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Abstract
In this study for landslide susceptibility modeling, three quantitative techniques, i.e., frequency ratio (FR), information 
value (IFV), and weight of evidence (WOE), were evaluated and compared. For this purpose, landslide inventory map was 
prepared using visual interpretation on SPOT-5 image and field survey was carried out for ground truthing of landslide 
sites and total 677 landslides were identified. The inventory map was divided into training and validation datasets, and 
from total, 473 landslides (70%) were for training to run the model and 30% (204 landslides) for validation purpose. Total 
11 landslide conditioning factors were used in this study that are: elevation, slope, aspect, curvature, plan curvature, 
profile curvature, land use/land cover (LULC), topographic wetness index (TWI), stream power index (SPI), proximity 
to road, and proximity to stream. Three different landslide susceptibility maps were produced based on analyzing the 
relationship of landslides with conditioning factors using FR, IFV, and WOE in GIS environment. The results of FR model 
indicated that almost 40% of the total study area fall in high to very high landslide susceptibility zones, while in WOE and 
IFV models, it was found almost 50% of the total area. The landslide susceptibility maps were validated using prediction 
and success rate curve techniques. The prediction rate curve gives us a glimpse of future landslides based on present 
landslide susceptibility maps. The results obtained from validation showed that the area under curve (AUC) based on 
prediction rate curve for FR, IFV, and WOE was 80.78%, 72.88%, and 72.33%, respectively. However, the AUC obtained 
through success rate curve for the models in this study was 74.60%, 75.04%, and 72.54% for FR, IFV, and WOE, respectively. 
Moreover, the evaluation of landslide density test and seed cell index area (SCAI) indicated that calculated and classified 
landslide susceptibility maps are in a good agreement with the field conditions. Thus, it was observed from this study 
that the frequency ratio has better accuracy as compared to information value and weight of evidence, but in success 
rate curve, almost all the models showed the same results. Consequently, it can be concluded that the susceptibility 
maps produced from FR, IFV, and WOE are in good agreement because more than two-third of landslides falls in high 
and very high susceptibility zones of each model. From this study, it was found that slope angle, elevation, land use/
land cover, and roads play a major influencing role in the occurrence of landslide in the study area. The maps produced 
based on these landslide susceptibility models provide a base for engineers and land use planner to develop landslide 
management strategies before any development on slopes.
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1 Introduction

Landslides were found to be the most frequent and 
damaging natural hazard threatening human lives and 
properties [1]. Landslide is the devastating natural haz-
ard causing serious human injuries, loss of lives, and 
heavy property damages every year in the mountain-
ous region around the globe [2, 3]. The major trigger-
ing factors of landslides include earthquake, rainfall, 
storms, mining activities, and deforestation [4–6]. Every 
year thousands of people lost their lives, and about 4 
billion dollars property damage occurs globally due to 
landslide [7, 8]. It is the third most devastating natural 
hazard in terms of damages after earthquake and flood 
[9]; however, individual landslide is not so obvious and 
devastating as an event of earthquake and flood [10]. 
Identification of the factors responsible for existing land-
slides is the initial step toward the prediction of future 
landslides by analyzing the most influencing factors, and 
the processes are known as landslide susceptibility map-
ping studied by various researchers around the globe 
[11]. Landslide is a natural phenomenon that cannot be 
completely stopped, but its associated risk can be mini-
mized. Landslide susceptibility modeling identifies the 
vulnerable areas and its relationship with various influ-
encing factors. Globally, it is a widely studied phenom-
enon and various quantitative and qualitative methods 
have been developed for landslide susceptibility mod-
eling [10, 12]. The qualitative method helps to rank the 
conditioning factors based on the precedence scale, 
whereas the quantitative methods highly depend upon 
the relationship between conditioning factors and land-
slide inventory to classify the area into different land-
slide susceptible zones [13]. The researchers have used 
various models for landslide susceptibility mapping, i.e., 
analytical hierarchy process [14, 15], frequency ratio [8, 
16, 17], information value [18, 19], weight of evidence 
[20, 21], and many other machine learning methods for 
landslide susceptibility assessment. In this study, three 
models IFV, WOE, and FR have been used as these three 
models are widely used in landslide studies across the 
globe and have been found most significant in land-
slide assessment in different mountainous regions of 
the world. The geographical information technology 
like GIS and remote sensing is widely used in the cur-
rent century for such location-based issues like landslide 
hazard assessment [22]. In the past two decades, there 
has been an incredible transformation occurred in these 
technologies [23]. DEM is processed in GIS environment 
for the extraction of various thematic layers contribut-
ing toward the hazard assessment, i.e., elevation, slope, 

aspect, curvature, topographic wetness index, and 
stream power index [24].

