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Abstract
In the present study, the flocculating viability of bio-based alkali derived from cocoa pod husk ash was investigated by 
using a D-optimal design of the response surface methodology (RSM). The interactive effects of biomass concentration 
and flocculant dose on flocculation efficiency and concentration factors were examined. The generalization ability of 
modeling and predictive tools such as RSM and artificial neural network (ANN) was also examined. Moreso, the floccula-
tion process was optimized using RSM and response surface methodology coupled with genetic algorithm (RSM-GA). 
The flocculation process results showed that the bio-based alkali effectively flocculated microalgae with more than 90% 
flocculation efficiency at the optimum condition predicted by RSM and RSM-GA. Both RSM and ANN have described the 
flocculation process with high accuracy, based on the values of statistical indices evaluated but ANN has demonstrated 
a higher generalization potential as compared to RSM. The results of elemental analysis of the bio-based alkali shown 
that the concentration of  K+ (51,489 ppm) was highest, followed by  Ca2+ (1450 ppm) and  Na+ (210 ppm). This undoubt-
edly showed the alkaline nature of the bio-based alkali obtained from cocoa pod husk ash that was employed as the 
flocculant for harvesting microalgae. This study confirms that ash derived alkali can be used to effectively and efficiently 
harvest microalgae.

Keywords Multi-objective optimization · Bio-based alkali · Response surface methodology · Genetic algorithm · 
Artificial neural network · Alkaline flocculation

1 Introduction

Despite the advantages associated with microalgae-based 
biofuels, its commercialization remains a challenge due 
to high energy input requirements in certain key process-
ing steps, like microalgae biomass harvesting. Low bio-
mass concentration in growth media, and the small size 
of microalgae coupled with their negative surface charge, 
are some of the features that make microalgae harvesting 
difficult and energy intensive. Centrifugation can also be 
a costly steps [1, 2]. Therefore, the economic feasibility of 

microalgae biomass production is limited to high-value 
products like dietary supplements [3]. The quest for sus-
tainable and effective microalgae harvesting for products 
such as biofuels is critical in order to make microalgae an 
extensively used resources [1].

Flocculation is considered the most convenient micro-
algae biomass recovery technique [4]. Traditionally, floc-
culation is generally induced by the addition of chemi-
cal flocculants such as metallic hydroxides and synthetic 
polymers, which aggregate and settle the algal cells, 
thus concentrating the microalgae suspension for easy 
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separation [5]. Microalgae flocculation methods that 
have been evaluated include chemical, electric field, and 
autoflocculation [6]. Autoflocculation, otherwise known 
as alkaline flocculation, can be induced by an increase in 
pH either via inorganic carbon consumption by photosyn-
thetic microalgae or by the addition of alkali compounds 
[7]. Wu et al. [8] successfully flocculated different freshwa-
ter and marine microalgae species by increasing the pH of 
the microalgae suspensions using sodium hydroxide. The 
authors reported more than 90% flocculation efficiency 
for all species and recommended possible reuse of the 
culture medium after neutralizing the pH. The application 
of commercial metallic hydroxides to induce flocculation 
are well documented, but there are no reports on the use 
of inexpensive and sustainable ash-derived alkalis from 
solid agricultural wastes like cocoa pod husk. Although the 
ash derived from these bio-resources has been employed 
in transesterification of neem seed oil [9, 10], it has yet 
to be applied for recovery of microalgae from suspen-
sion. Hence, this work aims at investigating the poten-
tial of cocoa pod ash-derived alkalis (CPADA) to induce 
flocculation.

The study of microalgae flocculation modeling and 
parameter optimization via design of experiment (DoE) 
has been scarcely reported. The need for modeling and 
optimization of the microalgae flocculation process 
becomes necessary to save time in microalgae harvesting, 
cut costs, and above all, improve harvesting efficiency. In 
microalgae harvesting, there are few reports on the appli-
cation of statistical mathematical modeling and optimi-
zation techniques like response surface methodology 
(RSM) [11, 12], while none are observed on the use of the 
non-statistical models based on artificial intelligence like 
artificial neural networks (ANNs) and genetic algorithms 
(GA). RSM is a statistical and mathematical tool that is suit-
able to develop, improve and optimize processes in which 
the output of interest is influenced by several parameters 
[13]. It is an empirical-based modeling technique in which 
one or more dependent factors are related to independent 
variables, and its uniqueness lies in the fact that statistical 
indicators on individual model terms and their interactions 
are calculated [14]. ANNs are described as a computational 
technique that mimics the way the human brain processes 
information [14, 15]. ANNs have received increased appli-
cations in various fields of research, such as engineering, 
agriculture, energy, vehicle fuel consumption [16] and oil 
and gas [17]. This owes to its ease of use, and more accu-
rate prediction of complex and non-linear systems with 
large inputs [15, 18]. The predictive ability of both RSM and 
ANNs have been evaluated [14, 19–23], with the later giv-
ing better predictions. GA is an optimization solver, based 
on natural selection and biological evolution mechanisms 
such as mutation, selection, inheritance and crossover 

[24]. Recently, the application of GA in areas of bioenergy 
engineering, solar systems [25], computational science, 
chemistry, economics, mathematics, bioinformatics [24], 
composite materials [26, 27], and thermal engineering [26, 
28] are gaining more attention.

The present study aimed at evaluating the microalgae 
flocculating potential of bio-based derived alkali from 
cocoa pod husk wastes. The D-optimal design of the DoE 
was employed to study the influence of biomass concen-
tration and flocculant dose with their interactions on the 
flocculation of microalgae from culture broth. The mod-
eling and predictive capability of both RSM and ANN were 
assessed. A multiple-objective optimization of the floccu-
lation process variables, biomass concentration, and floc-
culant dose were carried out using RSM and RSM-GA (RSM 
coupled with GA), with views to examine the trade-offs 
between the objectives.

