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Abstract
Over the last few decades, thousands of sinkholes have developed at an increasing pace, with the majority along the 
western and eastern shores of the Dead Sea. Recent studies indicate that the number of sinkholes in the Dead Sea Basin 
(DSB) has reached more than 6000; each of them, on average, 1–10 m deep and up to 25–30 m in diameter. These sink-
holes can open-up suddenly and swallow whatever exists above them, resulting in an area that looks like an earthquake 
zone. Sinkholes in the DSB are formed when a subterranean salt layer that once bordered the Dead Sea is dissolved by 
underground freshwater that follows the migration of the saltwater–freshwater interface, due to receding water level 
of the Dead Sea. Consequently, large areas of land are subsiding, causing the formation of sinkholes in the region. Also, 
based on the fact that the Dead Sea’s region is tectonically and seismically active, as being greatly affected by the Dead 
Sea transform fault system, sinkholes can also be evolved as a result of tectonic and seismic activities. This paper presents 
multi- and inter-disciplinary approaches towards understanding the occurrence of sinkholes in the DSB, with respect to 
geomorphology, geology, geophysics, tectonics, seismology, limnology, climatology, biodiversity, and socioeconomics, 
as well as the steady decline of the Dead Sea’s water level and the continuous shrinkage of its surface area and its water 
volume, at alarming rates. The occurrence of sinkholes in this region could be attributed to anthropogenic reasons and/
or natural reasons.

Keywords Sinkholes · Dead Sea Basin · Water level’s decline · Surface area’s shrinkage · Anthropogenic causes · Naturally 
induced · Brine and freshwater · Tectonics and seismicity · Transform fault system

List of symbols
Vp  Compressional wave velocity
Vs  Shear wave velocity
Vp/Vs  Ratio of compressional wave velocity to shear 

wave velocity
k  Permeability (hydraulic conductivity)
φ  Porosity
τ  Tortuosity
ρ  Electric resistivity

Abbreviations
APC  Arab Potash Company
BP  Before present
BrO  Bromide oxide
DSB  Dead Sea Basin

DSF  Dead Sea fault
DSFS  Dead Sea fault system
DSTF  Dead Sea transform fault
ERT  Electric resistivity tomography
FDEM  Frequency domain electro-magnetic
GIS  Geographic information system
GPR  Ground-penetrating radar
HSL  Hyper-saline lake
InSAR  Interferometric synthetic aperture radar
JRV  Jordan Rift Valley
LiDAR  Light detection and ranging
MCASW  Multichannel analysis of surface waves
MODIS  Moderate resolution imaging 

spectro-radiometer
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MRS  Magnetic resonance sounding
MSL  Mean sea level
NDSB  Northern Dead Sea Basin
O3  Ozone
ODEs  Ozone depletion events
OL  Ozone layer
P-wave  Compressional wave (seismic, acoustic)
RS  Remote sensing
RSDSC  Red Sea–Dead Sea conveyance (project)
SDSB  Southern Dead Sea Basin
SITS  Satellite image time series
SMCE  Spatial multi-criteria evaluation
SNMR  Surface nuclear magnetic resonance
S-wave  Shear wave (seismic, acoustic)
TDEM  Time-domain electromagnetic
TDS  Total dissolved solids
TEM  Transient electromagnetic
TLS  Terrestrial laser scanner
USD  United States’ Dollar

Units
BCM/yr  Billion cubic meters per year
°C  Degree Celsius
°C/yr  Degree Celsius per year
ft  Foot
g/l  Gram per liter
kg/l  Kilogram per liter
kg/m3  Kilogram per cubic meter
km  Kilometer
km2  Kilometer square
m  Meter
m3  Cubic meter
MCM  Million cubic meter
MCM/yr  Million cubic meters per year
m/ka  Meter per thousand years
ms  Millisecond
m/s  Meter per second
m/s2  Meter per second square
m/yr  Meter per year
mm  Millimeter
mm/yr  Millimeter per year
mol/l  Mole per liter
pH  Acidity–basicity indicator
Ω m  Ohm meter
%  Percentage

1 Introduction

A sinkhole, also known as sink, stream-sink, cenote, swal-
let, swallow hole, ponor, cavern, or doline, is defined as 
a geomorphological depression or hole in the ground, 
caused by some forms of collapse of the surface layers 

because of different reasons [112]. The morphology of 
sinkholes and their genetic mechanisms, spatial distribu-
tion, and associated risks are well known [15, 58, 98, 99, 
113, 114, 122, 140, 192, 201, 202, 234].

Sinkholes can be formed when the land surface topog-
raphy is changed, and it is vice versa, which means when 
sinkholes form, topography of the surface is changed. 
Karst is a topographic feature formed by the dissolution 
of soluble rocks, such as carbonates (limestone and dolo-
mite) and salts (halite, gypsum, and anhydrite), which can 
be expressed in topography but can be a subsurface fea-
ture that is not visible on the surface of the Earth. Ground 
collapse and subsidence, and environmental contami-
nation are hazards strongly associated to water, often 
encountered in a karst environment. Most of the sinkholes 
are caused by karstic processes, including the ‘karstifica-
tion process,’ meaning that rocks are chemically dissolved 
as happened in carbonate rocks [63, 141]; the ‘suffusion 
process’ (or washing-out process), meaning that rocks are 
collapsing and subsiding as happened in sandstone rocks 
[41, 171, 225]; and ‘dissolution process’ as happened in 
salt rocks, similar to the case of the Dead Sea’s salt layers 
[92–94, 191, 192, 196, 226]. The karstification and disso-
lution processes require soluble rocks; favorable climatic 
conditions; structural elements that act as conduits (such 
as faults, ruptures, fractures, flexures, fissures, etc.); and 
hydraulic gradient; as well as high porosity and perme-
ability (hydraulic conductivity), which all facilitate water 
mobility, in the presence of soluble rocks. Therefore, the 
distribution of groundwater potentiometric heads, fluxes 
in space and time, and the other factors (mentioned 
above) are necessary parameters to understand, in order 
to predict and probably prevent karstic hazards.

Aside from the fact that sinkholes are naturally caused, 
humans are also responsible for the formation of sink-
holes. Activities like drilling, mining, construction, broken 
water or drain pipes, improperly compacted soil after 
excavation works, or even heavy traffic (especially when 
there is void under the road) can provoke small to large 
sinkholes. Water from broken pipes can penetrate through 
mud and rocks and erode the ground underneath, causing 
sinkholes. Sometimes, heavy weight on soft soil can cause 
collapse of the ground, resulting in sinkholes. The sink-
holes, resulting from these natural and anthropogenic pro-
cesses, generally vary in size from 1 to 600 m (3.3–2000 ft) 
both in diameter and depth; some of which are even larger 
than that, as indicated below. They also vary in shape from 
soil-lined bowls to bedrock-edged chasms.

Sinkholes may form gradually or suddenly, and are 
found worldwide [61, 104, 131, 227]. They are found, for 
instance, in Europe (Czech Republic [69], Croatia [60], Ser-
bia [217], Italy [58], Greece [216], the UK [195]; and Ireland 
[46]); in Africa (Egypt [127], South Africa [166], and Zambia 
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[182, 210]); in the Caribbean (Bahamas) [155, 224]; in North 
America (Mexico [32, 68], USA [100, 205, 218–220], and 
Canada [1, 119]); in Central America (Guatemala [36, 168, 
169, 215]); in South America (Venezuela [235]); in Oceana 
(New Zealand [129], and Papua New Guinea [2]); and in 
Asia (Iran [86, 88, 156], India [177, 181, 194], China [121, 
193, 204], Turkey [35, 62], Lebanon [8, 48, 65], and Oman 
[162, 222]).