In the study area, rainfall and landslides have a direct 
relationship [25–27] and that is why in May 2006, heavy 
rainfall triggered a devastating landslide in Mae Phun, 
Thailand [28, 29], that caused 17 human losses and dam-
aged 169 houses [29]. The main aim of this study is to com-
pare three bivariate quantitative models, i.e., frequency 
ratio, information value, and weight of evidence model, 
and to suggest the most significant model for landslide 
susceptibility mapping in the study area.

Many studies have been conducted on landslides 
assessment and its effects in different parts of Thailand 
[30–34], although there is no such detailed study con-
ducted on landslide for the given study area as well as in 
those studied they did not used that much detailed influ-
encing factors for landslide modeling, which make this 
research different from the previous ones. For landslide 
prediction, it is assumed that the conditioning factors that 
caused landslide in past are responsible for initiation of 
landslide in future [7, 10].

2  Materials and methods

2.1  Study area

The study area is Mae Phun a sub-district of Laplae Dis-
trict, Uttaradit Province, that covers an area of 131 square 
kilometers. Elevation of the area varies from 100 to 853 m 
above mean sea level (Fig. 1). Slope gradient in the study 
area ranges from 0° to 69°. The area is located near the 
upstream of Nan river basin [28]. Most of the study area 
is covered with hillside and steep, narrow plain in valley 
groove [35] The study area has tropical savanna type of cli-
mate, mean annual rainfall is 1506 mm, and mean annual 
humidity is 73% (1971–2010). In the months of May to 
October, monsoon brings heavy rainfall. Winter is dry and 
warm with an average maximum daily temperature 38.2° 
centigrade, and it rises in the month of April. The lithology 
of the study area consists of shale and siltstone in moun-
tainous regions; however, alluvial deposits are present 
in the southern plain areas. Soil texture in the study area 
consists of mudstone, shale, and chest [28, 35]. Land cover 
in the study area consists of residential area, rural commu-
nity, lowland paddy field, mountainous mixed deciduous 
upstream forest, and mixed fruit tree orchard in lowland 
areas [28].

2.2  Methodology

Landslide susceptibility analysis has four major steps: (1) 
collection and integration of data in spatial database, (2) 
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landslide susceptibility assessment using relationship of 
conditioning factors and landslide inventory, (3) valida-
tion of the results, and (4) comparison and interpretation 
of the results [36]. Figure 2 shows the detailed road map 
of this study.

2.3  Landslide inventory map

Mapping of past landslide area is an essential part of 
landslide susceptibility mapping [37]. In landslide 
inventory mapping, the information on past landslides 
location, type, time, depth of the landslides, etc., is col-
lected [38]. Locations of past landslide were mapped 

Fig. 1  Location map of the 
study area and landslide inven-
tory

Fig. 2  Flowchart of research
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on SPOT-5 image and then validated with field visits 
eventually, and 677 landslide locations were identified. 
Landslide inventory was drawn as a polygon layer in 
ArcGIS and then rasterized with 5 m × 5 m spatial reso-
lution. Identified landslides cover an area of 4.25 km2, 
which accounts 3.24% of the total study area. Landslide 
inventory data were randomly split into training and 
validation landslides as it is widely used percentages in 
the literature [39]; out of total, 473 (70%) were selected 
as training landslides (with an area of 2.68 km2 account-
ing 2.04% of the total study area) to construct landslide 
susceptibility map, and the remaining 204 (30%) were 
used for validation of the applied models.

2.4  Landslide influencing parameters

Accuracy of the susceptibility map depends on the 
selection of the conditioning factors and assessment 
methodology [37, 40]. Although no specific guideline 
exists for the selection of the landslide conditioning 
factors [41], its selection depends on the nature of the 
study area and availability of data [42]. For this research, 
a thorough field study was carried out on the basis of 
field investigations, and literature reviewed helped to 
choose these 11 conditioning factors, i.e., elevation, 
slope, slope aspect, curvature, profile curvature, plan 
curvature, stream power index (SPI), topographic wet-
ness index (TWI), land use/land cover, proximity to 
streams, and proximity to roads. Study area is affected 
by rainfall-triggered landslide that is why rainfall is con-
sidered as a triggering factor.