2  Materials and methods

2.1  Materials

The waste cocoa pod husks employed for this work were 
obtained from a cocoa plantation in, Oyo state, Nigeria. 
Thermolyne benchtop muffle furnace was used for calci-
nating the cocoa pod husk. All chemical reagents used are 
of analytical grade purchased from Fisher Scientific Inter-
national, Inc. (Hampton, New Hampshire, USA) and VWR 
International Inc. (Radnor, Pennsylvania, USA) The microal-
gae species (Nannochloropsis oculata and Dunaliella salina) 
used were purchased from UTEX Culture Collection of 
Algae at The University of Texas at Austin, USA.

2.2  Culturing of microalgae

The N. oculata, and D. salina were cultured in Artificial 
Seawater and 2X Erdschreiber’s media, respectively. 
These are prepared using deionized water and synthetic 
seawater. 1.5-l photobioreactors provided with magnetic 
stirrer were used for culturing both species for 21 days at 
room temperature. Air was sparged at 0.02 vvm with 2% 
 CO2 sparging rate, and light was supplied using daylight 
florescent tubes at 3500 lx with 12:12 h light cycle. The 
microalgae biomass concentrations (dry weight) were 
evaluated using gravimetry method: 20 ml of microalgae 
broth was vacuum filtered using a pre-weighed mem-
brane filter with pore size 0.2 µm and diameter of 47 mm. 
Then it was rinsed with deionized water and the filtered 
biomass sample was dried at 80 °C in an oven overnight. 
Thereafter, it was cooled in a desiccator and weighed to 
calculate the dry weight in 20 ml of broth. This deter-
mination was performed in duplicate. The flocculation 
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experiment was conducted at 21 days of culturing with 
microalgae biomass concentration of 816 and 825 mg/l 
for N. oculata, and D. salina, respectively.

2.3  Preparation of CPADA

The cocoa pod husks were washed several times using 
deionized water. The cocoa pod husks were cut into 
smaller pieces and sun dried to constant weight. The 
grain sizes of the dried cocoa pod husks were further 
reduced by grinding and subsequently put in a crucible 
and calcinated in a muffle furnace at 540 °C for 5 h. Three 
different concentrations of ash extracts were prepared 
by adding 9, 12 and 15 g of the calcinated sample in 
120 ml of deionized water in conical flasks. The mixtures 
were covered to prevent contamination and allowed to 
sit for 48 h for maximum extraction. Thereafter, the mix-
tures were filtered with Whatman filter papers to remove 
the remaining solids. The pH of the filtrates was meas-
ured using an Orion Star A211 pH meter, and the filtrate 
with the highest pH was chosen for the flocculation 
experiment. Also, the filtrate and the cocoa pod husk 
ash were characterized as described below.

2.4  Characterization of CPADA and the ash

The ash and the filtrate, CPADA, obtained after 48  h 
extraction with deionized water, were analyzed for their 
elemental composition using scanning electron micro-
scope-energy-dispersive X-ray spectroscopy (SEM–EDS) 
and inductively coupled plasma mass spectrometry (ICP-
MS), respectively. The SEM–EDS values reported were 
obtained when the cocoa pod husk ash sample that was 
bombarded with 20 kV electrons from a Joel JSM 7500F 
field emission scanning electron microscope (equipped 
with a high brightness conical field emission, FE gun and 
a low aberration conical objective lens) at the Texas A&M 
University Materials Characterization Facility. Meanwhile, 
the characteristic x-rays were detected with an Oxford 
EDS system equipped with X-ray mapping and digital 
imaging. The elemental composition reported is taken 
as an average of two replicate data obtained at different 
sites on the sample microstructures given by the SEM.

The identification and quantification (concentration, 
ppm) of metallic content of the ash-filtrate, CPADA, 
was reported from the ICP-MS equipped with an SPS-3 
autosampler, a micro-concentric nebulizer, nickel cones 
and a peristaltic sample delivery pump. The sample was 
analyzed in duplicate using helium kinetic energy dis-
crimination (KED) mode and argon standard mode.

2.5  Physiochemical properties of CPADA extract

The pH of the filtrates was measured using an Orion Star 
A211 pH meter, and the filtrate with the highest pH was cho-
sen for the flocculation experiment. The conductivity of the 
filtrate sample was measured using an Oakton ecoTest con-
ductivity meter (EC1 0 µS to 20 mS) and the total dissolved 
solids was subsequently estimated based on conductivity 
value obtained. The concentration of the CPADA extract was 
estimated by titrating 10 mL of the extract against 1 N hydro-
chloric acid with the assumption that potassium hydroxide 
is the dominant alkali based on the EDS and ICP-MS results.

2.6  Experimental design for flocculation and RSM 
modeling

A three-level-two factor D-optimal design was employed in 
modeling the flocculation of microalgae, and sixteen experi-
mental conditions were generated for each of the two spe-
cies of microalgae. The Design-Expert 8.0.3 Trial software 
(Stat-Ease Inc., Minneapolis, MN) program was used for RSM 
modeling and optimization. The independent variables con-
sidered include biomass concentration  (X1) and flocculant 
dose  (X2), while the flocculation efficiency  (Y1) and concen-
tration factor  (Y2) were the dependent variables. Table 1 
illustrates the levels of process parameters studied in this 
work. In order to relate the response variables to the two 
independent variables employed, multiple regressions were 
used to fit the coefficient of the second order mathematical 
model of the responses. The goodness of fit of the model 
was evaluated by using a test of significance and an analysis 
of variance (ANOVA). Equation 1 presents the general form of 
the fitted second order mathematical response of the model.

Y is the predicted response (flocculation efficiency or con-
centration factor), �0 is the intercept, �i , �ii , ∝ij (i = 1, 2, … , 

(1)Y = α0 +

n
∑

i=1

αi Xi +

n
∑

i=1

αii X
2
i
+

n
∑

i<j

αij Xi Xj + ε

Table 1  The D-optimal design ranges and level of independent 
parameters studied with (a) D. salina and (b) N. oculata 

Factor Unit Factor level

− 1 0 + 1

(a)
 Biomass concentration,  X1 g/l 0.494 0.916 1.767
 Flocculant dose,  X2 % v/v 0.500 1.000 2.000

(b)
 Biomass concentration,  X1 g/l 0.210 0.420 1.080
 Flocculant dose,  X2 % v/v 0.500 1.000 2.000
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n) are the linear, second order and interaction coefficients 
respectively. � is the error term of the model.