In Oman, for example, there are the Wadi Shab and Bim-
mah sinkhole, the Dibab sinkhole, and the Teiq (Teeq, Taiq, 
Tayq) sinkhole. The Teiq Sinkhole, in Salalah–Dhofar, Oman, 
is one of the largest sinkholes in the world, where several 
perennial wadis (valleys) fall with spectacular water-falls 
into this karstic sinkhole found in limestone rocks, which 
is ≈ 210 m (≈ 670 ft) deep and 130–150 m (≈ 427–492 ft) in 
diameter [162]. It is worth-mentioning that the sinkholes 
in Oman, despite of their importance to tourism, they are 
not studied, and, thus, there is no single scientific article 
published in refereed journals about them. The largest 
sinkhole, that has been reported so far, is the ‘Xiaozhai 
Tiankeng Sinkhole’ in China, which is up to 662 m deep 
(≈ 2172 ft), with nearly vertical walls. This sinkhole is one 
of the most impressive natural attractions on the Earth, 
which had been carved out in limestone rocks by a pow-
erful underground river [204, 234, 243]. A Chinese-British 
expedition’s team that surveyed this giant sinkhole can be 
seen on this short YouTube (1.31 min’ long): https ://youtu 
.be/j4hjk ZfEdU U?t=4 [74].

Remarkably, there are also under-sea (underwater) 
sinkholes—known as ‘blue holes’ [115, 168, 169]. Some 
of the literature given above about sinkholes in different 
countries of the world also talks about the ‘blue holes.’ 
These blue holes are large marine sinkholes that mostly 
formed during past ice ages when sea levels were much 
lower than that in the present time. They were subject 
to the same process of erosion from rain and chemical 
weathering as any other area that have sinkholes. After 
being submerged, the erosion ceased, and the deep blue 
caverns (sinkholes) are left. Some examples on the under-
water sinkholes (blue holes) are studied by Palozzi et al. 
[170] in Italy, Biddanda et al. [42] in the USA (Lake Huron—
one of the Great Lakes), and Medina-Moreno et al. [160] 
in Mexico, and also as reported by Tennenhouse [214] in 
China, and by Shepert [197] in Canada. There are no sci-
entific publications available on the last two examples of 
blue holes existing in China and Canada.

According to La Rosa et al. [142], more than 40% of the 
sinkholes of Italy are found in seismically hazardous zones. 
However, according to these authors, it remains unclear 
whether seismicity in that region may trigger sinkholes’ 
collapses or not. La Rosa et al. [142] used a multi-discipli-
nary data set of Interferometric Synthetic Aperture Radar 
(InSAR), surface mapping, and historic records of sinkholes’ 

activity to show that the Prà di Lama Lake is a long-lived 
sinkhole that was formed in an active fault zone and grew 
through several events of unrest, characterized by episodic 
subsidence and lake-level changes. Moreover, InSAR meas-
urements showed that continuous subsidence at rates of 
up to 7.1 mm/yr occurred during 2003–2008, between 
events of unrest. However, earthquakes on the major faults 
near the sinkhole do not trigger sinkhole’s activity, but 
low-magnitude earthquakes at 4–12 km depth occurred 
during sinkholes’ unrest in 1996 and 2016 [142]. These 
observations were interpreted as evidence of seismic 
creep at depth, causing fracturing, and ultimately leading 
to the formation and growth of the Prà di Lama sinkhole 
(Lake). In Japan, a massive sinkhole occurred in a Japa-
nese road after an earthquake centered in Osaka, which 
caused substantial destruction to regional infrastructures, 
and, at least, four deaths [159]. This sinkhole resulted in 
hundreds of people being injured, walls being knocked 
over, and fires triggered in Japan’s second-most populous 
city—Osaka. In addition, 170,000 homes were left with-
out power, and flights in and out of the city’s airport were 
grounded. That was a result of the 6.1-magnitude earth-
quake that hit Osaka city, Japan, on June 18, 2018 [159]. 
So, sinkholes can be directly or indirectly triggered and/
or caused by seismic events, including micro- and macro-
scaled earthquakes.

Researchers have currently applied advanced tech-
niques to investigate sinkholes. For instance, Al-Kouri et al. 
[18] used geographic information system (GIS) and remote 
sensing’s (RS) techniques, including a spatial multi-criteria 
evaluation’s (SMCE) approach to produce a geo-hazard’s 
map for the limestone sinkholes in the Kinta Valley, north-
eastern Malaysia. Over the last 3 decades, these sinkholes 
were man-made because of the uncontrolled land-use 
and development’s activities that have led to significant 
changes in topography and geomorphology that have 
caused the occurrence of sinkholes.

Goldshleger et al. [110] developed methods for predic-
tion of sinkholes’ occurrence by using mapping and moni-
toring methods, based on active and passive RS’ means. 
These methods are based on combined measurements, 
including field spectrometry and geophysical instru-
ments, such as ground-penetrating radar (GPR) and fre-
quency domain electro-magnetic (FDEM). These measure-
ments were undertaken at different times to monitor the 
progress of an ‘embryonic’ sinkhole (a progressing one). 
Accordingly, it was found that higher electric conductiv-
ity and higher soil moisture characterizing the site of that 
progressing sinkhole. Benito-Calvo et al. [40] explored, for 
the first time, the application of a terrestrial laser scanner 
(TLS) and a comparison of point clouds in the 4D-monitor-
ing of active sinkholes. Their approach was tested in three 
highly-active sinkholes in northeast Spain, related to the 

https://youtu.be/j4hjkZfEdUU?t=4
https://youtu.be/j4hjkZfEdUU?t=4
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dissolution of salt-bearing evaporites overlain by uncon-
solidated alluvium. The sinkholes are located in urbanized 
areas, and have caused severe damage to critical infra-
structures (flood-control dike, a major highway, etc.).

Regarding the sinkholes in the Dead Sea Basin (DSB), 
as being the focus of this study, the DSB is a hub for thou-
sands of sinkholes, representing a remarkable phenom-
enon that has been developed in the last few decades. The 
rapid development of such a phenomenon in the DSB in 
the last few decades poses major geological, geotechni-
cal, and geoenvironmental hazards to the local population, 
agriculture, and industry (e.g. [9, 10, 16, 17, 25, 54, 55, 67, 
85, 87, 138, 176, 184–186, 192, 203, 212]. Recently, some 
studies were conducted on the DSB to investigate sink-
holes in the region, using geophysical and other kinds of 
techniques. More details are given below.

2  Study purpose

This paper deals with one of the most serious and dra-
matic occurrences of the Earth’s surface, in one of the most 
amazing places on the Earth—it is the sinkholes in the 
Dead Sea Basin. The paper’s main target is to analyze this 
hazardous phenomenon, in terms of multi- and inter-dis-
ciplinary approaches, with respect to the region’s geology, 
geophysics, seismology, limnology, climatology, environ-
ment, and socioeconomics. In this case, it is believed that 
the sinkholes in the DSB have been steadily evolving as a 
result of either anthropogenic (man-made) acts, naturally 
induced, or both, based on the facts and arguments pre-
sented and discussed herein. The paper investigates the 
sinkholes in the DSB, and presents the resulting evaluation 
to those concerned with the issue of sinkholes as a geo-
hazard’s phenomenon, at academic, research and devel-
opmental, industrial, governmental, and nongovernmen-
tal institutions. To achieve the goals of the paper, a wide 
range of up-to-date scientific and technical publications, 
dealing with several areas of expertise, have been com-
prehensively reviewed, analyzed, and cited in this paper. 
Field visits were also carried out, and available data was 
analytically used and analyzed.

3  Data and observations

3.1  Geological–geophysical setting (tectonics 
and seismology) of the Dead Sea Basin

The Dead Sea Basin is part of a seismically active region 
that locates between two mobile tectonic plates: (1) The 
African Plate (including the Sinai Peninsula Sub-Plate) 
to the south and southwest of the Dead Sea; and (2) The 

Arabian Plate to the north and northeast of the Dead Sea 
[57, 157] (Fig. 1). The location of the DSB between these 
two mobile, active plates, on the one hand, and between 
two major active faults, bordering the DSB from the west 
and the east, on the other hand (as discussed below), 
has made the DSB a very active region, tectonically and 
seismically.

