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Abstract
This paper presents the effect of thermal radiation on the boundary layer over a flat plate. The convective boundary con-
dition is applied at the surface of the flat plate. The solution to the coupled non-linear transport equations is obtained 
using the Runge–Kutta–Fehlberg fourth-fifth order (RKF45) method. The impact of thermal radiation on mercury, air, 
sulphur oxide and water whose Prandtl numbers ( Pr ) are 0.044, 0.72, 2, and 7 respectively are depicted using line graphs 
and tables. The impact of Prandtl number ( Pr ), local convective heat transfer (a) and temperature difference ( C

T
 ) on 

temperature distribution are also presented. The results indicated that the boundary layer thickness decreases with Pr 
augment but increases with increasing values R . Furthermore, R augment is inversely proportional to the temperature 
gradient near the plate while an opposite trend is observed away from the plate. The results also indicated that R aug-
ment reduces heat transfer but an opposite trend is observed with Pr augment. Pr augment has a decreasing effect on 
boundary layer thickness and a augment has an increasing effect on temperature.
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List of symbols
qr  Radiative heat flux
K   Thermal conductivity
�  Stream function
R  Thermal radiation parameter
CT  Temperature difference parameter
Pr  Prandtl number
�  Dimensionless temperature
Re  Reynolds number
a  Local convective heat transfer parameter

1 Introduction

The boundary layer has a wide range of applications rang-
ing from household to engineering practices such as aero-
dynamics (e.g. in separation and reattachment), species 
transport (e.g. blowing for cleaning the dust), heat transfer 

enhancement, mixing enhancement, golf ball aerodynam-
ics etc. The similarity solution for flow and the heat transfer 
in/over different geometries considering constant surface 
temperature and convective surface boundary conditions 
has been reported by [1–5]. These authors demonstrated 
the possibility for the governing equations to have similar-
ity solutions. Das [6] demonstrated that the plate tempera-
ture of a flat plate thermometer is less than one for a fluid 
whose Prantl number (Pr) is less than one and greater than 
one for a fluid whose Pr is greater than one. Furthermore, 
the plate temperature is approximately Pr1∕2 for Pr close to 
one. Some of the recent investigations on boundary layer 
include Khan et al. [7] who analysed the boundary layer 
flow of a nanofluid over a vertical wall. A comprehensive 
report on an empirical method of finding a Nusselt num-
ber in an enclosure with radiation effect has been present 
by Hagiwara et al. [8].
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Thermal radiation is a process by which energy is emit-
ted directly from the radiated surface in the form of an 
electromagnetic wave in all direction. From the engineer-
ing and physical point of view, thermal radiation effect 
has a pivotal role in the flow of different liquid and heat 
transfer. Thermal radiation is found to be useful in engi-
neering processes which require high operating tempera-
ture. These include; the design of the nuclear plant, gas 
turbine, aircraft, space vehicle, reliable equipment, satellite 
etc. Satter and Hamid [9] analysed the significant impact 
of thermal radiation on unsteady free convection flow in 
a boundary layer. The role of thermal radiation on free 
convection boundary layer flow in a vertical parallel has 
been studied by [10–13]. Thermal radiation on magneto-
hydrodynamics (MHD) considering different geometries 
has been addressed [14–18]. These authors demonstrated 
that the temperature distribution enhanced with thermal 
radiation. The impact of the thermal radiation on the ther-
mal boundary layer considering different geometry has 
been studied by [19–21]. The authors concluded that the 
temperature of the plate is enhanced as thermal radiation 
magnitude increases. Some recent work on the impact of 
thermal radiation on the fluid flow considering different 
geometries includes Cao and Baker [22] who examined 
heat transfer by radiation on boundary layer through 
optical fluid past a vertical wall. Aly and Ebaid [23] in their 
report presented on the role of thermal radiation and 
suction/injection on boundary layer nanofluid flow over 
a porous medium considering the induced magnetic field 
effect concluded that the velocity of the nanofluid flow 
decreases with volume fraction augment. Hayat et al. [24] 
also presented the role of radiation in a stagnation point 
flow of carbon nanofluid considering a stretching cylinder. 
Ghadikolaei et al. [25] numerically analysed the impact of 
the thermal radiation on boundary layer past a stretching 
surface. Tian et al. [26] analysed the significant effect of 
radiation properties on magnetohydrodynamics (MHD) 
boundary layer flow past a stretching surface. Shahid et al. 
[27] numerically analysed the effects of various slip and 
radiation on unsteady magnetohydrodynamics nanofluid 
flow past a stretching surface. Ymeli et al. [28] presented 
an analytic solution of Fourier and radiation conduction in 
an optical complex medium.