2.4.1  Land use/land cover

Many studies have shown strong relationship of land use 
with the occurrence of landslide [43–45], as barren land 
contributes more to landslide occurrence as compared to 
vegetative areas. The vegetative land reduces the impact 
of climate, and the roots bound the soil [18]. Deforesta-
tion, agricultural activities on slope, and construction of 
road network mostly disturb the slope stability and make 
it more susceptible to landslides [8, 46]. Clear-cutting of 
coppice for agricultural, buildings, or road development 
increases the risk of both landslides and floods [47]. Land 
use/land cover data were acquired from Land Develop-
ment Department, Bangkok (Fig. 3). 

2.4.2  Proximity to streams

It is a significant parameter for slope stability studies, and 
it can adversely affect the slope by vertical and lateral ero-
sion and thus reduce the shear resistance [48, 49].

2.4.3  Proximity to roads

Roads are human-induced parameter which can cause 
landslide [41]. Extensive digging, extraneous loads, and 
deforestation are mostly observed near the road network, 
and all these support slope failure [1].

2.4.4  Rainfall

Rainfall is an extrinsic variable widely used in susceptibil-
ity analysis, and its spatial distribution of annual rainfall 

Fig. 3  a Land use/land cover, b proximity to streams, c proximity to roads
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is commonly considered in statistical hazard analysis [50, 
51]. In study area, landslide was triggered by heavy rain-
fall. Therefore, annual rainfall data of eight stations around 
the study area were used to prepare rainfall intensity map. 
Rainfall data were obtained from Thai Meteorological 
Department, Thailand. Rainfall intensity map was obtained 
by applying IDW technique (Fig. 4i). About 50% study area 
was dominated by two rainfall classes, i.e., 995.9–1037.8 
and 1037.9–1068.6 mm/year.

2.4.5  DEM‑derived conditioning factors

Digital elevation model data of the study area were down-
loaded from (Advanced Space borne Thermal Emission 
and Reflection Radiometer). All topographical param-
eters, i.e., elevation, slope gradient, slope aspect, slope 
curvature, plan and profile curvature, TWI, and SPI were 
extracted from DEM.

2.4.6  Elevation

It is considered as one of the important contributing fac-
tors in landslide occurrence [41, 52, 53]. It is an evident fact 
that the temperature decreases with elevation, while rain-
fall increases with increase in elevation. The high amount 
of rainfall on fragile slopes leads to landslide occurrence 
[44].

2.4.7  Slope gradient

It is another most widely used conditioning factor in land-
slide studies [3, 19, 41, 44], as it has a direct relationship 
with the occurrence of landsliding.

2.4.8  Slope aspect

It has relation with sunlight exposure, winds, soil moisture 
content on a slope, and these factors indirectly cause land-
slide occurrence [3, 10].

2.4.9  Slope curvature

It is an important geomorphic index of topographic fea-
ture, defined as the rate of change of slope in certain direc-
tion. It adversely affects the surface erosion by converging 
and diverging the runoff down the slope [54–56]. It has 
two utmost values: Positive values indicate the surface 
is convex in upward direction at certain location, while 
negative values specify that surface is concave in upward 
direction. Higher the negative value increase, the more 
the probability of landslide occurrence; on the contrary, 
comparatively flat area is less exposed to landslide. Slope 
with concave surface will tend to hold more rainfall water; 

thus, it has more time for water infiltration into slope and 
thus increases the probability of landslide occurrence, but 
the case is opposite for convex slope [55].

The combination of plan and profile curvature along 
with curvature is taken into consideration so that slope 
morphology and flow can be better assessed.

2.4.10  Stream power index

SPI measures the erosive power of stream, and it is con-
sidered as a significant contributing factor that can con-
trol the slope stability in the certain area [57]. Higher SPI 
values indicate steep, straight, scoured reaches, and bed-
rocks; however, lower values represent broad alluvial flats, 
floodplains, and slowly subsiding areas, where the valley 
fill is mostly intact and deepening [58].

where “As” is the catchment area and β is the slope gradi-
ent in degrees.

2.4.11  Topographic wetness index

TWI is used to quantify the topographic control on hydro-
logical process. TWI can measure the degree of accumu-
lation of water at a site. TWI and landslide have a direct 
relationship if the value of TWI increases the occurrence 
of landslide [59]. TWI was extracted from DEM, and the 
formula is given below.

where “As” is the catchment area and β is the slope angle 
in degrees.