2.7  ANN model development

In this case, the neural network toolbox of MATLAB 2018b 
was employed. In modeling the microalgae flocculation 
process, a feedforward, back-propagation multilayer per-
ception neural network was used. The ANN architecture 
employed in the training consisted of an input layer with 
two neurons (biomass concentration and flocculant dose), 
an output layer of a single neuron flocculation efficiency 
and concentration factor) and a hidden layer with default 
setting of ten neurons (Fig. 1). Meanwhile, the transfer 
function used for the input and output layers were hyper-
bolic tangent sigmoidal and pure linear, respectively. There 
were two data sets (flocculation experimental results for 
D. salina and N. oculata) in this study, and each data set 
had two response variables. The ANN training was done 
separately for each response variable using the same inde-
pendent variables. In each ANN training, the data set were 
divided using the default setting of training, validating and 
testing sets of 70%, 15% and 15% respectively. This was 
done with aim of evaluating the model ability to predict 
hidden data which were not employed for the training, 
thus assessing the generalization of ANN models [29]. ANN 
trainings were done until the lowest value of the mean 
square error was obtained, and the correlation coefficient 
was closer to 1.

2.8  Multi‑objective optimization by RSM and GA

The optimization of the two parameters investigated was 
carried out using the developed models. The optimiza-
tion algorithm of the RSM and the RSM-developed quad-
ratic model equations coupled with genetic algorithm 
(GA) were employed to optimize the response variables. 
In response surface optimization, the aim is to locate a 
desirable point within the design space, which can either 
be a maximum or a minimum [11]. To maximize the two 

response factors (flocculation efficiency and concentra-
tion factor) by RSM, the independent variables were set 
at the ranges of values investigated while the dependent 
factors were set at maximum.

In the GA optimization, the multi-objective optimiza-
tion technique was employed. Generally, in multi-objec-
tive optimization, the objectives are usually conflicting, 
thus intercepting simultaneous optimization of the indi-
vidual objectives [30]. Many real life problems are multi-
objective in nature; in solving such problems, a single 
best solution in respect to all objectives may not exist 
[27, 31]. Therefore, there may exist a set of best solu-
tions (pareto-optimal solutions), which are considered 
superior to the rest in the search space when all objec-
tives are taken into consideration, but at the same time 
inferior to other solutions in the space [31]. Usually, deci-
sion makers are interested in knowing the alternative 
solutions that exist for multi-objective problems, with a 
view to examine for trade-off. In view of these, the multi-
objective optimization of the GA was also employed in 
the flocculation process parameter optimization study. 
The developed RSM mathematical model equations 
were used as fitness functions for the GA optimization. 
A trial and error method were employed in selecting 
population type, creation function, crossover fraction, 
mutation function, crossover function and migration 
direction. The final GA parameters setting used for the 
optimization were population size (50), population type 
(double vector), creation function (uniform), crossover 
function (1.0), mutation function (uniform) and crosso-
ver function (scattered), and others are left at default 
settings. Meanwhile, the predictions from both optimi-
zation methods (RSM and RSM-GA) were validated by 
flocculation experiments performed in duplicate, and 
the average values obtained were compared with the 
predicted values. The Design Expert version 8.0.3 (Stat-
Ease Inc., Minneapolis, MN, USA) was employed in the 
study of flocculation of microalgae by RSM, and the GA 
optimization was done with GA tool kit in MATLAB 2018b 
(Mathworks Inc., Natick, MA, USA).

Fig. 1  Artificial neural network architecture topology
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2.9  Model evaluation

The models used for the prediction of flocculation process 
were evaluated using statistical indicators such as correla-
tion coefficient (R), coefficient of determination  (R2), and 
mean square error (MSE). These indices were calculated 
using Eqs. 2–4 [22]:

2.10  Flocculation experiment

The effects of flocculating parameters such as biomass 
concentration and CPADA dosage were investigated by 
analyzing the biomass recovery and concentration fac-
tor. About 20 ml of microalgae suspension was placed 
in a 50 ml beaker, and the prepared CPADA was added, 
depending on required dosage stated in the experimental 
design, while the mixture was stirred with a magnetic stir-
rer at 80 rpm for 2 min, then followed by gentle mixing at 
10 rpm for 20 min. Thereafter, the mixture is poured into 
a graduated cylinder. The suspension was allowed to set-
tle for 30 min and a sample was taken from the middle of 
the clarified zone. The optical density of the samples was 
measured with a Unico S1200 Visible spectrophotometer. 
Also, the initial height of the microalgae suspension and 
the settled floc height were measured using a meter rule. 
These procedures were repeated in duplicate for N. oculata 
and D. salina. Thus, the biomass recovery and concentra-
tion factor were calculated as follows;

The variable OD650i represents optical density of micro-
algae suspension measured at 650 nm before the addition 
of CPADA and OD650f represents optical density measured 
at 650 nm after the addition of CPADA and settling. The H0 

(2)
R =

∑n

i=1

�

qp,i − qp,ave
�

×
�

qa,i − qp,ave
�

�

�
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�2
��
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�

(3)R2 =
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(4)MSE =
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�
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n

(5)Biomass recovery, η =
OD650i − OD650f

OD650i

(6)Concentration factor =
H0

Hf

and Hf are the initial microalgae suspension and the set-
tled floc heights respectively.