As shown in Figs. 1 and 2, the Dead Sea is bordered by 
two major strike-slip faults on the west and the east. The 
fault on the west is known as the ‘Jericho Fault,’ located 
in Historic Palestine; and the fault on the east is known 
as the ‘Wadi Araba Fault,’ (also known as Araba (or Arava) 
Fault), located in Jordan. The common model of the DSB, 
which describes its structure, is of a ‘Pull-Apart Basin’ [102], 
affected by both fault systems (the Jericho Fault and the 
Araba Fault) on both sides of the DSB. The DSB is a long 
(≈ 150 km), narrow (≤ 15 km), and deep (< 8.5 km) basin, 
located along the Dead Sea’s Transform Fault (DSTF) [213, 
229].

The Dead Sea Basin is divided into two main sub-basins, 
which are the northern sub-basin and the southern sub-
basin. The northern one is larger and deeper than the 
southern one, whereby both sub-basins are separated by 
the Lisan Peninsula. The Lisan Peninsula is underlain by a 
large salt diaper, with a thickness of about 8 km, a length of 
up to 20 km, and a width of about 7 km, extending under 
the Dead Sea [20, 21, 39, 52]. It is noteworthy to mention 
that according to recent studies, the DSB shows evidence 
of hydrocarbons [56]. The Dead Sea itself is located within 
a tectonic rift (known as the ‘Jordan Rift Valley’ (JRV) or 
‘Jordan Valley’), forming a topographic depression (known 
as ‘Graben’) with a width of 15–25 km, extending from the 
Gulf of Aqaba on the Red Sea in the south, to Lake Tiberias 
(Sea of Galilee), in the north. The JRV, formed in the Mio-
cene Epoch (23.8–5.3 million years ago), is mainly covered 
by playa deposits (salt, sand, and mud) and sand dunes. 
The highlands of the JRV consist of much older rocks to 
young deposits, ranging in age from Precambrian in the 
south to Tertiary in the north.

Hofstetter et al. [120] obtained a velocity-structure pro-
file of the crust across the DSB, by applying a tomography-
based method to local earthquakes. They used compres-
sional wave (P-wave) travel-times of 614 earthquakes 
that occurred in the DSB during a period of 26  years 
(1983–2009). As a result, they found that the DSB, at all 
depths, is characterized by lower velocities relative to its 
both western and eastern sides. They also found that a sig-
nificant seismic activity is taking place at a depth of about 
20 km, mainly in the central and northern parts of the DSB. 
At shallower depths (i.e. < 15 km), there is more seismic 
activity on the eastern side of the DSB than on its western 
side. They also found that the northern part of the DSB (or 
Northern DSB) is generally more active than its southern 
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part (or Southern DSB). Asymmetry is also observed in the 
fault systems that border the DSB from the west (bordered 
by the Jericho Fault) and from the east (bordered by the 
Araba Fault) (Fig. 2). The Araba Fault System on the east-
ern side of the DSB appears to be a clear boundary at all 
depths down to about 20 km. Meanwhile, the depth exten-
sion of the Jericho Fault System, on the western side of the 
DSB, is definitely limited to less than 15 km.

The concentration of earthquakes in the central part 
of the DSB (Fig. 2—Middle) at depths larger than 15 km 
suggests that both of the western and eastern fault sys-
tems of the Dead Sea act, at those depths, as one single 
fault that is located in, or near, the central axis of the 
DSB, which is widely known as the ‘Dead Sea Transform 
Fault’ (DSTF), named also as ‘Dead Sea Transform’ (DST) 

or Dead Sea Fault System (DSFS). The DSTF is a major 
fracture zone and physiographic feature that extends 
from northern Red Sea to the Taurus Mountains in Tur-
key, along a distance of around 1000 km. It is a strike-slip 
fault system, which currently accommodates 5–7 mm/
yr of left-lateral motion, over the past 5 million years, 
between the Arabian and African tectonic plates [38, 
59, 144]. A total offset of 105–110 km has accumulated 
along the plate boundary since the Middle Miocene 
(17–18 million years) [59, 90, 179]. The Dead Sea Basin 
has been accumulating sediments since the formation of 
the plate boundary [47, 158] and continues to subside 
at present that is evidenced by its low surface eleva-
tion, which is currently at ≈ 435 m below mean sea level 
(MSL), as discussed below.

Fig. 1  Left: the tectonic framework of the Dead Sea Basin (DSB) and of the adjacent areas; right: digital shaded-relief map of the DSB (after 
[57, 157])
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Studying this fault system (DSFS) is of fundamental sig-
nificance to the Earth Sciences [221]. Continental trans-
form faults, such as the DSTF (DSFS), provide a simple set-
ting, in which deformation as a function of rock properties, 
temperatures, and pressures of the continental crust, can 
be studied. These studies are important to understand the 
long-term strength of the continental lithosphere, subsid-
ence of sedimentary basins, and the earthquakes’ defor-
mation cycle, as well as sinkholes, which are developed 
and still developing in the Dead Sea Basin.

3.2  Unique characteristics and biodiversity of Dead 
Sea Basin

The Dead Sea receives its water from several sources, 
mainly the Jordan River, which is more than 360 km long, 
and from its tributaries, namely Yarmouk, Hasbani, Dan, 
and Banias, as well as from wadis (valleys), such as, among 
others, Zerqa, Mujib, Kerak, and Hasa, on the eastern side; 
and Far’a, Auja, Qelt, and An-Nar, on the western side. The 
Dead Sea has a catchment area of 41,650 km2, current 

surface area of 605 km2, maximum depth of 378 m, aver-
age depth of 147 m, maximum length of 76 km, maximum 
width of 18 km, water density of 1.24 kg/l, and water salin-
ity [total dissolved solids (TDS)] of 33.7% (337 g/l), which 
reaches, at lower depths, 34.8% (348 g/l) [95, 191, 192]. This 
makes the Dead Sea the saltiest and heaviest water body 
on the Earth and, therefore, it is known as the ‘Hyper-Saline 
Lake’ (HSL) [103]. The Dead Sea’s brine (hyper-saline water) 
has a uniquely ionic composition, consisting of magne-
sium (Mg: 1.98 mol/l), sodium (Na: 1.54 mol/l), calcium 
(Ca: 0.47 mol/l), and potassium (K: 0.21 mol/l), whereas 
the main anions are chloride (Cl: 6.5 mol/l) and bromide 
(Br: 0.08 mol/l). Additionally, the Dead Sea’s brine has low 
water activity (< 0.699) [172], and its pH is ≈ 6 [167].

Until 2009, the water level (surface elevation) of the 
Dead Sea was 421–422 m (≈ 1381–1384.5 ft) below MSL 
[11–13, 191], and in 2018 it was around 430 m (≈ 1411 ft) 
below MSL [174, 233]. The latest measurement of the Dead 
Sea’ water level is 435 m (≈ 1427 ft), as provided by EO 
Sharing Earth Observatory Resources on July 21, 2019 [70]. 
This means that the Dead Sea’s water level has declined 

Fig. 2  Left: map of the Jericho Fault and Araba Fault on both sides 
of the Dead Sea Basin (DSB), as well as some other smaller faults 
affecting the DSB; middle: a map view of the seismic activity (earth-

quakes; blue dots) along the DSB; right: a depth north–south cross-
section of the Dead Sea’s seismicity (after [228])
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no less than 13 m within 10 years (2009–2019) only—an 
average of 1.3 m/yr, which has increased from 0.7 m/yr in 
the 1970s and 1980s [70, 111]. The Dead Sea’s water level 
has primarily dropped as water has been diverted from its 
only tributary—the Jordan River—to serve the surround-
ing communities with water in Israel and Jordan, and also 
due to the water pumping from the Dead Sea to the evap-
oration ponds on both of its shores.