2.5  Frequency ratio model (FR)

FR is a bivariate geo-statistical method to compute the 
probabilistic correlation between independent and 
dependent variables [60]. For landslide prediction, it is 
assumed that the conditioning factors that caused land-
slide in past may be responsible for initiation landslide in 
future [7, 10]. The main advantage of FR model is that it 
is very easy to use and obtain the results that are readily 
intelligible [1].

FR is based on the correlation of landslides and its con-
ditioning factors. FR is the ratio of the landslides to the 
total study area; in addition, it is also the ratio of landslide 
and non-landslide area for a given attribute/class of a 
parameter. Therefore, calculating FR values, the area ratio 
with landslide to non-landslide was computed for each 
class of each factor for the whole study area, and then, 
area ratio of each class of each factor to the whole study 

(1)SPI = As × tan �

(2)TWI = ln (As∕ tan �)



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:384 | https://doi.org/10.1007/s42452-020-2106-8

Fig. 4  a Elevation, b slope gradient, c slope aspect, d slope curvature, e plan curvature, f profile curvature, g stream power index, h topo-
graphic wetness index, i) rainfall intensity
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area was calculated. Hence, FR value of each class type was 
obtained by dividing the ratio of landslide to the ratio of 
study area [1, 7, 21].

where Npix(Li) is the landslide pixels in class i, whereas Npix(Ci) 
is the number of pixels in class i, 

∑
Npix(Li) is the total num-

ber of landslide pixels, and 
∑

Npix(Ci) is the total number of 
pixels in the study area.

To produce landslide susceptibility index (LSI), FR val-
ues of all the factors were summed up using Eq. 2. LSI 
map was classified into various classes based on landslide 
susceptibility.

where LSI is the landslide susceptibility index; “Fr” is fre-
quency ratio value of each conditioning factor, and “n” is 
the total number of factors used. The FR value of 1 (one) 
is normal; if the FR value is superior than 1(one), it means 
that the factor has high correlation with landslide and vice 
versa [1, 44].

2.6  Information value method (IFV)

The information value model was first developed by Yin 
and Yan [61] and later on modified by Van Westen [62]. 
This model is based on Bayesian algorithm [63]. It is a 
useful approach for landslide susceptibility mapping by 
determining the impact of parameters on landslide occur-
rence in the study area [64]. It can be used to estimate the 
information value for each class of a parameter by dividing 
the landslide density in each class to the total landslide 
density in the target area [62]. The main aim of the natural 
logarithm is to take into the consideration of large varia-
tion in the information values, and if the landslide density 
is lower than normal, it gives negative weights; on the con-
trary, it gives positive weights when the density of land-
slide is higher than average [65].

where IFV is the information value of each conditioning 
factor. Positive values of Li specify the relevant correla-
tion of landslide incidence and its related conditioning 
factor; the higher the score is, the more stronger will be 
the relationship, and negative value indicates the inverse 
correlation of landslide and certain inducing factors [61]. 
Using Eq. 5, weight values for each class of the influenc-
ing parameter were calculated and landslide susceptibility 

(3)FR =
Npix(Li)∕Npix(Ci)∑
Npix(Li)∕

∑
Npix(Ci)

(4)LSI =
∑

(Fr1 + Fr2 + Fr3… Frn)

(5)IFV = ln

�
Densclass

Densmap

�
= ln

Npix(Li)∕Npix(Ci)∑n

i=1
Npix(L)∕Npix(C)

index (LSI) was prepared by summing up all the weight 
values of each factor using Eq. 4.

where n is the number of influencing factors used, and IFV 
is the information value of each conditioning factor.

2.7  Weight of evidence (WOE)

WOE uses Naïve Bayesian approach to estimate the compar-
ative significance by means of statistical values [32]. Initially, 
this method was used for identification of minerals [66] and 
later on used for landslide susceptibility assessment by many 
researchers [21, 50, 51].

Detailed mathematical formulation of WOE approach is 
given in [66], and weights of each landslide conditioning fac-
tor were calculated on the basis of the absence or presence 
of landslide in each class of conditioning factor.