3  Results and discussion

3.1  CPADA and the ash Characterization

The Table 2 shows EDS results which indicate that carbon, 
oxygen, chlorine, potassium, phosphorus and silicon are 
the dominant elements, while the potassium is the prin-
cipal metallic element. The physio-chemical properties 
of the bio-based alkali, CPADA, is shown in Table 3. The 
relatively strong signal intensities for potassium, oxygen, 
carbon and chlorine indicate higher concentrations of 
these elements in the ash sample, Fig. 2a. Even though it 

Table 2  Elemental composition and concentration of bio-based 
alkali, CPADA and ash

a EDS values, bICP-MS values, NA not applicable, ND not detected

Element Weight  percenta Concen-
tration 
(ppm)b

Carbon, C 11.56 ± 1.36 NA
Oxygen, O 43.72 ± 2.33 NA
Sodium, Na ND 310.19
Magnesium, Mg 2.28 ± 0.28 2.69
Aluminum, Al ND ND
Silicon, Si 0.34 ± 0.04 NA
Phosphorus, P 1.29 ± 0.04 NA
Sulfur, S 1.09 ± 0.15 NA
Chlorine, Cl .20 ± 0.01 NA
Potassium, K 37.24 ± 4.72 51,489.27
Calcium, Ca 2.31 ± 0.54 1450.10
Manganese, Mn ND 11.71
Zinc, Zn ND ND
Iron, Fe ND 5.95

Table 3  Physio-chemical 
properties of CPADA

a–c pH—pH of samples concen-
tration of 0.075, 0.100, 0.125 g/
mL, dTDS total dissolved solids

Property Values

pHa 10.55
pHb 11.53
pHc 12.37
Concentration (M) 0.347
Color colorless
Conductivity (mS) 19.99
Temperature (oC) 20 °C
TDSd 1.28 × 104
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is difficult to infer more quantitative data from this spectral 
analysis, but there is an indication that the spectra gave 
consistent results with the chemical analysis of the ash 
sample data in Table 2. Figure 2b reveals the morphology 
of the ash sample by SEM image, which shows a fibrous 
and spongy-like microstructure of the sample. This is an 
indication of increased surface area of the ash for maxi-
mum extraction of the metallic components. Moreso, the 
ICP-MS results displayed in Table 2 also indicate that metal-
lic elements present in the filtrate obtained from the ash 
sample are potassium, calcium, sodium, manganese and 
magnesium. From this, it is obvious that potassium has 
the highest concentration of approximately 51,489 ppm, 
followed by calcium and sodium with about 1450 and 
210 ppm, respectively. Therefore, one can infer that the 
ICP-MS results are consistent with that of the SEM–EDS. 
Hence, it is appropriate to submit that K was the key active 
element responsible for the alkaline nature of the bio-
based alkali, CPADA. The literature has shown that K has 
been reported to have the highest concentration among 
the metallic elements present in cocoa pod husk ash sam-
ples and their respective filtrates. Betiku et al. [9] reported 
that calcinated cocoa pod husk has 59% K, while Taiwo 
and Osinowo [32] documented the composition of K in 
the form of  K2CO3 in cocoa pod husk ash to be about 57%.  

3.2  Mathematical regression model development 
by RSM

The results of the flocculation experiments for the D. salina 
and N. oculata using the produced bio-alkalis, CPADA, are 
presented in Tables 4 and 5. Also, the tables show the 
experimental and the predicted values by the RSM and 
ANN techniques. The results of modeling the microalgae 
flocculation process gave mathematical equations which 

relate the responses (flocculation efficiency and concen-
tration factor) to independent variables (biomass concen-
tration and flocculant dose) in terms of the actual values 
as described in Eqs. 7–10.

D. salina:

N. oculata:

X1 , X2 are the biomass concentration and flocculant dose, 
respectively. The fitness of the models was evaluated by 
the values of the coefficient of determination  R2, absolute 
average deviation (AAD) and mean square error (MSE), 
which are 0.89, 0.752% and 0.945 respectively for D. salina 
flocculation efficiency model. The corresponding values 
obtained for D. salina biomass concentration factor model 
is 0.93, 9.012% and 4.489, respectively. Similar results were 
obtained for the flocculation of N. oculata. The calculated 
values for model fitness are the  R2 (0.89), AAD (3.115%) 
and MSE (11.189) for N. oculata flocculation efficiency. The 
corresponding values obtained for  R2, AAD and MSE of the 
N. oculata biomass concentration factor is 0.87, 4.156% 
and 0.089 respectively. In order to consider fitted mod-
els to be good, it is recommended that the  R2 should not 
be less than 0.80 [33]. Thus, the models obtained for the 
microalgae flocculation processes are considered a good 
fit, which implies that 89%, 93%, 89% and 87% (Tables 6 

(7)
FE = 89.74 + 12.76X1 − 7.10X2 + 4.20X1X2 − 6.25X2

1
+ 0.39X2

2

(8)
CF = 56.99 − 37.67X1 − 13.02X2 + 7.87X1X2 + 6.62X2

1
+ 0.38X2

2

(9)
FE = 19.39 + 139.33X1 + 54.06X2 − 10.61X1X2 − 84.63X2

1
− 16.06X2

2

(10)
CF = 45.44 − 32.65X1 − 9.51X2 + 2.35X1X2 + 9.06X2

1
+ 1.2X2

2

Fig. 2  Elemental spectra by SEM–EDS (a) SEM image (b) of the cocoa pod ash
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and 7) of variability in the responses could be explained 
by Eqs. 7-10. The statistical significance of the mathemati-
cal regression models, the two independent factors and 
their possible interactions for the flocculation efficiency 
and concentration factors were assessed by statistical 

F- and p values. The mathematical regression models are 
statistically significant in all cases tested; the model F-val-
ues (> 13.21) with their respective p values less than 0.05 
(Tables 6, 7) are within values recommended for model 
to be significant. This implies that there was less than 5% 

Table 4  The experiment and predicted values of flocculation efficiency and concentration factor according to the D-optimal design of RSM 
for harvesting D. salina 

BC biomass concentration, FD flocculant dose, FE flocculation efficiency, CF concentration factor