In addition to the fact that the Dead Sea is the lowest 
point and deepest HSL on the Earth, the Dead Sea region 
is known by its unique climate, as it has more than 330 
sunny days, and its average temperature is around 40 °C 
in summer and around 15  °C in winter, and the mean 
relative humidity ranges between 34 and 50% over the 
12 months of the year [191]. The annual rainfall over the 
Dead Sea region is around 90 mm, meanwhile the annual 
evaporation rate is 1500 mm, with an actual evaporation 
rate of 1300–1600 mm/yr, depending on the salinity and 
temperature variations at the surface of the Dead Sea, 
which both are affected by the annual volume of fresh-
water inflow into the Dead Sea. These evaporation rates 
indicate that an average deficit of about 1400 mm of the 
Dead Sea water occurs every year [191]. The high rates of 
evaporation result in the actively precipitation of the hal-
ite and gypsum minerals, as a response to the negative 
water balance of the HSL, because the evaporation rates 
are much greater than the inflow rates [154, 199, 206], 
resulting in greater salinity [180]. The crystallization and 
precipitation of the halite and gypsum minerals and salt 
layers in the Dead Sea and its surrounding area have been 
comprehensively investigated by many researchers over 
the last few decades (e.g. [50, 101, 164, 207]), as well as in 
different salty environments in various locations around 
the world (e.g. [29, 88, 89]).

The Dead Sea area is still the home of rare species. 
In the mountains, oases, marshes, and temporary rivu-
lets surrounding the Dead Sea, there are many animals, 
including leopards, ibex, antelope species steenbok, and 
the griffon vulture, as well as hundreds of bird species. 
The Jordan Rift Valley and the Dead Sea Basin are among 
the most important migration routes for the black and 
white stork and many other bird species on their migra-
tion route from the breeding areas in Eastern Europe and 
the Middle East to Africa [108]. The Dead Sea Basin, as an 
extremely stressful hyper-saline environment, is consid-
ered a unique model for tracking evolutionary dynamics 
of biodiversity under increasing salinity. The stress of the 
high salinity of the Dead Sea eliminates most life forms 
except one alga, several species of Archaea, bacteria, 
and filamentous fungi [172]. Species’ diversity has stead-
ily decreased—a phenomenon that is highly and signifi-
cantly correlated with the decline of the Dead Sea’s water 
level, and with increasing its water’s density and salinity, 

which is currently 348 g/l, as mentioned above. Two Dead 
Sea’s surviving species—Aspergillus amstelodami Thom et 
Church and Aspergillus ruber Thom et Church—increase 
in frequency in the Dead Sea, down to a depth of 291 m 
below MSL, due to their evolved adaptations to tolerate 
hyper-salinity [172].

The Dead Sea also houses some unique bacte-
ria, though its water is ‘hyper-saline’ (or brine). During 
December 1941, a number of samples of sediments were 
collected at depths of 70–330 m below MSL of the Dead 
Sea, which, after analyses, indicated the presence of some 
kinds of bacteria in the Dead Sea [223]. Micro-organisms 
that inhabit hyper-saline lakes may be halo-tolerant or 
halo-philic. The ability to tolerate high-salt concentrations 
without compromising growth is characteristic of halo-tol-
erant micro-organisms. Micro-organisms that have adap-
tations, which require salt as a growth factor, are referred 
to as halo-philic. Both halo-philic and halo-tolerant micro-
organisms perform one of two different mechanisms to 
ensure that they can persist in the high-salt concentrations 
of hyper-saline environments. Ionescu et al. [125] discov-
ered several underwater fresh to brackish water springs 
in the Dead Sea, harboring dense microbial communities. 
This can be seen on the YouTube video (2.46 min’ long) 
provided on this Link https ://www.youtu be.com/watch 
?v=aoXdd Pg4lF w [123]. This short video, showing the ‘First 
Scientific Diving Expedition in the Dead Sea: Springs of 
Life in the Dead Sea’, has led to the discovery of a complex 
community of living microbes found in freshwater springs 
on the bottom of the deepest HSL on the Earth. To locate 
and study these springs, it was quite a task for the scien-
tific diving team, as the high-salt concentration makes 
the diving dangerous and difficult. The divers located the 
springs and took water and sediments’ samples, in which 
they detected novel micro-organisms [161].

3.3  Dead sea as health resort

The Dead Sea is the only place on the Earth where one can 
sunbathe for long periods of time with little or no sunburn, 
because harmful ultra-violet rays are filtered through three 
natural layers, which are: (1) An extra atmospheric layer; (2) 
An evaporation layer that exists above the Dead Sea; and 
(3) A rather thick Ozone Layer (OL). However, some recent 
studies indicated that there is depletion in the OL over the 
Dead Sea, which is due to chemical effects. Measurements 
of the ozone  (O3) and bromide (or bromine oxide—BrO) 
concentrations over the Dead Sea indicated that Ozone 
Depletion Events (ODEs)—widely known to happen in 
polar regions—are also occurring over the Dead Sea, due 
to the very high bromine content of the Dead Sea’s hyper-
saline water [200]. Bromide could play a significant role in 
the interaction dynamics on the surface of crystallized sea 

https://www.youtube.com/watch?v=aoXddPg4lFw
https://www.youtube.com/watch?v=aoXddPg4lFw
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salts [137], which may result in interactions with the OL. 
The bromide enrichment of the salt surfaces can play an 
important role in some global atmospheric processes, like 
depletion of the atmospheric OL [107].

3.4  Paleo‑climate of the Dead Sea Basin

Nearly 305 m (≈ 1000 ft) below the bed of the Dead Sea, 
scientists have found recently evidence that during past 
warm periods, the Middle East has suffered drought on 
scales never recorded by humans—a possible warning 
for current times [135, 143]. Thick layers of crystalline salt, 
termed by Talbot et al. [211] as ‘salt reefs,’ show that rainfall 
plummeted to as little as a fifth of modern levels during 
the Later Quaternary—some 120,000 years ago (Pleis-
tocene Epoch on the Geological Time Scale), and again 
about 10,000 years ago (Holocene Epoch on the Geologi-
cal Time Scale). Today, the region is drying again due to 
global warming, resulting from climate change, which is 
even getting worse. The Holocene Epoch (also known as 
the ‘Anthropocene Epoch’) is the current period of geo-
logic time, whereas its primary characteristic is the global 
changes caused by human activity. The Holocene Epoch 
began 12,000 to 11,500 years ago at the close of the Paleo-
lithic Ice Age and continues through today [31].

Charrach [51] studied the geological history and paleo-
climate of the Dead Sea’s region based on drill-holes’ data, 
and found that a composite stratigraphic column for the 
Holocene Epoch, of multiple lime carbonate and halite 
sedimentation, has been constructed for the Southern 
Dead Sea Basin (SDSB). During that period of time, the 
SDSB has subsided at a rate of 8.5–11 m/ka (meter per a 
thousand years), while the subsidence of the Northern 
Dead Sea Basin (NDSB) may have reached 25–30 m/ka. 
The Holocene has been divided into 13 major climatic 
intervals, starting with a very arid climate from ≈ 11,700 
to ≈ 8800 BP (Before Present), where halite precipitated in 
both basins (NDSB and SDSB), while the Dead Sea’s water 
level possibly reached ≈ 419 m below MSL. After ≈ 8800 BP, 
there was a very intense pluviatile period, with the forma-
tion of alluvial fans opposite wadi channels, reaching up 
to 45 m in thickness [51].

3.5  Decline of the Dead Sea’s water level

The Dead Sea’s water level has been declining since the 
1950s at alarming rates of approximately one meter per 
year, on average [241] (Table 1; Figs. 3, 4). The main rea-
son for this rapid decline is the decreasing inflow of fresh 
water through the Jordan River into the Dead Sea, which 
has been reduced from around 1250 million cubic meter/
year (MCM/yr) in the 1950s to ≈ 260 MCM/yr in 2009 [191], 
representing less than 21% of the original flow. As a result, 

the Dead Sea’s surface area has also been dramatically 
shrinking (Table 1).