In this approach, weights were computed for all the influ-
encing parameters (B) and its relationship with the absence 
or presence of landslide (A) within the study area [66].

where P is the probability, log is the natural logarithm, B 
is the presence of desired class of landslide conditioning 
factor, B̄ is the absence of desired class of landslide condi-
tioning factor, and A is the presence and Ā is the absence 
of landslides. Positive (W +) indicates the positive relation-
ship between the presence of landslide and given class of 
a conditioning factor and vice versa. Eventually, the dif-
ference between two weights is calculated using Eq. 10 
which is known as the contrast weight. Based on contrast 
values, the spatial correlation of landslide and its influenc-
ing parameters can be described [21, 66].

where  (LSin%) and  (nonLSin%) are the percentages of the 
presence and absence of landslide pixels in the given class 

(6)LSI =

n∑
i=1

IFV

(7)P

�
A

B

�
= P

⎛
⎜⎜⎜⎝

�
B

A

�
× P(A)

P(B)

⎞
⎟⎟⎟⎠

P(A)

P(B)

(8)W+ = log

[
P{B∕A}

P{B∕A−}

]

(9)W− = log

[
P{B−∕A}

P{B−∕A−}

]

(10)W+ = log[
(
LSin%

)
∕
(
nonLSin%

)

(11)W− = log[
(
LSout%

)
∕
(
nonLSout%

)
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of a parameter, respectively, and  (LSout%) and  (nonLSout%) 
are the percentages of landslide and non-landslide pixels 
out of the desired class.

Value of ‘C’ ranges from 0 to 2, whenever the value of 
‘C’ tends to zero in any parameter, meaning that it does 
not have any impact on the distribution of landslide in 
the area; on the other hand, if the value is 2 or more, the 
relationship between the parameter and landslide is very 
strong.

3  Results and discussion

The landslide susceptibility maps were produced with 
three bivariate quantitative statistical models using GIS-
based approach and compared with each other.

(12)W
c = W

+ − (W−)

3.1  Frequency ratio and landslide susceptibility

The resultant FR values of each thematic layer are given 
in Fig. 5. The slope aspect results show that the north-
east-, east-, southeast-, south-, and south-facing slopes 
have greater than 1 (one) frequency ratio value indicat-
ing high probability of landslide incidence in these classes 
of aspect map. Analyzing the relation of landslides with 
elevation, it was found that in the classes ranging from 
177 to 462 meters, the value of frequency ratio is higher 
than 1 (one) and the other classes have less than one FR 
value. All the classes in degree slope map show strong 
relationship with land sliding as the value of FR is higher 
than one in all the classes except 0°–2.94° class. FR values 
for land use/land cover are higher only in the class of forest 
cover (FR = 1.20). The relationship between landslide and 
roads shows that the FR value ranges from 1.40 to 1.58 in 
600–1500 m proximity to roads. The FR values for the rela-
tionship between streams and landslide are higher than 1 
at the buffer classes, ranging from 151 to 450 m from the 
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Fig. 5  Data used in the analysis and results obtained from frequency ratio, weight of evidence, and information value methods



Vol.:(0123456789)

SN Applied Sciences (2020) 2:384 | https://doi.org/10.1007/s42452-020-2106-8 Research Article

streams. FR values were high for the TWI classes 0–4.91 
and 4.92–7.22. The values of FR for SPI were 1.11–1.14 for 
the classes 1.90–3.23, 3.24–5.63, and 5.64–14.23, respec-
tively. Curvature values indicate the morphology of the 
topography; positive values show upward convex, and 
on the contrary, negative values are showing upwardly 
concave surfaces. In curvature, both the concave area 
and convex area have higher FR values (1.03–1.20) that 
indicate higher possibility of landslide occurrence for all 
types of curvature. Resultant LSI map was reclassified into 
five various susceptibility zones ranging from very high 
to very low, classified with natural break method (Fig. 6a).

3.2  Information value and landslide susceptibility

To analyze the role of each class of a particular conditional 
parameter, the information value method was applied and 
the resultant weight was calculated (Fig. 5). Land use/land 
cover maps show that three-fourth of landslides occurred 
in the classes of forest and urban land having information 
value of 0.078 and 0.097, respectively, and agriculture land 
has lowest impact on landslide incidence (−0.222 informa-
tion value). Slope is a significant and most widely used 
influencing factor and has been used by many researchers 
in landslide studies. It has a direct relationship with land-
slide, and analyzing the slope and landslide occurrence, 
the result shows that high landslide occurrence ranges 
from 2.95° to 68.19° slope classes, while the information 
value was minimum (−0.173) for the class of 0°–2.94° 