Run BC,  X1 (g/l) FD,  X2 (g/l) Observed FE (%) RSM predicted 
FE (%)

ANN pre-
dicted FE (%)

Observed CF RSM pre-
dicted CF

ANN 
predicted 
CF

1 0 (0.916) 0 (1.000) 93.21 93.32 93.18 20.90 22.61 21.87
2 + 1 (1.767) + 1 (2.000) 94.66 94.97 94.80 13.99 14.39 14.43
3 0 (0.916) + 1 (2.000) 93.66 91.23 93.68 21.30 17.95 21.30
4 + 1 (1.767) − 1 (0.500) 93.60 93.03 93.61 13.06 11.63 13.13
5 − 1 (0.494) 0 (1.000) 90.78 89.88 90.78 36.67 31.25 36.67
6 − 1 (0.494) − 1 (0.500) 92.57 92.10 92.60 34.67 35.53 34.68
7 + 1 (1.767) + 1 (2.000) 94.74 94.97 94.80 14.13 14.39 14.43
8 0 (0.916) 0 (1.000) 93.24 93.32 93.18 23.73 22.61 21.87
9 0 (0.916) − 1 (0.500) 92.48 94.65 92.39 24.18 25.23 24.18
10 − 1 (0.494) + 1 (2.000) 85.35 86.02 85.09 21.60 23.27 21.39
11 + 1 (1.767) 0 (1.00) 92.83 93.48 92.82 9.24 12.36 9.76
12 + 1 (1.767) − 1 (0.500) 93.66 93.03 93.61 13.13 11.63 13.13
13 + 1 (1.767) + 1 (2.000) 94.95 94.97 94.80 15.23 14.39 14.43
14 − 1 (0.494) + 1 (2.000) 84.83 86.02 85.09 21.40 23.27 21.39
15 − 1 (0.494) − 1 (0.500) 92.61 92.10 92.60 34.50 35.53 34.68
16 0 (0.916) 0 (1.000) 93.26 93.32 93.18 20.90 22.61 21.87

Table 5  The experiment and predicted values of flocculation efficiency and concentration factor according to the D-optimal design of RSM 
for harvesting N. oculata 

BC biomass concentration, FD flocculant dose, FE flocculation efficiency, CF concentration factor

Run BC,  X1 (g/l) FD,  X2 (g/l) Observed FE (%) RSM predicted 
FE (%)

ANN pre-
dicted FE (%)

Observed CF RSM pre-
dicted CF

ANN 
predicted 
CF

1 0 (0.420) 0 (1.000) 95.23 96.53 95.11 5.71 5.74 5.66
2 0 (0.420) 0 (1.000) 95.16 96.53 95.11 5.54 5.74 5.66
3 + 1 (1.080) + 1 (2.000) 94.32 92.13 92.77 5.26 5.44 5.50
4 − 1 (0.210) − 1 (0.500) 62.95 66.82 63.40 4.77 5.02 4.78
5 + 1 (1.080) − 1 (0.500) 89.00 88.45 89.14 7.42 7.12 7.08
6 + 1 (1.080) + 1 (2.000) 95.23 92.13 92.77 5.62 5.44 5.50
7 − 1 (0.210) + 1 (2.000) 84.70 84.34 84.56 4.57 4.62 4.55
8 0 (0.420) + 1 (2.000) 95.42 97.95 95.44 5.54 5.59 5.59
9 + 1 (1.080) + 1 (2.000) 88.75 92.13 92.77 5.63 5.44 5.50
10 0 (0.420) − 1 (0.500) 90.69 83.77 90.06 6.72 6.30 6.71
11 0 (0.420) 0 (1.000) 94.80 96.53 95.11 5.62 5.74 5.66
12 + 1 (1.080) 0 (1.000) 94.84 97.71 94.85 5.82 6.24 5.82
13 − 1 (0.210) + 1 (2.000) 84.58 84.34 84.56 4.54 4.62 4.55
14 − 1 (0.210) − 1 (0.500) 62.83 66.82 63.40 4.62 5.02 4.78
15 + 1 (1.080) − 1 (0.500) 88.85 88.45 89.14 7.07 7.12 7.08
16 − 1 (0.210) 0 (1.000) 87.95 80.69 87.91 5.33 4.56 5.34
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chance that every regression model with an F-value this 
large could result from noise. The individual terms in the 
model equations were tested with ANOVA at 95% confi-
dence level (p < 0.05), based on the F- and p values. The val-
ues of p less than 0.05 shows that model term is significant, 
otherwise not significant. Therefore, the significant model 
terms for D. salina flocculation efficiency and concentra-
tion factors are  X1,  X2,  X1X2 and X1

2, while X2
2 is insignificant 

for both flocculation efficiency and concentration factor. 
Similarly, the model terms that are significant for the floc-
culation efficiency and concentration factor for N. oculata 
are  X1,  X2,  X1X2 and X1

2, with the X2
2 not significant only for 

the concentration factor. In view of these results, when 
the insignificant model terms in Eqs. 7–10 are ignored, 
but in the X2

1
 in Eq. 8 is not ignored due to its numerical 

significance. Therefore, the model equations are simpli-
fied as follows:

D. salina:

N. oculata:

The 3-dimensional response surface plots (Figs. 3, 4) 
simultaneously characterize the mathematical regres-
sion equations and depicted the interaction between 
the response and independent experimental variables. 
Also, these plots assist in identifying the optimum levels 
for each parameter studied to achieve maximum floc-
culation efficiency and concentration factor.

