0,Φ1, ...,Φn]

Table 1  Model: Parameter 
range considered

Disc (m) Pad (m)

Thickness External radius Internal radius Thickness Internal 
radius

External radius Angle 
(degree)

X1 X2 X3 X4 X5 X6 X7

min 125.e−4 15.e−2 25.e−3 11.e−3 8.e−2 11.e−2 26
max 2.e−2 16.e−2 4.e−2 15.e−3 9.e−2 12.e−2 50
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the terms constituting the effects of friction in the modal 
coordinates and also the part of the matrix with static 
reduction is non-diagonal. While the reduction of the mass 
matrix from �s to �r is simply straight forward.

The Craig-Bampton reduction leads to reduced matrices 
of size [ � × � ] , where � is given by the sum of the number 
of contact points at the system interface and the num-
ber of eigenvectors of the system considered. This greatly 
reduces the computation time of the Complex eigenvalue 
analyses for the estimation of the stability criteria.

4  Stability criteria

The transient numerical model used to describe the brak-
ing phenomenon is highly non-linear and very unrealis-
tic to be used for optimisation. Hence, the characteristic 
equation of the eigenvalue problem for the system 5 is 
described as follows.

where � is an eigenvalue and � its corresponding eigen-
vector of the system. When the above model is expressed 
in the state-space form, the Lyapunov stability conditions 
can be used to describe the stability of the system around 
the considered steady-state. Without the effect of friction, 
the asymptotic stability of the system in the presence of 
damping leads to all negative real parts for the complex 
eigenvalues. While the presence of instability due to fric-
tion is given by at least one or many complex eigenvalues 
with positive real part for the system, which is considered 
to cause the instability inducing the squeal noise.

Considering a multi-objective problem, the stability cri-
teria has to be a scalar Cs representing the presence and 
perceived level of squeal noise. We propose the formula-
tion of Eq. 9 when X ≈ N(X̄ , 𝜎):

where, f(X) represents the complex solutions (eigenvalues) 
of the dynamical eigenvalue problem 8. The robust opti-
mization requires to consider uncertain parameters. The 
deterministic optimization corresponds to � = 0 for the 
given description.

The minimization of the proposed criteria defines the 
minimization of the brake squeal noise with respect to 
the structure of the brake system irrespective of the fric-
tion coefficient. This is important since the squeal noise 
can be easily reduced by reducing the friction coefficient 
but defying the main objective of the braking, and this 
importance of friction coefficient compared to the mate-
rial parameters in relation to instability is shown with 

(8)(��� + �� + (� +�� ))� = �

(9)Cs = ∫
�

max {ℜ(f (X ))}

sensitivity analysis by Nechak et al [13] where similar cri-
teria is considered. Thus the minimization of the criteria 
with respect to the shape parameters represents the least 
possibility or lower magnitude of the squeal noise for a 
given range of parameters.

The evaluation of this type of criteria is computationally 
expensive but can be made possible with parallel com-
putation, thus evaluating Max{ℜ(f (X ))} in parallel for a 
regular interval of �� at once and hence defining the cri-
teria as follows.

For convenience the stability criteria is scaled to be defined 
as an integer and the absence of instability is given by val-
ues less than zero due to the absence of the positive real 
part. The histogram of the stability criteria for the design 
points from latin hypercube sampling within the design 
space from range in Table 1 is given as follows (Fig. 2).

As it can be seen, most of the design points show very 
high instability with maximum distribution around 450 to 
550, and with only very few design points contributing to 
values less than 100.

5  Mesh versus stability criteria comparison

In relation to the expensive evaluation of the stability 
criteria, convergence study was performed to reduce the 
total degrees of freedom in the system and the influence 
of the number of contact points on the variance of the 
stability criteria. The eigenmodes which causes maxi-
mum instability as predicted by the maximum positive 
real part of the complex eigenvalues are only of inter-
est to us and hence, taken in to account to check for 
convergence.

5.1  Mesh outside of the contact interface

The dynamic properties with respect to considered maxi-
mum instability show little variation for change in mesh 
size out of the contact region for given shape parameters 
and number of contact points. The comparison is shown 
through a model with highly coarse mesh as in Fig.  3 
against a model of same shape parameters but with a rel-
atively fine mesh as in Fig. 4 while maintaining the same 
number and position for the contact points. The mismatch 
in frequencies between the models is shown in Fig.  5 
where the range for frequency is zoomed to the frequen-
cies which induce mode coalescence predicted to cause 
the maximum instability. The shift in unstable frequencies 

(10)∫
�

Max{ℜ(f (X ))} = lim
��→0

1∑

�=0

Max{ℜ(f (x,�))}��
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Fig. 2  Histogram of the 
instabilities defined by stability 
criteria of the design points 
from latin hypercube sampling 
of the design space
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Fig. 3  Node plot for a coarse 
mesh of the disc geometry 
with contact nodes repre-
sented in red
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Fig. 4  Node plot for a relatively 
fine structured mesh of the 
disc geometry with contact 
nodes represented in red

Fig. 5  Plot of Frequency vs 
Friction coefficient, of modes 
showing maximum instability; 
Blue represents for the model 
in 3; Red represents for the 
model in 4
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and the point of bifurcation of the maximum real part as 
shown in Fig. 6 are observed to be very low relative to the 
change in mesh size.