slope. The result of information values for elevation and 
aspect ranges from −0.387 to 0.188 and −0.173 to 0.128, 
respectively, with approximately 79% of landslide area 
in the range of 177 m–462 m of elevation classes, and 
around 77% of landslide area is in the categories of NE-, 
E-, SE-, S-, SW-, and W-facing slopes of aspect parameter. 
As for TWI parameter, two-third of (76.52%) of the land-
slide incidences was found within the classes of 0–4.91 
and 4.92–7.22, respectively. The concave and convex slope 
categories of curvature, profile, and plan curvature param-
eters have the highest information value, and the landslide 
area occupied by these categories is 56.54%, 61.74%, and 
42.30%, respectively. As for distance from roads, highest 
information values were found within 600–1500 m around 
the road with information values ranging from 0.147 to 
0.198. Distance from streams gives highest information 
value of 0.076 for the distance between 300 and 600 m 
followed by the class of 150–300 m with information value 
of 0.067.

LSI obtained from information value method was 
divided into five susceptibility zones and is shown in 
Fig. 6b.

3.3  Weight of evidence and landslide susceptibility

The positive and negative weights along with contrast val-
ues for each class of conditioning parameters are given in 
Fig. 5. The elevation class below 176 m and above 462 m 

Fig. 6  Landslide susceptibility maps, a frequency ratio, b information value, c weight of evidence
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showed higher correlation with landslide occurrence as 
the Wc value was found high.

Slope degree shows high tendency toward occurrence 
of landslides, as it is clear from the results of weight of 
evidence that all slope classes have higher contrast value 
except 0°–2.94°; as the slope gradient increases shear 
stress in soil, other materials also increase. As far as slope 
aspect is concerned, many landslides occurred on NE-, E-, 
SE-, S-, and SW-facing slopes with landslide area of 13.34, 
16.84, 11.91, 12.06, and 13.11%, respectively. Results for 
land use/land cover map revealed that forest group has 
the highest Wc value of 0.71 with landslide area of 83.08%. 
In case of distance from the streams, the classes 151–300 
and 301–450 m have positive correlation with landslide 
with values of Wc 0.20 and 0.19, respectively. Though, dis-
tance from the roads showed that the classes 601–900, 
901–1200, and 1201–1500 meters has higher relationship 
with landslides, and area of landslide and contrast (C) val-
ues are 22.21%, 0.53, 15.54%, 0.42, and 11.42, 0.35, respec-
tively. From these observations, it is elucidated that road 
construction is the most significant factor in slope failure. 
In TWI, classes 0–4.91 and 4.92–7.22 have the contrast 
value of 0.17 and 0.10, respectively, with landslide area 
of 32.74% and 43.78%, respectively, but in SPI, classes of 
0.67–1.89, 1.90–3.23, 3.24–5.63, and 5.64–14.23 have the 
highest probability of landslide. Upwardly, concave and 
convex slope of curvature, plan, and profile curvature has 
positive relationship with landslides.

LSI map obtained from WOE model was classified into 
five susceptibility zones and is shown in Fig. 6c.

3.4  Validation of the models

All the three models were validated using prediction rate 
curves and success rate curves. Area under curve signifies 
the reliability of the model to predict the landslide events 
[67].

The validation landslides (30% of the total landslides) 
were used for predication curve, to predict the future 
landslides based on the present ones. The prediction rate 
curves were produced, and the area under curve (AUC) 
was obtained by plotting the landslides cumulative per-
centage area on y-axis against the cumulative percentage 
of landslide susceptibility area on x-axis. Success rate curve 
and prediction rate curve explain how well the model per-
formed with the causative factor to predict landslides in 
future based on past landslides.

For success rate and predication rate curve calculation, 
landslide susceptibility index (LSI) values were divided 
into 100 equal classes which were sorted into descending 
order from very high to very low susceptibility classes. The 
validation and training landslide events were draped on 

it, and the area under curve was calculated using zonal 
statistics tool in ArcGIS.

Results were obtained for success rate curve by relating 
the training landslides with landslide susceptibility index 
(Fig. 8). The success of the models showed the area under 
curve (AUC) 74.60%, 75.04%, and 72.54% for FR, IFV, and 
WOE, respectively.