Table  1 demonstrates that within 90  years only 
(1960–2050), the water level of the Dead Sea has and will 
be declined by no less than 110 m (this is equivalent to 
more than 1.2 m/yr, on average, as indicated also above). 
In absolute terms, the Dead Sea’s water level has declined 
by 37 m as of 2017, and is forecasted to drop a further 
25–70 m by year 2100 [26, 105, 191, 192, 226, 238]. How-
ever, simulations based on ranges of water withdrawal’s 
scenarios suggested that the Dead Sea will not ‘die;’ rather 
a new equilibrium is likely to be reached in about 400 years 
after a water-level decrease of 100–150 m [238]. Also, as 
shown in Table 1, the surface area of the Dead Sea, for the 
same period (1960–2050), has and will be shrunk by about 
500 km2 (this is, on average, 5.5 km2/yr). Abu Ghazleh et al. 
[11] gave an average of 4 km2/yr, as they did not consider 
the projected variations in the Dead Sea’s surface area until 
2050.

Of the annual water inflow (≈ 1.3 billion cubic meter 
‘BCM/yr’), which used to naturally flow in the Jordan 
River, ending in the Dead Sea, more than 96% is diverted 
for agricultural and domestic usages by the neighboring 
countries (mainly Israel and Jordan, and Syria to a lesser 
extent), leaving only a very small amount of water to reach 
the Dead Sea. In addition to diversion of the Jordan River’s 
waters by Israel and Jordan, solar evaporation carried out 
by the Israeli and Jordanian mineral extraction companies 
on western and eastern shores of the Dead Sea along its 
Southern Dead Sea Basin have contributed to the drastic 
decline of the Dead Sea’s water level (as indicated above), 
and to the decrease in its surface area and, thus, shrinking 
the Dead Sea’s extension (Figs. 3, 4).

A great portion of the fresh water that used to recharge 
the Dead Sea through the Jordan River has been replaced, 
for many years now, by domestic and industrial sewage 
that continues to flow into the Dead Sea, causing a great 
damage to the Dead Sea itself, and to the Jordan River, 
as well as to the unique ecosystem of the Dead Sea Basin 
and the surrounding environment. As the water level of 
the Dead Sea is steadily declining at an alarming rate of 
more than 1 m/yr, its surface area is also considerably 
shrinking (Table 1; Fig. 4). Based on satellite’s imagery for 
a period of 41 years (1972–2013), El-Hallaq and Habboub 

Table 1  Observed and 
projected variations of the 
mean sea level (MSL) and 
surface area of the Dead Sea 
over a period of 90 years 
(1960–2050) [191]

Year MSL (m) Surface 
area 
 (km2)

1960 − 390 1020
2005 − 420 635
2050 − 500 520
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[66] estimated that the Dead Sea’s water area shrank, on 
average, at a rate of ≈ 2.9 km2/yr.

4  Results and discussion

The Dead Sea represents a unique ecosystem, with geo-
logical, chemical, biological, physical, environmental, eco-
logical, limnologic, and climatic characteristics that are 
found nowhere else on the Earth [37, 191]. The combina-
tion of these elements of uniqueness and the special char-
acteristics of the Dead Sea, with respect to climate, hyper-
salinity, mineralogy, topographic and geological settings, 
seismicity, hydrology, hydrogeology, hot springs, biodi-
versity, archeology, etc. have turned the Dead Sea into a 
major health resort, with particularly beneficial effects on 
skin diseases. They also have turned the Dead Sea Basin 
into a ‘Mecca’ for research scientists, locally, regionally, and 
internationally. Among the major concerns for research 
scientists in the DSB are tectonics, geodynamics, seismic-
ity, hyper-salinity, climate, decline of its water surface, 
shrinkage of its size and surface area, and sinkholes, which 
all, by way or another, are directly or indirectly related to 
each other and are impacted by each other. The follow-
ing section discusses the issue of the DSB’s sinkholes, in 

particular, from various points of view and multi- and inter-
disciplinary approaches, as being the primary target of this 
paper.

4.1  Sinkholes

4.1.1  Anthropic interferences and how to deal 
with sinkholes

The high anthropic (anthropogenic) interferences and 
the high susceptibility of the Dead Sea’s area (for health 
reasons and tourism) ask for multi- and inter-disciplinary 
research to investigate the reasons behind the occurrence 
of thousands of sinkholes in the Dead Sea Basin. Addition-
ally, the sinkholes’ phenomenon in the DSB is investigated 
in this study, based on the fact that the DSB and its tec-
tonic and geodynamic settings—primarily the DSFS—are 
considered globally an open natural laboratory for tecton-
ics, seismology, geology, water sciences, and various disci-
plines of engineering. Furthermore, sinkholes are investi-
gated in this paper because of safety reasons, based on the 
fact that they can open-up suddenly and without warning, 
causing fear, panic, and anxiety, as well as death to people, 
and damage to property. Therefore, those who plan roads, 
constructions, and infrastructures should carefully choose 

Fig. 3  Satellite images revealing the Dead Sea’s shrinkage in sur-
face area and water volume (from left—first: September 15, 1972; 
second: August 27, 1989; third: October 11, 2011; and fourth: July 
21, 2019), as well as the growth of mineral-extraction evaporation 

ponds (shown in blue and green) in the Southern Dead Sea Basin 
(after NASA Earth [163] (first three images), and EO SEOR 2019 
(forth image—originally a NASA image))
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where to put them, considering the sinkholes existing in 
the region and others that may develop and occur any-
time. Because sinkholes do not only impact the local infra-
structures and facilities, as well as well-being of humans, 
but also affect the area’s hazards and risks, early monitor-
ing of sinkholes’ development is needed, in order to pro-
tect life of people, and also to reduce severe economic 
damages and loss that may result from sinkholes (e.g. [24, 
43, 124, 145]), as discussed below. In addition, remark-
ably sinkholes have become home for new micro- and 
macro-organisms, some of which are new to the habitat 
of the DSB. They can be homes for communities of unusual 
plants and animals, and also be a special link between the 
Earth’s surface and underground resources [14, 91, 130].

4.1.2  Occurrence of sinkholes in the Dead Sea’s Basin: 
frequency

Sinkholes in the DSB were first noticed in the 1970s [5], 
and since then they have rapidly increased in number and 
size. Currently they count, primarily on both western and 
eastern shores of the Dead Sea, in thousands, varying in 
diameter, depth, size, and shape, whereas some of which 

are vertiginous openings tens of meters deep (Fig. 5). The 
largest sinkhole in the DSB has a circular shape with a 
diameter of 60 m and a depth of 35 m, as well as a volume 
of ≈ 100,000 m3 [92, 183].

Though the exact number of the sinkholes in the DSB 
is unknown, estimates indicated that their number on 
both sides of the Dead Sea (east and west) has probably 
exceeded 6000 [33]. Until 2015, the number of sinkholes 
on the western shore of the Dead Sea reached more than 
4000 that were formed since the 1970s within a 60-km 
long and 1-km wide strip, and the formation’s rate of sink-
holes in the DSB has accelerated in recent years to more 
than 400 sinkholes per year [240].

However, the majority of the Dead Sea’s sinkholes are 
mainly located in its southern part and on both sides of 
the ‘Lisan Peninsula’ of the Dead Sea. These sinkholes are 
observed mainly along the edge of a salt layer deposited 
during the latest Pleistocene (2.6 million years ago and 
lasted until about 11,700 years ago on the Geological 
Time Scale), when Lake Lisan receded to become later the 
Dead Sea [75, 94]. The presence and frequent occurrence 
of more sinkholes in the southern part of the Dead Sea 
could be attributed to man-made activities, represented 

Fig. 4  Shrinkage of the surface area of the Dead Sea as a result of the decline in its water level since 1931 through the years 1984 and 2010, 
and as projected for the years 2070 (after [231])



Vol.:(0123456789)

SN Applied Sciences (2020) 2:667 | https://doi.org/10.1007/s42452-020-2146-0 Research Article

in the heavy industry as being progressively covered by 
solar evaporation ponds for exploitation of the Dead Sea’s 
minerals on the Dead Sea’s western and eastern shores. 
It could also be attributed to naturally-induced causes, 
represented in the tectonic deformations that are clearly 
visible in the region, because of the uplift in the salt-diapir. 
These two drives (anthropogenic and natural) together 
might lead to the formation and development of more 
sinkholes in the southern part of the Dead Sea.