5.2  Mesh at the contact interface

Though the variation of the mesh out of the contact 
interface is shown to have a little influence, the variation 

Fig. 6  Plot of Real part of 
the complex eigenvalues vs 
Friction coefficient, of modes 
showing maximum instability; 
Blue represents for the model 
in 3; Red represents for the 
model in 4
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Fig. 7  Node plot for a fine 
mesh with contact nodes 
represented in red



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:547 | https://doi.org/10.1007/s42452-020-2175-8

of the mesh at the contact interface is observed to have 
a considerable effect on the dynamic properties. This can 
be seen by comparing results of the models in Figs. 3 and 
4 against the models in Figs. 7 and 8 which are of the 

same shape parameters. Hence, it is intuitive to assume 
a large number of contact points to explain the instabil-
ity, confirming as possible to reality. The convergence 
is shown through varying but large number of contact 

Fig. 8  Node plot for a relatively 
finer mesh compared to 7, 
especially on the contact 
interface with contact nodes 
represented in red

Fig. 9  Plot of Frequency vs 
Friction coefficient, of modes 
showing maximum instability; 
Red represents the plot for the 
model in 7; Violet represents 
the plot for the model in 8
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points as in Figs. 7 and 8 with plot for bifurcation of the 
real part (Fig. 10) and frequencies inducing maximum 
instability (Fig. 9).

5.3  Meshing strategy

The definition of the contact points is observed to have a 
significant influence on the maximum real part of the com-
plex eigenvalues and hence, the stability criteria. Hence, 
proper mesh definition is seen as important considering 
the computation cost. This leads to the definition of mesh 
as in Fig. 11 where linear hexahedral elements are largely 
used through out the model with smaller elements at 
the contact interface and the region outside of contact 
interface is defined by larger elements. The difference in 
mesh density is compromised by introducing 3D wedge 
elements to maintain a structured mesh. This is considered 
to greatly reduce the time for simulation while reducing 
the uncertainties in the stability criteria induced by choice 
of the number of contact points.

6  Methods

6.1  Sensitivity analysis

The global sensitivity analysis for the involved shape 
parameters was performed using the Variance-based 
method which comes from Hoeffding–Sobol decompo-
sition [18]. This method is based on decomposing the 
variance of a function to its variance associated with the 
parameters and the interaction between the parameters. 

Fig. 10  Plot of Real part of 
the complex eigenvalues vs 
Friction coefficient, of modes 
showing maximum instability; 
Red represents the plot for the 
model in 7; Violet represents 
the plot for the model in 8
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Fig. 11  Considered mesh definition
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Hence, higher the variance in output of a function induced 
by a parameter infers higher its sensitivity. The method is 
applied through Monte-Carlo based estimation defined by 
latin hypercube sampling for efficiency. In effect, to evalu-
ate the global behaviour and to increase the accuracy for 
the given Monte-Carlo based estimation on the presumed 
asymptotic case demands a large computation of design 
points, which is simply impossible to converge with a rea-
sonable time given the computation cost to evaluate the 
stability criteria. Hence, a surrogate model based on krig-
ing is used, which is described in detail in Sect. 6.2. The 
stability criteria given by surrogate model is defined as Ĉs , 
where Cs ≈ Ĉs.

To understand the effect of the shape parameters on 
the stability criteria, the first-order and the total-order 
sensitivity indices are computed. The first-order indices 
defines the contribution of a given parameter to the 
change in unconditional variance V (Ĉs) , while the total-
order indices adds to it the contribution of all the higher-
order interactions on the given parameter. The general 
definition of the first-order index Si and the total-order 
index STi are given as follows.

where VXi (EX∼i (Ĉs|Xi)) is the variance of the conditional 
expectation on the function of the stability criteria Ĉs 
evaluated by conditioning the parameter Xi for several 
values across the bounded design space and similarly, 
VX∼i (EXi (Ĉs|X∼i)) is the variance of the conditional expecta-
tion obtained by conditioning all parameters except for Xi.