Area under curve (AUC) value for the prediction rate 
curves of FR, IFV, and WOE was found 80.58%, 72.80%, and 
72.33%, respectively (Fig. 7a). Thus, the AUC value for fre-
quency ratio showed the highest accuracy in prediction 
rate curve, as compared to information value and weight 
of evidence. However, in success rate curve, almost all 
models showed the same accuracy. Frequency ratio and 
information value method showed almost same accuracy 
for success rate curve, but in prediction rate curve, the 
information value has better accuracy than frequency ratio 
for landslide susceptibility mapping in the study area. In 
this study, WOE model appears to be most reliable, since it 
corresponds close to the prediction of landslide potential 
in the study area.

3.4.1  Landslide density

An additional, landslide density test was also performed 
for consistency and quality of the landslide susceptibil-
ity models. Landslide density method was carried out on 
landslide susceptibility zones and validation landslide 
events. Landslide pixels were overlaid on susceptibility 
zones, and the density was estimated for landslide sus-
ceptibility zones. Landslide density values should increase 
with increase in susceptibility class [39]. In Fig. 7b–d, the 
bar graph shows the increasing trend of landslides with 
increment in susceptibility zones from very low to very 
high. Density of landslides slowly decreased from very 
high to very low landslide susceptibility zones. More than 
two-third of the landslides fall in high and very high sus-
ceptibility classes of all the models.

3.4.2  Seed cell index area (SCAI)

Seed cell area index (SCAI) used to test the accuracy of 
landslide susceptibility maps produced from FR, IFV, and 
WOE. SCAI was used on the classified landslide susceptibil-
ity maps and training landslides [68].

It was assumed that the percentage of SCAI would be 
inversely proportional to the percentage of susceptibil-
ity zones [68]. Outcomes of SCAI obtained for all three 
approaches are shown in Table 1.

SCAI =
Landslide susceptibility zone (%)

Landslides in each susceptibility zone (%)
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3.5  Discussion

Figure 6a–c shows the landslide susceptibility maps gen-
erated using FR, IFV, and WOE models, respectively, and 
the relative significance of all influencing factors was 
evaluated with the occurrence of past landslides and is 
presented in Fig. 5. In this study, slope angle, elevation, 
land use/land cover, and roads have high FR, IFV, and Wc, 
and these factors are considered to be the most significant 
influencing factors for the occurrence of landslide in the 
study area which is in agreement with the results obtained 
by Ozdemir and Altural [21] comparing different models 
for landslide mapping.

In this study, forest land class from land cover factor 
has higher Wc, FR, and information value with 0.71, 1.20, 
and 0.078, respectively, and lower in urban and agriculture 
land. The observation is in contrast to most of the studies 
because the forest areas may be more stable. Various stud-
ies explained that barren land is more exposed to landslide 
occurrence due to the direct exposure of climatic factors 
like, rain, snow, and sun rays [19, 69]; though the case is 
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Table 1  Landslide distribution in landslide susceptibility zones 
using SCAI

Methods Landslide 
susceptibility 
zones

% of each zone % of land-
slides in each 
zone

SCAI

FR Very low 20.06 6.56 2.23
Low 20.12 12.88 1.13
Moderate 20.11 16.48 1.36
High 20.19 25.60 0.79
Very high 19.50 38.45 0.59

IFV Very low 4.72 0.80 3.13
Low 19.56 7.77 1.87
Moderate 24.54 18.12 1.27
High 24.67 24.69 1.10
Very high 26.49 48.59 0.57

WOE Very low 6.99 1.19 2.22
Low 17.30 7.977 1.66
Moderate 27.55 20.16 1.25
High 29.21 35.37 0.88
Very high 18.92 35.29 0.61
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opposite here, same results have also found in other stud-
ies [19, 21, 32, 70]. There could be many reasons behind it, 
but keeping the condition of the study area in mind, three 
reasons were found: (1) vegetation cover considered as a 
significant influencing factor in rainfall-induced landslides 
[71] and landslides in Thailand triggered due to intensive 
rainfall [26, 27], (2) the diverse root system of the trees 
at steep slopes, and (3) weight of the trees and unfavora-
ble wind forces sometimes making the slopes suscepti-
ble [72]. The close relationship was found with distance 
from streams and roads with occurrence of landslides, dis-
tance from streams increases the occurrence of landslides 
decreases and fact found by Yalcin et al. [73] and Ozdemir 
and Altural [21]; though in roads, the maximum occur-
rence of landslides is found between 600 and 1500 m, it 
is because of the natural landslides at higher slopes and 
elevation. Road cuts are mostly human-induced instabil-
ity [41].