4.1.3  Occurrence of sinkholes in the Dead Sea Basin: 
morphology

In the 1960s, the Dead Sea’s area was 1200 km2 (80-km 
long times 15-km wide). Since then the Dead Sea’s area has 
reduced by almost half; being now around 605 km2 [19, 49, 
64, 191, 209, 230, 236]. This has resulted in major changes 
in the hydrogeological setting and in the landscape and 
morphology of the Dead Sea, as being direct reasons for 
the formation of sinkholes that have been occurring since 
then at alarming rate in the DSB. The ground collapse and 
subsidence in the DSB, characterized by underground 
drainage systems, have resulted in sinkholes, as well as in 
caves and cavities. The geomorphologic features of sink-
holes in the DSB, caused by ground collapse and subsid-
ence, represent an exceptional case, since they are directly 
or indirectly originated by man [92].

4.1.4  Occurrence of sinkholes in the Dead Sea Basin: 
hydrology and hydrogeology

As the Dead Sea’s water level declines and its surface 
area shrinks (Figs. 3, 4), the temperature of the Dead 

Sea’s surface water has also changed. Using observa-
tions from 10 moderate resolution imaging spectro-
radiometer (MODIS), positive trends were detected in 
both day-time (0.06 °C/yr) and night-time’s (0.04 °C/yr) 
surface temperature of the Dead Sea over the period of 
2000–2016 [136]. This implies greater rates of evapora-
tion and, thus, greater declines in the Dead Sea’s water 
level, and further shrinkage in its surface area, resulting 
in developing more sinkholes.

As the brine (hyper-saline water) of the Dead Sea 
recedes, fresh groundwater moves up and dissolves lay-
ers of salt, creating large underground cavities, above 
which sinkholes are evolved. The decrease in the Dead 
Sea’s brine volume has pushed the fresh water to move 
from the neighboring groundwater aquifer systems on 
the eastern and western sides of the Dead Sea, replac-
ing the brine. Some scientists, however, believe that salt 
layers are dissolved by the Dead Sea’s brine [84]. This 
has resulted in dissolving the salty deposits or layers, 
which has led to subsidence and collapse of the rock 
formations and, thus, to the formation of sinkholes, with 
tens of meters in diameter and depth, along the Dead 
Sea’s eastern and western shores. These sinkholes clus-
ter mostly in specific locations up to 1000-m long and 
200-m wide, which align parallel to the general direction 
of the Dead Sea Fault System, associated with the struc-
tural complex of the Dead Sea and the Jordan Rift Valley. 
As seen in Fig. 6, the dramatic decline of the Dead Sea’s 
water level for the period of ≈ 40 years (≈ 1978–2018) is 
strongly associated with a dramatic increase in the num-
ber of sinkholes occurred in the DSB [165]. This repre-
sents strong linkage between the two phenomena—the 
decline of the Dead Sea’s water level and the frequent 

Fig. 5  Pictures of some examples of the sinkholes in the Dead Sea Basin (DSB) (with various scales)
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increase of the number and size of the sinkholes in the 
DSB.

Over the last decade or so, the World Bank led an initia-
tive to carry out a mega project to bring water, through 
a conduit with a total length of ≈ 200 km along the Wadi 
Araba (Arava Valley), from the Red Sea to the Dead Sea, for 
the purpose of rising the Dead Sea’s water level [19, 49, 
64, 191, 209, 236]. Nevertheless, such a project, known as 
the ‘Red Sea–Dead Sea Conveyance (RSDSC) project,’ with 
the cost of billions of USD, will never be able to provide 
enough water to stem the continued decline of the Dead 
Sea’s water level. Whatever provided of saline water from 
the Red Sea to the Dead Sea will be a very tiny amount 
of what the Dead Sea really needs. Furthermore, the 
project will create, on the short-run and long-run alike, 
more problems than solving the already existing ones 
[191]. Additionally, such a mega project (RSDSC) would 
exacerbate the sinkholes’ formation in the DSB. The more 
diluted water brought from the Red Sea, in comparison to 
the Dead Sea’s water, will help in dissolving more salt lay-
ers in the region. These salt dissolved layers might be, in 
turn, absorbed by the aquifers and streams in the region 
and, thus, accelerate the collapse of the ground, resulting 
in the formation of new sinkholes and in enlarging the 
existing ones.

4.1.5  Occurrence of sinkholes in the Dead Sea Basin: 
seismology (natural and induced earthquakes)

The features of heavy tectonics (including faults, mainly 
the Dead Sea Fault System; ruptures; fractures; flexures; 
anticlines; synclines; etc.) and seismicity (seismic activ-
ity resulting in micro- and macro-earthquakes with small 
and large magnitudes) that affect the DSB and the sur-
rounding regions could also be triggers as a result of the 
formation and evolution of sinkholes in the DSB (Fig. 7). 

To investigate this and approve it scientifically, some 
advanced measurements are needed to be undertaken in 
the region. In some other parts of the world, as discussed 
above, it was shown that the occurrence of sinkholes 
in seismically active regions is accompanied by earth-
quakes. Also, infrastructures and other kinds of projects 
may trigger sinkholes. Salem [191] concluded that the Red 
Sea–Dead Sea Conveyance project, though it has some 
advantages, has also several disadvantages. Accordingly, 
large projects that may be undertaken in the region, such 
as the RSDSC project, could be a reason that triggers earth-
quakes and causes the formation of new sinkholes and, 
thus, worsens the situation much more than that which 
is already exists. Sinkholes tend to develop along linea-
ments [4], which can be traced up to ≈ 2 km. The orien-
tations of the sinkholes’ lineaments are strikingly similar 
to the orientation of the faults forming the Dead Sea and 
the Jordan Raft Valley. These observations imply that the 
formation of sinkholes is related to tectonic faults buried 
in the Rift’s sediments [4]. The observed linkage between 
tectonic faults and sinkholes implies genetic relationships, 
where, beside the presence of salt layers, the formation of 
sinkholes is strongly affected by the presence of a promi-
nent tectonic fault, which is the DSFS [209].

An early hypothesis postulated that clay softening, 
liquefaction, and mobilization in the subsurface, due to 
the dilution of former highly salty pore-water by freshwa-
ter inflows, generate the sinkholes [25]. As discussed by 
Ezersky and Frumkin [79], two other factors may control 
the location of the sinkholes at the Dead Sea, namely: (1) 
The presence of a thick, massive salt layer that is exposed 
to a dissolution front at its edge; and (2) The presence of 
subsurface faults that control freshwater inflow into, and, 
thus, enable dissolution of, the salt layer. According to 
Ezersky and Frumkin [79], there are two conflicting mod-
els of sinkhole development along the Dead Sea. The first 

Fig. 6  Cumulative number 
of sinkholes (red line) and 
decline of the Dead Sea’s water 
level (blue line) for a period 
of approximately 40 years 
(≈ 1978–2018) (after [165])
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one considers structural control on sinkholes, constraining 
them to tectonic lineaments. This hypothesis is based on 
seismic reflection studies suggesting that sinkholes are the 
surface manifestations of active neotectonic faults that 
may serve as conduits for under-saturated groundwater, 
enabling its access across aquiclude layers. The second 
hypothesis, based on results of multi-disciplinary geo-
physical studies, considers the salt edge dissolution front 
as the major site of sinkholes’ formation. This hypothesis 
associates sinkholes with karstification of the salt edge by 
deep and shallow groundwater aquifers.