(11)FE = 89.74 + 12.76X1 − 7.10X2 + 4.20X1X2 − 6.25X2
1

(12)
CF = 56.99 − 37.67X1 − 13.02X2 + 7.87X1X2 + 6.62X2

1

(13)
FE = 19.39 + 139.33X1 + 54.06X2 − 10.61X1X2 − 84.63X2

1
− 16.06X2

2

(14)CF = 45.44 − 32.65X1 − 9.51X2 + 2.35X1X2 + 9.06X2
1

Table 6  Test of significance for 
every regression coefficient 
and ANOVA for D salina harvest 
with CPADA

1 Model  R2 is 0.89, AAD is 0.7520%, MSE is 0.9452; 2Model  R2 is 0.93, AAD is 9.0116%, MSE is 4.4886

Factors Sum of squares Degree of 
freedom, df

Mean square F value p value
Prob > F

Flocculation  efficiency1

 X1 65.90 1 65.90 43.58 < 0.0001
 X2 11.59 1 11.59 7.66 0.0199
 X1X2 37.70 1 37.70 24.93 0.0005
 X1

2 13.72 1 13.72 9.07 0.0131
 X2

2 0.10 1 0.10 0.07 0.8003
ANOVA
 Model 118.41 5 23.68 15.66 0.0002
 Residual 15.12 10 1.51
 Lack of fit 14.94 3 4.98 186.87 <0.0001
 Pure error 0.19 7 0.03
 % coefficient of variance 1.33
 Total 133.54 15

Concentration  factor2

 X1 726.40 1 726.40 101.15 < 0.0001
 X2 60.94 1 60.94 8.49 0.0155
 X1X2 132.08 1 132.08 18.39 0.0016
 X1

2 15.37 1 15.37 2.14 0.1742
 X2

2 0.10 1 0.10 0.01 0.9082
ANOVA
 Model 953.34 5 190.67 26.55 < 0.0001
 Residual 71.82 10 7.18
 Lack of fit 65.54 3 21.85 24.38 0.0004
 Pure error 6.27 7 0.90
 % coefficient of variance 12.66
 Total 1025.16 15



Vol.:(0123456789)

SN Applied Sciences (2020) 2:387 | https://doi.org/10.1007/s42452-020-2097-5 Research Article

3.3  Dunaliella salina biomass concentration 
and CPADA, flocculant dose effect

The interaction between biomass concentration and floc-
culant (CPADA) dose on the flocculation efficiency and 
concentration factor of D. salina are shown in Fig. 3a, b, 
respectively. It is obvious from Fig. 3a, b that biomass 
concentration has a significant (p < 0.05) effect on both 
the flocculation efficiency and concentration factor of 
D. salina. In all cases, the biomass concentration effect is 
more significant than the flocculant dose effect. Appar-
ently from Fig. 3a, at lower values of CPADA flocculant dose 
and biomass concentration, higher flocculation efficiencies 
were obtained, while the reverse was observed at higher 
values. Also, for the flocculation of D. salina, an increase in 
its biomass concentration resulted in an increase in floc-
culation efficiency, up to a maximum of about 94% at bio-
mass concentration slightly higher than 0.92 g/l (Fig. 3a). 
Any further increase in biomass concentration beyond this 
value led to a decrease in flocculation efficiency. In Fig. 3b, 
at lower values of biomass concentration of D. salina, 

higher concentration factors were observed compared 
to high biomass concentration. Meanwhile, an increase in 
the flocculant dose has very little effect on the D. salina 
concentration factor.

3.4  Nannochloropsis oculata biomass concentration 
and CPADA, flocculant dose effect

Figure 4a, b showed the interactive effect of biomass con-
centration and CPADA flocculant dose on flocculation effi-
ciency and concentration factor of N. oculata. Both inde-
pendent variables showed a significant (p < 0.05, Fig. 4a) 
effect on the flocculation efficiency and concentration factor. 
The optimum N. oculata flocculation efficiency of about 95% 
was observed at biomass concentration and flocculant dose 
of 0.82 g/l and 0.50% v/v respectively. At this optimum con-
dition, any increase or decrease in either the biomass con-
centration or CPADA flocculant dose resulted in a decrease 
in flocculation efficiency. A similar result was observed by 
Wu et al. [8], who inferred that the decrease in flocculation 
efficiency of both marine and freshwater microalgae against 

Table 7  Test of significance for 
every regression coefficient 
and ANOVA for N. oculata 
harvest with CPADA

1 Model  R2 is 0.89, AAD is 3.1150%, MSE is 11.1898; 2Model  R2 is 0.87, AAD is 4.1556%, MSE is 0.0887

Factors Sum of squares Degree of 
freedom, df

Mean square F value p value
Prob > F

Flocculation  efficiency1

 X1 585.06 1 585.06 32.68 0.0002
 X2 303.62 1 303.62 16.96 0.0021
 X1X2 116.05 1 116.05 6.48 0.0291
 X1

2 358.61 1 358.61 20.03 0.0012
 X2

2 175.69 1 175.69 9.81 0.0106
ANOVA
 Model 1457.47 5 291.49 16.28 0.0002
 Residual 179.04 10 17.90
 Lack of fit 154.27 3 51.42 14.54 0.0022
 Pure error 24.77 7 3.54
 % coefficient of variance 4.82
 Total 1636.50 15

Concentration  factor2

 X1 5.81 1 5.81 40.94 < 0.0001
 X2 2.93 1 2.93 20.67 0.0011
 X1X2 0.99 1 0.99 6.99 0.0246
 X1

2 1.57 1 1.57 11.07 0.0077
 X2

2 0.29 1 0.29 2.01 0.1862
ANOVA
 Model 9.37 5 1.87 13.21 0.0004
 Residual 1.42 10 0.14
 Lack of fit 1.24 3 0.41 16.45 0.0015
 Pure error 0.18 7 0.03
 % coefficient of variance 6.71
 Total 10.79 15
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an increase in their biomass concentration can be attributed 
to limited amount of magnesium in the growth medium that 
can influence the flocculation of excess microalgae cells. In 
Fig. 4b, both flocculant dose and biomass concentration 
showed a significant effect on concentration factor of N. ocu-
lata, with the later showing a much higher significance. In 
this figure, an increase in CPADA flocculant dose showed lit-
tle or no significant effect on the concentration factor, but an 
increase in biomass concentration resulted in an increase in 
concentration factor up to a maximum of 7 at about 0.82 g/l 
biomass concentration, where further increase beyond this 
level led to a decline in concentration factor. Zheng et al. 
[12] also reported a decrease in concentration factor at high 
values of biomass concentration for Chlorella vulgaris and 
Chlorella protothecoides.