Similarly, streams can adversely disturb the slope stabil-
ity by lateral and vertical erosion. Most of the landslides 
were found in the distance less than 450 m around the 
streams, and it can be presumed that occurrence of land-
slide is higher in the vicinity of streams. The slope angle 
between 2.95° and 68.19° has high tendency to landslide 
occurrence, and it means that the slope angle increases 
shear stress in soil as well as in other materials. Flat or gen-
tle slope is less exposed to landslides hazard due to less 
shear stress associated with the material. The relationship 
between landslide and slope angle results of this study is 
in contrast to some previous studies (i.e., [21, 70]) and has 
consistency with other studies which also elucidated that 
the occurrence of landslide increases with the increase 
in angle of slope gradient [20, 50, 51]. Elevation ranging 
from 177 to 462 m above mean sea level has high trend of 
landslides, while lower LS trend has found for the elevation 
ranging from 100–176 to 463–851 m. Occurrence of land-
slide probability increases with increase in altitude as land-
slides occur on high slopes. East facing slopes have the 
higher FR, Wc, and IFV value as compared to other direc-
tions and are more susceptible toward landslide (Fig. 5).

To validate the applied models for landslide, mapping 
success rate curve and prediction rate curve has been 
applied in this study using the training landslides. The 
results of success rate curve for FR, IFV, and WOE were 
74.60%, 75.04%, and 72.54%, respectively (Fig. 8), while the 
results of prediction rate for FR, IFV, and WOE were 80.78%, 
72.80%, and 72.33%, respectively (Fig. 7a). The accuracy of 
the applied landslide models was further analyzed using 
the SCAI technique, and a high number of landslides were 
found in the higher susceptible zones. Thus, the calculated 
and classified landslide susceptibility maps are in good 
agreement. Frequency ratio method showed the high-
est accuracy in prediction rate curve, but in success rate 

curve, the area under curve for all the models was found 
the same (Fig. 7b–d and Table 1).

The prediction accuracy obtained for frequency ratio 
in this study is comparable to previous studies [1, 17]. 
The results of information value method of this study are 
slightly less than Sarkar et al’s. [19] and Chen et al’s. [67] 
study, while it is comparable to Achour et al. [18]. The pre-
diction accuracy for weight of evidence obtained in this 
study is less than Mathew et al. [20], while it is comparable 
with the results obtained by Pourghasemi et al. [39]. It is 
clear from Figs. 7a and 8 that the frequency ratio showed 
best accuracy in prediction (80.78%) and in success rate 
curve (74.60%) followed by IFV and WOE.

4  Conclusion

Studies in the past have applied these landslide suscep-
tibility methods, i.e., FR, IR, and WOE, but there lacks an 
evidence of comparison for selection of most appropri-
ate and accurate technique for the aforementioned study 
area. Therefore, this study not only utilizes these bivariate 
approaches but also provides a comparative analysis tak-
ing into consideration various influencing factors. Eventu-
ally, the results obtained were evaluated via AUC by taking 
landslide locations in consideration. The accuracy of the 
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maps was 80.78%, 72.80, and 72.33% for FR, IFV, and WOE, 
respectively. Upon comparison and evaluation of predic-
tion accuracy among the used quantitative approaches, 
it was revealed that FR method was highly reliable and 
accurate. FR method was able to predict almost 80% of 
the observed landslides as very high, high, and moderate 
landslide classes. Our results provided the basis to con-
clude WOE as a complicated method for applying to LS 
mapping. Several contributing factors for slope failure in 
Mae Phun include slope gradient, elevation, proximity to 
roads, and land use/land cover. Conclusively, we ascertain 
FR method to be most accurate, simple, easy, and intel-
ligible method to be used for LS mapping.

Natural and sometimes human-induced disaster cannot 
be completely eliminated, but the aftermath can be mini-
mized by proper planning and management. In the study 
area, there is no meteorological station, and it is suggested 
that meteorological stations should be installed because 
landslides in the study area are always associated with 
rainfall. So, the precipitation is necessary to be integrated 
with other influencing factors for more accurate results. 
Indeed, a real-time monitoring module would be more 
useful for the line department, end-users, and decision 
makers for a timely emergency response. Landslide sus-
ceptibility maps are useful for urban planners and engi-
neers for better development. It can help land use plan-
ners with better decision making.
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