The described probability measures are estimated 
based on the estimators proposed in [11]. The Monte-
Carlo based estimation for the given estimators require 
two matrices YA and YB of equal size with rows and col-
umns representing the design points and the parameters 
respectively, defined by latin hypercube sampling. To 
evaluate the first order index of the ith parameter, all the 
parameters of YB are unchanged except for the ith param-
eter (ith column of the matrix) which is replaced by the 
ith parameter of YA to obtain the matrix YBi . Similarly, for 
evaluation of the total-order index of the ith parameter, 
all the parameters of YB are changed with the parameters 

(11)Si =
VXi (EX∼i (Ĉs|Xi))

V (Ĉs)

(12)STi =1 −
VX∼i (EXi (Ĉs|X∼i))

V (Ĉs)

of YA except for the ith parameter to obtain the matrix YBti . 
Hence, the matrices YBi and YBti represent the conditioning 
of the parameters w.r.t. the matrix YA , which in a sense is 
used to evaluate the conditional probability terms and also 
to describe the effective unconditional variance, as given 
by the estimators. For n parameters and p design points 
where the parameters are to be conditioned, it requires an 
estimation of (n + 1)p design points to evaluate the first 
order index or the total order index of all the parameters.

6.2  Kriging meta‑model

When dealing with meta-modeling, several approaches 
are available. We will focus here on methods without a-pri-
ori function basis selection, i.e. fitting observations with 
given orthogonal basis functions. The EGO [8] approach 
relies on kriging meta-model, which was well suited in our 
case for the optimization. Many references are available to 
deeply understand and study the kriging meta-model [4, 
16]. Below, we will limit our description to a brief explana-
tion. Let us consider a physical phenomenon, represented 
as Z(s) , where Z is a scalar and s is a vector of inputs :

where � is an unknown constant and �(s) an intrinsic sta-
tionary (IS) or a second-order stationary (SOS) process. 
For a given point s0 , and considering a set of n observa-
tions (s1 … sn) , we are looking for the least squared pre-
diction error MSE[Ẑ(s0)] = E([Ẑ(s0) − Z(s0)]

2) which leads 
to MSE[Ẑ(s

0
)] = E([Ẑ(s

0
) − E[Z(s

0
)|Z

n
]]
2
) + (E[Z(s

0
)|Z

n
]

−Z(s
0
))2 ,  such that minMSE ⟹ Ẑ(s0) = E[Z(s0)|Zn] 

which is impossible to reach practically.
The idea is then to consider Ẑ(s0) as the best linear 

function of the observed values: Ẑ(s0) =
∑n

i=1
𝜆iZ(si) , 

with 
∑n

i=1
�i = 1 (unbiased condition). Then, defining 

the MSE[Ẑ(s0)] implies, relying on the variogram func-
tion �ij = �(si − sj) , such that 

∑n

j=1
�j�ij +

m

2
= �(s0 − si) , 

with m the mean of the observations. This can be writ-
ten as �� = � , leading to find � = �−1� , where � is usu-
ally invertible to reach the predictor Ẑ(s0) =

∑n

i=1
𝜆iZ(si) . 

Unfortunately the variogram function (for the IS pro-
cesses, or the covariance function for the SOS processes, 
as 2�(h) = 2[C(0) − C(h)] ) is unknown and need to be esti-
mated from the data. Therefore, we will consider only the 
SOS processes, which are more interpretable than the IS 
processes.

If we assume that all covariances are isotropic, i.e. 
covariance between two locations depends only on the 

(13)Z(s) = � + �(s)
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distance between them, and not on the direction, then 
C(h) = C

∗(‖h‖) , with ‖.‖ , a L2 norm and C∗(.) , a function of 
a scalar variable which represents a parametric covariance 
function. We have used the classical Matern5/2 covariance 
structure,

where, � and � are the non-negative hyper-parameters of 
this covariance, with Γ representing the Gamma function 
and K� , the modified Bessel function of the second kind.

We reach the optimal hyper-parameters through the 
classical maximun likelihood estimators (MLEs). It is impor-
tant to notice that the assumption of Gaussian observa-
tions is then very strong. The model is refined by EGO 
technique for several ranges of stability criteria for which 
we have not given the details here.