Following the work of Aziz [5], it appeared more 
appropriate to use convective surface boundary condi-
tion instead of the so-called constant surface boundary 
condition. Furthermore, several works carried out using 
constant surface boundary condition were revisited 
using the convective surface boundary condition. Mak-
inde and Aziz [29] presented a report on MHD mixed 
convection flow from a vertical wall considering the con-
vective boundary condition. Makinde and Olanrewaju 
[30] analysed the significant effect of thermal buoyancy 

on the boundary layer over a vertical wall with a con-
vective boundary condition. Yao et al. [31] examined the 
heat transfer past a stretching/shrinking sheet consider-
ing convective surface boundary condition. Aljoufi and 
Ebaid [32] presented an exact solution of the significant 
impact of convective boundary condition on the bound-
ary layer slip flow over a stretching surface. Lopez et al. 
[33] examined the significant role of thermal radiation 
with convective boundary condition on MHD nanofluid 
in a microchannel. Hassan and Salawu [34] analysed the 
convective surface boundary effect on buoyancy-driven 
flow in a parallel channel.

From the above literature, it is obvious that the impact 
of thermal radiation on the boundary layer considering 
convective surface boundary has not been given much 
attention. Therefore, the overall objective of the present 
paper is to examine the significant role of thermal radia-
tion on the boundary layer considering a convective sur-
face boundary condition. This is achieved by considering 
four different fluids namely; mercury, air, sulphur oxide 
and water, whose Pr are 0.044, 0.72, 2 and 7 respectively.

2  Problem statement

Consider the hydrodynamics and boundary layer over a 
flat plate in the presences of thermal radiation. Let the 
uniform velocity of the fluid moving on plate surface be 
U∞ , at the temperature T∞ as illustrated in Fig. 1. Let x and 
y-axis be along and normal to the flat plate respectively. 
Then, governing equations can be written as;

Fig. 1  Flow configuration and coordinate system
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where T denote the dimensional temperature, K denotes 
the thermal conductivity, u and v denote the velocity com-
ponent along and normal to the plate. The quantity qr in 
Eq. (3) is the radiative heat flux in the y-direction. However, 
the radiative heat flux in the x-direction is assumed to be 
small in comparison to that in the y-direction. The radia-
tive heat flux qr can be simplified through Rosseland dif-
fusion approximation for an optical thick fluid according 
to [35–39] as

where � and k∗ represent the Stefan Boltzmann constant 
and mean absorption respectively. Furthermore, Rosse-
land approximation is only applicable for an optically thick 
fluid. However, regardless of these limitations, it has been 
adopted in several investigations ranging from the analysis 
of radiation effect on blast waves by the nuclear explosion 
to the transport of radiation through gases at low-density 
Ali Agha et al. [39].

The velocity boundary conditions can be expressed as

Regarding the temperature boundary condition, the 
base of the plate is assumed to be heated through convec-
tion from a hot fluid at a temperature Tf  which provides a 
heat transfer coefficient hf  . Therefore, the boundary condi-
tions can be expressed as

We define the similarity variable � and a dimensionless 
temperature �(�) and a stream function f (�) as

Dimensionless parameters are defined as;
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Finally, the dimensionless equations can be written as;

Subject to;

where CT  , Pr and R are temperature difference param-
eter, Prandtl number and thermal Radiation parameter 
respectively.