3.5  ANN modeling, prediction and comparison 
with RSM

The results of ANN modeling prediction using the cho-
sen ANN architecture (Fig. 1) with two input layers of two 
neurons (biomass concentration and flocculant dose), 
one hidden layer of 10 neurons and output layer of one 
neuron (flocculation efficiency or concentration factor) 
are shown in Tables 4 and 5. Plots of the ANN predicted 
values against experimentally observed values for the 
flocculation efficiency and concentration factor of both 
species of microalgae are shown in Fig. 5, 6, 7 and 8. The 
correlation coefficients, R for the training, validation, test-
ing and the whole data set for the flocculation efficiency 
of D. salina are 0.999, 1.000, 1.000 and 0.999 respectively 
(Fig. 5). Similar values of R were also obtained for the D. 
salina concentration factor as 0.995, 1.000, 1.000 and 0.997 
for the training, validation, testing and the whole data set 

Fig. 3  Response surface plots 
showing interactive effect of 
independent variables on a 
flocculation efficiency, b con-
centration factor for D. salina 
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respectively (Fig. 6). Moreso, the correlation coefficients, 
R for the training, validation, testing and the whole data 
set for the flocculation efficiency of N. oculata are 0.999, 
1.000, 1.000 and 0.999, respectively (Fig. 7). The values of R 
obtained for the N. oculata concentration factor are 0.994, 
1.000, 1.000 and 0.994 for the training, validation, testing 
and the whole data set, respectively (Fig. 8). The values 
of R obtained show that ANN models (both flocculation 
efficiency and concentration factor) gave good correla-
tions between the experimental and predicted values of 
both microalgae species. Figure 9 shows the plots of MSE 
against epoch for the training, validation and testing of the 
developed ANN architectural topology of 2-10-1. It is obvi-
ous from the plots that the large values of MSE plummeted 
and the best validation performances are 0.003 at epoch 
2, 0.140 at epoch 2, 0.248 at epoch 4 and 0.011 at epoch 
3 for the flocculation process of the microalgae species.

The developed RSM and ANN models were evaluated 
for their generalization capability. This is done by calcu-
lating their respective R,  R2, MSE, root mean square error 
(RMSE) and AAD. The values obtained are displayed in 
Tables 8 and 9. Values of R obtained for ANN models are 
higher and closer to 1 than the RSM models, which is an 
indication that the models fit good, but with the former 
has a better fit. Similarly, the  R2 values obtained for the 
ANN models are also higher than the corresponding  R2 
values of the RSM models. The values of other measures 
of statistical indicators, like MSE, RMSE and AAD, were low 
for all data but the values obtained for ANN models are 
much lower than RSM models (Tables 8, 9). This further 
confirmed that ANN models have higher generalization 
ability than the RSM models for the microalgae floccula-
tion process. Graphs of experimental values, as well as pre-
dicted values plotted against the experimental runs, are 
shown in Figs. 10 and 11, the parity plots of the predicted 

Fig. 4  Response surface plots 
showing interactive effect of 
independent variables on a 
flocculation efficiency, b con-
centration factor for N. oculata 
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Fig. 5  Correlation plots of 
predicted and experimental 
observed values for FE of D. 
salina 
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Fig. 6  Correlation plots of 
predicted and experimental 
observed values for CF of D. 
salina 
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Fig. 7  Correlation plots of 
predicted and experimental 
observed values for FE of N. 
oculata 
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Fig. 8  Correlation plots of 
predicted and experimental 
observed values for CF of N. 
oculata 
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Fig. 9  MSE variation for the training, validation and testing data for the microalgae flocculation process a FE for D. salina, b CF for D. salina, c 
FE for N. oculata, d CF for N. oculata 

Table 8  Generalization ability evaluation of the RSM and ANN 
models (D. salina)

a FE flocculation efficiency, bconcentration factor

parameter RSMa ANNa RSMb ANNb

R 0.9417 0.9992 0.9643 0.9968
R2 0.8868 0.9985 0.9299 0.9936
MSE 0.9452 0.1230 2.1186 0.4121
RMSE 0.9722 0.1140 4.4886 0.6419
AAD (%) 0.7520 0.0891 9.0116 2.2067

Table 9  Generalization ability evaluation of the RSM and ANN 
models (N. oculata)

a FE flocculation efficiency, bconcentration factor

parameter RSMa ANNa RSMb ANNb

R 0.9437 0.9922 0.9319 0.9903
R2 0.8906 0.9845 0.8685 0.9806
MSE 11.1898 1.6115 0.0887 0.0158
RMSE 3.3451 1.2695 0.2978 0.1257
AAD (%) 3.1150 0.7712 4.1556 1.4372
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and observed values are also presented in Fig. 12. A close 
look at these plots shows that the predictions by ANN 
closely match the experimental values in the flocculation 
of microalgae species studied, which further supports the 
higher generalization capability of ANN compared to RSM. 
This present work has demonstrated that ANN models 
gave better and more accurate predictions than RSM, as 
reported in the literatures [19, 21, 34, 35].