6.3  Optimization loop

The optimization with respect to only the stability crite-
ria may lead to unworthy designs, mainly with respect to 

(14)C�(h) = �2 2
1−�

Γ(�)

�√
2�

h

�

��

K�

�√
2�

h

�

�

surface area of braking and hence, second objective for 
optimization was considered to maximise the surface area 
of contact between the pad and the disc. We used NSGA-
II genetic algorithm [5] to obtain a set of Pareto optimal 
solutions for the multi-objective case without the need of 
gradient knowledge. This algorithm is used jointly with the 
kriging meta-model of the stability criteria, to decrease the 
computation time needed to reach a stable Pareto front. 
As a stochastic algorithm, the NSGA-II does not require 
a high level of accuracy to move towards the optimal 
regions of the design space when the objective functions 
are smooth enough.

7  Results

The kriging model for the stability criteria is built with 375 
design points through latin hypercube sampling from 
the design space as in Table 1. The kriging quality check 
was performed by leave-one-out cross validation and the 
results are given as follows (Fig. 12).

A plot of standardized residuals and a histogram for 
distribution of errors are also given as follows (Figs. 13, 14).

Fig. 12  Leave-one-out cross-
validation
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Fig. 13  Standardized residuals from leave-one-out cross-validation

Fig. 14  Histogram of the distri-
bution of error
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The above analyses show satisfactory results on the 
quality of the meta-model to be considered for use in 
expensive computation pertaining to sensitive analysis 
and for optimisation.

8  Discussion

8.1  Sensitivity analysis

The sensitivity analysis was performed on seven shape 
parameters as in Table 1 describing the complete geom-
etry of the considered model. The value of p as described 
in Sect. 6.1 is chosen to be 1500 and hence evaluating a 
total of 24,000 design points with meta-model to evaluate 
the first-order and the total-order indices. The evaluation 
was repeated for different sample sets to check for conver-
gence, which is seen to be not difficult with the chosen p 
value and with an estimated standard error for the indices 
of no more than 0.02 (Fig. 15, 16).

The description of the parameters are as in Table 1.

As it can be seen, the first-order indices show relatively 
high values for the parameters X1-thickness of the disc 
and X4-thickness of the pad. The total-order indices also 
increase relatively for the two parameters. But the global 
variance of the stability criteria can be largely attributed 
to independent effects from the parameters rather than 
interaction between them.

Further, the results are also shown with closed second-
order indices, combining the independent effects and the 
interaction between any two parameters (Fig. 17).

8.2  Optimal designs

The optimization was considered for the parameters 
as in sensitivity analysis. The Pareto optimal solutions 
obtained are shown in Fig.  18. The optimization was 
performed on the kriging meta-model 6.2 for minimiza-
tion of the stability criteria and inverse of the measure 
of pad surface, to find the course towards minimizing 
the dynamic instabilities while maximizing the area of 
contact. The parameters for the genetic algorithm was 
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Fig. 15  First-order sobol indices
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set to run with a population size of 50 for 25 generations, 
which was noticed enough to obtain a stable pareto 
front (Fig. 18).

The results from three distinct locations on the Pareto 
front are shown in the Table 2.

The mid point on the Pareto front shows the balance 
between the two objectives as a more effective design 
consideration — while the clear choice of the design can 
only be considered with more detailed description of the 
problem surrounding the application.

9  Conclusion

In this paper, the shape optimization using parameters 
of a simplified brake system under a vibro-acoustic crite-
ria was investigated. In order to reduce the computation 
cost, a meta-model was first constructed using the krig-
ing theory. The resulting model was able to reproduce the 
brake squeal phenomenon with good results, and was 
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Fig. 17  Closed second-order sobol indices
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Fig. 18  Plot showing the Pareto front with red representing the ini-
tial generation of children population and cyan for the final genera-
tion of children population 

Table 2  Results of the Pareto front from three different locations

Location on 
the pareto 
front (approx.)

Disc (m) Pad (m) Optimization criteria

Thickness External 
radius

Internal radius Thickness Internal radius External 
radius

Angle 
(degree)

Stabilty 
criteria

Pad 
surface 
criteria

X1 X2 X3 X4 X5 X6 X7

Upper left 156.e−4 157.e−3 292.e−4 144.e−4 872.e−4 11.e−2 26 62.76 947.57
Middle 126.e−4 158.e−3 269.e−4 141.e−4 85.e−3 118.e−3 48 192.94 353.23
Lower right 148.e−4 157.e−3 295.e−4 145.e−4 800.e−4 118.e−3 48 431.73 307.44
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considered to conduct the optimization process of the 
system. The optimization was performed using a classical 
genetic algorithm, providing a Pareto front to represent 
the optimal solutions of the problem. The optimization 
scheme used in this paper requires the disc-pad system 
to be geometrically represented by simple geometrical 
parameters, thus leading to equally shaped systems. The 
next step will be to consider the topological representa-
tion of the pad, for example with Isogeometric formula-
tion, enabling drastic change in shape and better coverage 
of the design space.
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