We define

Note that for the energy equation to have a similarity 
solution, the local convective heat transfer parameter a 
must be a constant and not function of x as it appeared in 
Eq. (13). This proposition is feasible if hf  is directly propor-
tional to x−1∕2 . Hence we write

where c is constant.
Utilizing Eq. (14) in Eq. (13), we have

Therefore, with a defined in Eq. (15), the solutions of 
Eqs. (9)–(12), gives the similarity solutions and the sets of 
solutions generated when a is defined as in Eq. (13) are 
called the local similarity solutions.

3  Results

3.1  Discussion

The thermal radiation effect on the thermal boundary 
layer past a flat plate considering the convective bound-
ary condition is numerically studied. Maple software is 
used to solve Eqs.  (9)–(12) using the RKF45 method. 
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RKF45 is a default method in Maple due to its accuracy 
and robustness. Four different fluids considered are mer-
cury, air, sulphur oxide and water whose Prandtl num-
ber (Pr) are 0.044, 0.72, 2 and 7 respectively. It is found 
that the solution converged when � → 10 , hence ∞ is 
replaced by 10 throughout the computation. The ther-
mal radiation parameter (R) used are 0, 0.5, 1, 1.5, 2, 2.5, 
3, 3.5 and 4. The local convective heat transfer parameter 
(a) used in the present numerical computation are 0.05, 
0.10, 0.20, 0.40, 0.60, 0.80, 1, 5, 10, and 20. Also, the tem-
perature difference parameter ( CT  ) used are 0, 0.2, 0.4, 
0.6, 0.8 and 1. The present study is validated through 
comparison with Aziz [5] and Makinde and Olanrewaju 
[30]. Table 1 and Table 2 demonstrates the accuracy of 
the present solution of fluid whose Prandtl numbers 
are 0.72 and 10 for some selected values of a and it is 

observed that there is an excellent agreement in the 
absence of thermal radiation parameter (R). 

Figures 2, 3, 4 and 5 depict the temperature distribu-
tion of mercury, air, sulphur oxide and water for a = 1 and 
CT = 0.2 with various values of R . It is evident that the tem-
perature variation is proportional to R for all fluids under 
consideration. Figure 6 depicts the variation of tempera-
ture gradient for different values of R and fixed values of Pr, 
a and CT . This figure reveals that the temperature gradient 
of the fluid is inversely proportional to the R near the plate 
while the impact of the R is just reverse far away from the 
plate. Furthermore, an increase in Pr decreases boundary 
layer thickness as depicted in Fig. 7. In general, when Pr is 
unity, it means that the thermal and momentum diffusion 

Table 1  Comparison of the 
present results with Aziz [5] for 
R = 0 and C

T
 = 0.2

a Pr = 0.72 Pr = 10

�(0) − ��(0) �(0) − ��(0)

Aziz [5] Present work Aziz [5] Present work Aziz [5] Present work Aziz [5] Present work

0.05 0.1447 0.1447 0.0428 0.0428 0.0643 0.0643 0.0468 0.0468
0.10 0.2528 0.2528 0.0747 0.0747 0.1208 0.1208 0.0879 0.0879
0.20 0.4035 0.4035 0.1193 0.1193 0.2155 0.2155 0.1569 0.1569
0.40 0.5750 0.5750 0.1700 0.1700 0.3546 0.3546 0.2582 0.2582
0.60 0.6699 0.6699 0.1981 0.1981 0.4518 0.4518 0.3289 0.3298
0.80 0.7302 0.7302 0.2159 0.2159 0.5235 0.5235 0.3812 0.3812
1 0.7717 0.7717 0.2282 0.2282 0.5787 0.5787 0.4213 0.4213
5 0.9441 0.9441 0.2791 0.2791 0.8729 0.8729 0.6356 0.6356
10 0.9713 0.9713 0.2871 0.2871 0.9321 0.9321 0.6787 0.6787
20 0.9854 0.9854 0.2913 0.2913 0.9649 0.9649 0.7026 0.7026

Table 2  Comparison of the present results with Makinde [30] for 
Pr = 0.72, R = 0 and CT = 0.2

a �(0) − ��(0)