4.1.6  Occurrence of sinkholes in the Dead Sea Basin: 
seismic velocities and velocity ratio variations 
with respect to salt layers and hydrodynamic 
parameters

In addition to the Dead Sea water level’s decline that most 
likely related to the sinkholes’ occurrence in the Dead Sea 
Basin, as well as to the earthquakes that take place in 
the region and that are potentially behind the formation 
and evolution of sinkholes in the region, seismic obser-
vations, in terms of seismic velocity variations, also indi-
cated acceleration of the development of sinkholes in the 
region. Geophysical studies (e.g. [75, 80, 81]) showed that 
sinkholes in the DSB are associated with a particular layer 
of halite (salt mineral), deposited 10,000 years ago [239]. 
Based on in situ seismic measurements, the halite layer 
exhibits a broad range of compressional wave (P-wave) 
velocity (Vp), between 2800 and 3600 m/s, reflecting the 
texture of the salt layer, which varies between solid and 
crumbly texture [239]. On the other hand, in situ meas-
urements showed that the shear wave (S-wave) velocity 

(Vs) in the Dead Sea’s halite layer ranges between 750 and 
1600 m/s [82, 85]. These ranges of the P-wave and S-wave 
velocities result in velocity ratio (Vp/Vs) values in the range 
of 2.25–3.73.

Meanwhile, other salt layers in other regions of the 
world (e.g. [45, 242]), and salt minerals (halite and sylvite) 
that were tested in laboratory under high pressures [208], 
exhibit Vp values in the range of 4500–5500 m/s and Vs val-
ues in the range of 2500–3100 m/s. These Vp and Vs values 
result in relatively low values of Vp/Vs, ranging from 1.77 to 
1.80. A comparison between these results indicates that 
the geological subsurface layers of the Dead Sea Basin are 
characterized by lower degrees of compaction and solidi-
fication, as well as by relatively greater values of porosity 
(φ) and permeability (hydraulic conductivity) (k), as well 
as by lower values of tortuosity (τ) (e.g. [3, 34, 82, 96, 106, 
146, 173, 189, 190]). The variations in these hydrodynamic 
(fluid-flow) parameters (φ, k, and τ) are greatly affected by 
dissolution of the salt layers in the Dead Sea Basin, which 
result in relatively lower values of the seismic velocities 
(Vp and Vs) and higher values of the seismic velocity ratio 
(Vp/Vs). According to Ezersky and Goretsky [82], geophysi-
cal data testify that the in situ porosity indicates zones 
of heightened voidness (where φ > 25%), and that k for 
the same zones are high and, thus, they expected that in 
larger salt volumes these two parameters (φ and k) can 
yet increase.

In seismic imaging, the salt body is often assumed to 
be isotropic and homogeneous with constant veloci-
ties [97]. The large variations in the P-wave velocity 
(2800–3600 m/s) and the S-wave velocity (750–1600 m/s), 
as indicated above, resulting in large values of the velocity 
ratio (2.25–3.73) indicate anisotropy and heterogeneity, 

Fig. 7  Left: location map of 
the Dead Sea Basin (DSB) and 
the Dead Sea Transform Fault 
(DSTF) system; Middle: distri-
bution of sinkholes’ locations 
along the Dead Sea’s western 
shore; Right: pictures of some 
sinkholes in the DSB, which 
may exceed 15 m in depth and 
25 m in diameter (after [4, 191, 
198])



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:667 | https://doi.org/10.1007/s42452-020-2146-0

characterizing the salt layers in the DSB. These indications 
of anisotropy and heterogeneity of the Dead Sea’s salt 
layers agree well with the results obtained by Hatzor and 
Heyman [117] from laboratory tests on salt (halite) sam-
ples taken from the salt deposits in the DSB. Anisotropy, 
associated with heterogeneity, as in the case of the Dead 
Sea’s halite (salt) layer, means variations in the physical 
properties in the three directions (X, Y, Z) of the salt layer, 
such as variations in hydraulic, electric, and heat flow, as 
well as in propagation of seismic wave (acoustic signal) 
velocity [187].

4.1.7  Occurrence of sinkholes in the Dead Sea Basin: 
geochemistry‑fluid dynamics

Shalev et al. [196] showed, through finite-element mod-
eling, that dissolution of the salt layer(s) in the Dead Sea 
Basin is a plausible mechanism to explain the rapid crea-
tion of subsurface holes that collapse, forming sinkholes. 
The positive interaction among the rate of flow, the rate 
of chemical reaction, and the variation in permeability 
(hydraulic conductivity) accelerates the dissolution pro-
cess, which might result in ‘reactive infiltration instability.’ 
This is manifested in interconnected cavities, into which 
fluid is channeled, as a result of salt dissolution. The fre-
quent occurrence of sinkholes, the spacing between them, 
and the high rate of their development and formation in 
the DSB are controlled by several factors. These factors 
include the following: (1) Properties of structural and tex-
tural elements (lineaments), such as faults, ruptures, fis-
sures, flexures, channels, large voids and pores, etc.; (2) 
Flux and freshness of incoming groundwater; (3) Rate of 
dissolution; (4) Effective specific surface area of particles 
(e.g. [188]); (5) Porosity and permeability of the salt and 
clay layers; (6) The φ–k–τ relations or their dependence on 
each other; (7) Dispersivity; and (8) Thickness and depth 
of salt layers. The salt dissolution in the underlying lay-
ers results in higher values of porosity and permeability, 
and lower values of tortuosity (as indicated above), which 
all lead to easy flow of fresh water into the salt layers. 
Thereby, this will lead to increasing the rates of both sol-
ute transport and the chemical reactions, resulting in fluid 
channeling and, thus, cavitation, which will lead to easy 
collapse, resulting in sinkholes. A large number of sink-
holes occurred where both the edge of the halite (salt) 
layer and underground discontinuities (faults or fractures, 
acting as preferential channel-ways) are simultaneously 
present [79]. However, these three fluid-flow (hydrody-
namic) parameters (φ–k–τ) need to be measured, in order 
to further understand the fluid-dynamics’ impacts of the 
fresh water and saline water interactions on the sinkholes’ 
formation in the Dead Sea Basin.

4.1.8  Occurrence of sinkholes in the Dead Sea Basin: 
socioeconomic impacts

Sinkholes in the DSB are constantly damaging the exist-
ing infrastructure and, thus, affecting the development 
and growth potential in the Dead Sea region. Unfor-
tunately, the Dead Sea is rapidly disappearing and its 
beaches are almost unrecognizable. In addition, the sink-
holes on both eastern and western shores of the Dead 
Sea continue to cause more damage to the shorelines. 
On both eastern and western coasts of the Dead Sea, 
there are farms; tourist’s destinations, including resorts, 
hotels, and parks; and industrial facilities, including, for 
instance, the Jordanian Arab Potash Company (APC). 
Sinkholes in this region of the world represent a sub-
stantial geo-hazard, as they have already destroyed or 
damaged several tourism facilities, factories, evaporation 
pond dykes, highways, link roads, houses and farmland 
[126, 226]. Additionally, the threat that more sinkholes 
will form in the near future has caused several existing 
facilities to close or stop production [23, 27, 116, 178, 
232]. Hasson [116] reported, “Fields of sinkholes instead 
of beaches, roads swept away by floods, large industrial 
ponds instead of a sea and one overarching question: 
What can be done so that things don’t get even worse 
in the next 20 years?”