3.6  Multi‑objective optimization of flocculation 
parameters

The aim of this optimization study is to simultaneously 
obtain maximum values for flocculation efficiency and 
concentration factor in harvesting of the microalgae, an 
objective that is inconsistent with respect to the results 
obtained from both RSM and RSM-GA multi-objective 
optimization results (Tables  10, 11). Practically, high 
flocculation efficiency is preferred to high concentra-
tion factor, because of loss of microalgae biomass dur-
ing harvesting when high concentration factor is given 
priority [36]. Meanwhile, a high concentration factor has 

Fig. 10  Parity plots of pre-
dicted versus experimental val-
ues for RSM and ANN models 
(D. salina)
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been attributed to reduction in the size of microalgae 
dewatering equipment [37], which will subsequently 
lower the equipment cost. In view of this, a comprise 
must be made either to minimize biomass loss or reduce 
equipment size. Based on the RSM optimization results 
(Table 10), the optimum dependent variables for the 
flocculation process are 0.54 g/l biomass concentration, 

0.50% v/v flocculant (CPADA) dose for the D. salina and 
0.50 g/l biomass concentration, 0.50% v/v flocculant 
(CPADA) dose for N. oculata. The values predicted for the 
response variables were flocculation efficiencies of 92 
and 95% and the concentration factors of 34 and 7 for D. 
salina and N. oculata, respectively. These conditions were 
selected based on highest desirability values of 0.83 and 

Fig. 11  Parity plots of pre-
dicted versus experimental val-
ues for RSM and ANN models 
(N. oculata)
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Fig. 12  Comparison of predicted values by RSM and ANN models with experimental values a FE of D. salina, b CF of D. salina, c FE of N. ocu-
lata, d CF of N. oculata 
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0.99 for D. salina and N. oculata, respectively (Table 10). 
The genetic pareto front result for multi-objective opti-
mization of the microalgae flocculation process is shown 
in Fig. 13, and the results are summarized in Table 11. It 
obvious from the table and the figures that at higher 
flocculation efficiencies, the corresponding values of 
the concentration factors are lower and vice versa. In 
both microalgae species, the optimum responses chosen 
are flocculation efficiencies of 93 and 94% and concen-
tration factors of 12 and 13 for D. salina and N. oculata 
respectively. The corresponding values for the optimum 
dependent variables are 1.77 g/l biomass concentration, 
1.00% v/v flocculant (CPADA) dose for the D. salina and 
1.64 g/l biomass concentration, 1.17% v/v flocculant 
(CPADA) dose for N. oculata. The values predicted for the 
input variables by RSM-GA are significantly higher than 
that of RSM. Even in the case of N. oculata, the prediction 

is outside the ranges of biomass concentration fac-
tor considered for the study. The optimum predicted 
response variables for both RSM and RSM-GA were vali-
dated experimentally using two independent replicates 
and results presented in Table 12. The obtained experi-
mental values (Table 12) agree closely with the predicted 
optimum values by RSM and RSM-GA.

4  Conclusion

In this study, the feasibility of using bio-based derived 
alkali, CPADA, to induce flocculation of microalgae has 
been highlighted. The application of CPADA to induce 
microalgae flocculation has resulted in more than 90% 
flocculation efficiency, although with lower concentra-
tion factor in one of cases tested. The potential of CPADA 
to induce flocculation in microalgae culture is attributed 
to its high potassium content. Results has shown that 
microalgae biomass concentration is the most significant 
parameter compared to the CPADA flocculant dose in the 
flocculation process. The ANN model has shown to have 
higher generalization ability than the RSM model, based 
on the evaluated statistical indices, although both have 
shown good and accurate predictions. In order to optimize 
the flocculation process, a multi-objective optimization 
was carried out by RSM and RSM-GA techniques. RSM pre-
dicted lower values of the dependent variables with high 
flocculation efficiency, unlike the RSM-GA, where much 
higher values of input variables are predicted with minimal 
difference in predicted flocculation efficiency, compared 

Table 10  Optimum condition predicted by RSM

BC,  X1 (g/l) FD,  X2 (% v/v) FE (%) CF Desirability

(a) D. saliana
 0.54 0.50 92 34 0.831368 Selected
 0.53 0.50 92 34 0.831352
 0.52 0.50 92 35 0.83109
 1.77 2.00 95 14 0.433481

(b) N. oculata
 0.83 0.50 95 7 0.994095 Selected
 0.82 0.50 95 7 0.993971
 0.73 2.00 104 6 0.743104

Table 11  Summary of Pareto 
front response for the multi-
objective optimization

BC,  X1 (g/l) FD,  X2 (g/l) FE (%) CF BC,  X1 (g/l) FD,  X2 (g/l) FE (%) CF

(a) D. salina (b) N. oculata
1.7662 1.0014 93.49 12.36 1.6379 1.1694 94.14 13.41
1.7662 1.0014 93.49 12.36 1.6379 1.1694 94.14 13.41
1.1999 2.0000 93.49 15.70 1.2855 1.9996 93.97 15.23
1.1060 2.0000 92.85 16.32 1.2855 1.9996 93.97 15.23
1.1060 2.0000 92.85 16.32 1.1365 1.9996 93.07 16.11
0.9984 2.0000 91.99 17.18 1.0893 1.9996 92.73 16.45
0.9177 1.9998 91.25 17.93 0.9349 1.9996 91.41 17.77
0.9072 2.0000 91.15 18.04 0.9349 1.9996 91.41 17.77
0.7882 2.0000 89.89 19.31 0.8789 1.9996 90.86 18.32
0.7843 2.0000 89.84 19.36 0.7907 1.9996 89.92 19.28
0.7088 1.9999 88.95 20.27 0.7907 1.9996 89.92 19.28
0.7014 2.0000 88.86 20.36 0.7317 1.9996 89.23 19.98
0.6309 2.0000 87.96 21.28 0.6835 1.9996 88.64 20.59
0.6300 2.0000 87.94 21.30 0.6835 1.9996 88.64 20.59
0.5628 2.0000 87.02 22.24 0.6157 1.9996 87.75 21.49
0.5627 2.0000 87.02 22.24 0.6157 1.9996 87.75 21.49
0.5059 2.0000 86.20 23.08 0.5344 1.9996 86.62 22.66
0.4942 2.0000 86.02 23.26 0.5344 1.9996 86.62 22.66
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to RSM. This work confirmed the use of CPADA as a poten-
tial bio-based alkali that can be employed in flocculation 
of microalgae, which can possibly lower the microalgae 
harvesting cost. The predictive and optimization ability of 
RSM, ANN and GA were further established.
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