Makinde and 
Olanrewaju 
[30]

Present work Makinde and 
Olanrewaju 
[30]

Present work

0.05 0.1447 0.1447 0.0428 0.0428
0.10 0.2528 0.2528 0.0747 0.0747
0.20 0.4035 0.4035 0.1193 0.1193
0.40 0.5750 0.5750 0.1700 0.1700
0.60 0.6699 0.6699 0.1981 0.1981
0.80 0.7302 0.7302 0.2159 0.2159
1 0.7717 0.7717 0.2282 0.2282
5 0.9441 0.9441 0.2791 0.2791
10 0.9713 0.9713 0.2871 0.2871
20 0.9854 0.9854 0.2913 0.2913

Fig. 2  Impact of R variation on temperature distribution for mer-
cury fluid (a = 1, C

T
= 0.2)
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are the same order of magnitude, which connote that the 
thermal and momentum boundary layer overlaps each 
other. Additionally, for Pr < 1, the thermal diffusivity is 
higher than viscous diffusivity which means, that the ther-
mal boundary layer is thicker than the momentum bound-
ary layer while the physical situation is just contrasted for 
Pr > 1. This can be observed in Fig. 7 where mercury has 
the largest thermal boundary layer thickness while water 
has the least thermal boundary layer thickness. Figure 8 
illustrates the influence of temperature differences param-
eter ( CT  ) on the temperature distribution for air for fixed 

values of a and R. It is obvious from the figure that CT plays 
a supporting role for temperature distribution. The role of 
the local convective heat transfer (a) is depicted in Fig. 9. 
It is obvious from the figure that increasing a, leads to an 
increase in the plate surface temperature. The numerical 
solution of the present work approaches the solution for 
constant temperature as a → ∞ . This follows from Eq. (12) 
that the boundary condition reduces to �(0) = 1 as a → ∞.      

Table 3 demonstrates the significant effect of R on the 
surface temperature of the four fluids under consideration. 
The values of �(0) (plate temperature) enhance with R for 

Fig. 3  Impact of R variation on temperature distribution for air fluid 
(a = 1, C

T
= 0.2)

Fig. 4  Impact of R variation on temperature distribution for sulphur 
oxide fluid (a = 1, C

T
= 0.2)

Fig. 5  Impact of R variation on temperature distribution for water 
fluid (a = 1, C

T
= 0.2)

Fig. 6  Impact of R variation on temperature gradient for air fluid 
(a = 1, C

T
 = 0.2)
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all the four fluids under consideration while the opposite 
pattern is noticed for −��(0) . It can also be seen that as 
Pr increases, the numerical values of �(0) decreases while 
the numerical value of −��(0) increases. Table 4 shows the 
effect of grid refinement on �(0) with R variation. It can 
be observed that the numerical values of �(0) increases 
with grid refinement until � approaches 10. This shows the 

validity for replacement of � → ∞ by � = 10 in the present 
numerical computation which conforms with the custom-
ary practice in boundary layer theory.  

4  Conclusion

The numerical solution for impact of thermal radiation 
on thermal boundary layer formation on the flat plate 
with a convective boundary condition is discussed. The 
effects of R, CT  , a and Pr on temperature is analysed using 
line graphs and tables. The results indicated that:

(i) Thermal radiation (R) has an increasing effect on the 
thermal boundary layer thickness and numerical val-
ues of �(0) while reverse impact on the temperature 
gradient −��(0).

(ii) The thermal boundary layer thickness decreases as Pr 
increase.

(iii) As temperature differences increases (CT ) , the tem-
perature distribution increases.

(iv) The numerical solution approaches contant surface 
temperature solution as a → ∞.

(v) The temperature distribution enhanced with a aug-
ment.

Fig. 7  Variation of Pr on the boundary layer for (R = 1, a = 1)

Fig. 8  Variation of C
T
 on the temperature distribution for air fluid 

(R = 1, a = 1)

Fig. 9  Variation of a on the temperature distribution for air fluid 
(R = 1, C

T
 = 0.2)
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