Furthermore, the economic growth in the region 
is limited because the threat of sinkholes is consider-
ably high, so the formation of sinkholes keeps people 
away from investing in new development or businesses 
in the area. These factors combined make sinkholes a 
very costly problem. The sinkholes on the western side 
of the DSB have cost Kibbutz Ein Gedi more than USD 
25 million in earnings since 1995, because they have 
had to close down a resort village, abandon a date palm 
orchard, and cancel future development plans in these 
areas [118]. In addition, the Israel Roads Company has 
had to invest millions of dollars over the past years to 
improve highway No. 90 that runs parallel to the Dead 
Sea, whereas the latest works took place near Ein Gedi in 
2015 [232]. On the eastern shores of the DSB, the APC is 
expected to suffer around USD 70–90 million in damages 
due to the decreasing water level of the Dead Sea. The 
APC was constructing salt evaporation ponds when a 
sinkhole damaged about 100 m of roadway. A short time 
later, part of a salt evaporation pond collapsed causing 
millions of USD of losses on infrastructure and product 
[53]. According to the APC, the company has insurance 
to cover such hazards caused by the sinkholes formation 
[23]. Situations such as these are likely to continue and 
even become more frequent so long as the water level 
of the Dead Sea continues to decline.
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5  Various techniques used to investigate 
sinkholes in the Dead Sea Basin

As a matter of fact, various techniques have been used 
over the last four decades or so to investigate the sink-
holes’ phenomenon in the Dead Sea Basin. These may 
include seismic (multichannel analysis of surface waves 
(MCASW), seismic refraction, and seismic reflection, 
using compressional wave velocity (Vp) and shear wave 
velocity (Vs); electric resistivity tomography (ERT) using 
electric resistivity (ρ); transient electromagnetic (TEM); 
time-domain electromagnetic (TDEM); magnetic reso-
nance sounding (MRS); surface nuclear magnetic reso-
nance (SNMR); ground-penetrating radar (GPR); micro-
gravity; gravimetry, as well as interferometric synthetic 
aperture radar (InSAR); differential interferometric syn-
thetic aperture radar (DInSAR); geographic information 
system (GIS); remote sensing (RS); satellite image time 
series (SITS); moderate resolution imaging spectro-radi-
ometer (MODIS); terrestrial laser scanner (TLS); spatial 
multi-criteria evaluation (SMCE); and light detection and 
ranging (LiDAR); along with detailed geomorphological, 
geological, seismological, and limnologic studies and 
surveys. Table 2 summarizes some of the achievements, 
regarding investigations of the sinkholes’ phenomenon 
in the DSB, over the last few decades.

6  Conclusions and recommendations

Sinkholes—large, open holes that result from the col-
lapse of the Earth’s surface—represent serious environ-
mental, geological, and geotechnical problems in the 
Dead Sea Basin. Sinkholes began to form and develop 
in the DSB about 20 years after the Dead Sea’s water level 
started to decline. The 20-year delay in the occurrence of 
sinkholes after the beginning of the Dead Sea’s recession 
means it takes 20 years for the freshwater to flush all the 
way to salt layers and then to dissolve them, creating 
cavities within the salt layers, up to the shallower clay 
and gravel layers underneath the Earth’s surface. This 
indicates that there is a strong correlation between both 
phenomena: the decline of the Dead Sea’s water level, on 
the one hand, and the remarkable and frequent occur-
rences of sinkholes in the Dead Sea Basin, on the other. 
This means that the greater the decline of the Dead Sea’s 
water level, the greater the number and the larger the 
size of the sinkholes that have been already developed 
and others that may develop anytime in the DSB.

In addition, the tectonics and seismic activities that 
affect the DSB, besides the Dead Sea’s water level decline 

and the shrinkage of its surface area, might trigger the 
occurrence of plenty of sinkholes in the region. The 
tectonic features existing in the region (faults, fissures, 
ruptures, fractures, flexures, etc.) serve as conduits, chan-
neling freshwater from the deeper aquifer systems to 
the shallower ones, dissolving the salt layers and, thus, 
promoting the evolution and formation of sinkholes in 
the DSB. This implies that more voids are created and, 
thus, higher porosities and hydraulic conductivities 
are resulted, which lead to the movement of greater 
amounts of freshwater. Once porosity and permeability 
(hydraulic conductivity) are increased by dissolution, flu-
ids are channeled into the dissolved sections and accel-
erate the process, as the salt layers become more porous 
and more permeable and, thus, less tortuous, leading 
to easy flow of fresh water into the salt layers. In other 
words, the anisotropy and heterogeneity, resulted from 
salt dissolution, magnify this instability and lead to more 
and larger sinkholes in the DSB.

The factors discussed in this paper, including decline of 
water level, shrinkage of surface area, decrease of water 
volume, tectonic features, and seismicity, affecting and will 
affect the Dead Sea Basin, have led to and will further lead 
to the occurrence of sinkholes and formation of new ones 
in the DSB. The impacts of these phenomena are reflected, 
physically, chemically, and hydro-geologically, on the vari-
ations in the seismic wave propagation and hydrodynamic 
(fluid-flow) parameters. These include seismic wave veloc-
ity, velocity ratio, porosity, permeability (hydraulic conduc-
tivity), tortuosity, and others. Analyses of available data 
of the compressional and shear wave velocities and fluid-
flow parameters indicate that the relatively low values of 
in situ velocities of both kinds of seismic waves (compres-
sional and shear) result in greater values of their veloc-
ity ratio. These observations indicate heterogeneity and 
anisotropy, as well as less compaction and solidification of 
the layers of the DSB, which are considered encouraging 
factors for sinkholes to be formed and further developed 
in the Dead Sea Basin.

Some of the factors mentioned above are anthropo-
genic (including the Dead Sea’s water level decline and 
its surface area’s shrinkage and, thus, decrease in its water 
volume), and some others are naturally induced (includ-
ing tectonics and seismicity). Based on the investigation 
and data analyses provided in this paper, it is believed, 
however, that these factors combined have resulted in 
the formation of the already existing sinkholes and of the 
new ones that may develop in the future. Nevertheless, the 
anthropogenic factors could be avoided, if man really pays 
attention to nature and the environment, especially when 
it comes to a uniquely beautiful natural feature like the 
Dead Sea Basin, including the Dead Sea itself, the Jordan 
Rift Valley, and their surrounding regions.
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The Dead Sea’s shorelines are undergoing continuous 
damages and eco-hazards, mainly due to the Dead Sea’s 
water level’s decline, because of anthropogenic impacts, 
and also because of the intensive activities related to 
infrastructures, building of constructions (such as hotels, 
etc.), and potential mega projects, such as the Red Sea-
Dead Sea Conveyance (RSDSC) project. These activi-
ties, in turn, deform drainage systems; cause landslides, 
land collapse, and subsidence; pollute the Dead Sea’s 
environment; and cause the formation of sinkholes and 
development of new ones. Several alarming cases hap-
pened in the last few years in the DSB, as a result of the 
collapse and subsidence of the Earth’s surface, resulting 
in many, huge sinkholes. Subsequently, destination for 
recreation and tourism has been considerably decreased, 
because of warnings related to further development of 
sinkholes and, thus, tourists are scared from further dis-
asters and eco-geo-hazards that may take place in the 
region, anytime. Therefore, additional investigations are 
requested to study the salt layers of the DSB on all shores 
of the Dead Sea, including the southern shores, where 
the RSDSC project is planned to take place, if presumably 
will be undertaken. Field and laboratory measurements, 
related to the sinkholes and other features of the Earth’s 
surface collapse and subsidence in the DSB, should be 
conducted, using various geophysical and other tech-
niques indicated in this paper.

Based on the fact that the sinkholes’ phenomenon has 
created a state of fear and panic in the region, which has 
already affected the recreation and tourism businesses, 
measurements and monitoring actions need to be steadily 
and permanently undertaken in the region. An early warn-
ing system needs to be installed, so that it can provide 
dual services, in relation to the tectonic and seismic activi-
ties that result in micro- and macro-earthquakes that fre-
quently hit the region, and also in relation to the sinkholes 
that frequently occur in the region. InSAR–LiDAR-derived 
subsidence maps are fundamentally used for sinkholes’ 
early warning and mitigation along the western shore 
of the Dead Sea, which are incorporated in all sinkholes’ 
potential maps that are mandatory for the planning and 
licensing of new infrastructures in the region.
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