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Abstract
Order picking has been recognized as one of the most challenging activities in terms of time, labor, and cost for most 
warehouses. Order fulfillment has a definite time constraint that is predefined by the customer and any deficit in the 
process of order picking at the warehouse level will impact the entire supply chain. This paper addresses the problem of 
routing optimization for order picking in a warehouse to minimize the travel time and distance. In particular, we propose 
an easy-to-implement vehicle routing based approach in conjunction with the distance matrix for obtaining an optimal 
route for order picking, which is solved using the off-the-shelf solver Gurobi with the Julia programming language. The 
optimal route is then compared with the routes obtained by other traditional approaches such as S-shape, return, mid-
point, and largest gap methods by means of simulation. Two order picking demand scenarios are considered: one with 
uniform pick locations throughout the warehouse and the other with differentiated pick locations. We show that the 
proposed vehicle routing based approach outperforms the S-shape, return, mid-point, largest gap methods by 36.55%, 
44.89%, 46.64%, and 36.9 %, respectively, for scenario 1, and by 25.12%, 24.01%, 27.57%, and 26.77%, respectively, for 
scenario 2. The detailed discussion about the routing policy implications on management is also provided.
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1  Introduction

Warehousing is an essential part of supply chain manage-
ment because of its important duties such as storing parts 
and materials as well as finished products and providing 
a streamlined, unified means to consolidate materials 
from suppliers all around the world [11]. In order to keep 
up with the rising competition in the industry and out-
perform competitors, warehouses must perform all their 
operations, e.g., receiving, put-away, cross-docking, order 
picking, and shipping in the most efficient way to ensure 
smooth functioning of the supply chain while minimizing 
the cost.

Among all the warehouse operations, we focus on order 
picking because it is known to be extremely challenging in 

terms of labor, time, and cost, which takes 50–75% of total 
operating cost for a typical warehouse [9, 16]. The recent 
dramatic growth of e-commerce gives rise to the exponen-
tial increase of order picking operations [9, 36] and, there-
fore, it has received a considerable attention from both 
academia and industry [9, 25–27, 30]. Note that among 
all the activities related to order picking, the picker travel 
takes the greatest portion of the time spent, followed by 
search, pick, setup, and other activities as shown in Fig. 2. 
Accordingly, we aim to contribute to the warehouse opera-
tion efficiency by minimizing the order picking travel time 
and distance by means of the proposed vehicle routing 
and distance matrix based approach.

This type of problem, to minimize the order picking 
travel time, is called the picker routing problem (PRP) and 
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it is usually formulated as a Steiner traveling salesman 
problem (TSP) [9], a special case of TSP. In a TSP, each node 
(geographical locus, e.g., city) is allowed to be visited only 
once. In a Steiner TSP, however, some nodes are allowed 
to be visited multiple times while other nodes need not 
be visited. These special conditions are required for PRP 
due to the interpretation of the layout of a warehouse to 
a graph. Figure 1 shows such interpretation where black 
dots in the right side denote picking locations or a depot 
and white dots represent cross points between aisles or 
a corner. Black dots must be visited (and allowed to be 
visited multiple times) but white dots may or may not be 
visited. As Steiner TSP is not solvable in polynomial time 
in general [9], a variety of heuristics and meta-heuristics 
have been developed [see, e.g., 6, 7, 30].

In this paper, we propose a simple but effective 
approach that is based on a vehicle routing problem 
(VRP) formulation and the distance matrix that can be 
created by some preprocessing and precalculation. That 
is, we address the PRP as a VRP, unlike other studies that 
use the Steiner TSP as the model basis. In particular, we 
employ the Miller–Tucker–Zemlin (MTZ) formulation [32] 
of the VRP with no complicated constraints such as time 
windows and no special conditions. Naturally, the VRP for-
mulation can handle the capacity of order pickers, which 
is a big plus over the Steiner TSP. In our VRP formulation 
for the PRP, all nodes must be visited only once, which is 
exactly the same as the conventional TSP or VRP require-
ments. There is no need to consider some nodes that can 
be visited multiple times or other nodes that need not be 
visited. That is, our VRP formulation eliminates the com-
plexity of the Steiner TSP, and such simplification will be 
made possible by means of the distance matrix that will 
be introduced in the subsequent section. In summary, the 
primary advantage of our proposed VRP approach over 
the Steiner TSP to address the PRP is twofold. First, we can 
address the capacity of order pickers by means of the VRP 
formulation. Second, the implementation of the VRP is 

straightforward, easy, and computationally tractable. This 
will be particularly useful for practitioners in a warehouse.

1.1 � Background

Warehouse operations include receiving and unloading 
inbound materials, putting them away into appropriate 
storage locations, picking the required materials based on 
customer orders, and dispatching them to the customer. 
Any compromise in the performance of any one of these 
aspects can affect the overall productivity of the ware-
house and eventually impact the supply chain as a whole. 
In fact, material handling along with inventory manage-
ment is one of the most critical components in supply 
chain and logistics management.

In this paper, among other types of warehouse we focus 
on a typical warehouse such as the manufacturing sup-
porting warehouse that houses spare parts and materi-
als necessary for production and the order fulfillment 

Fig. 1   Interpretation of a warehouse layout to a graph. Source: De Koster et al. [9]

Fig. 2   Time spent by an order picker. Source: De Koster et al. [9]
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warehouse that receives and consolidates a variety of 
items from different sellers worldwide and ships the items 
to the customers. However, the proposed methodology 
can be easily applied to other types of warehouses such 
as the food storing warehouse that requires temperature-
controlled zones because our proposed method is based 
on vehicle routing models that support various types 
of problems. In a typical warehouse, the inbound and 
outbound operations take place on either sides of the 
warehouse and a unidirectional or a bidirectional flow of 
material is ensured by the warehouse policy. Materials are 
received by the warehouse from various suppliers around 
the world and then put-away into storage locations. These 
locations include high racks for small- to medium-sized 
parts and floor locations for major mechanical parts. In 
general, parts with higher demand from the customer 
are assigned to locations near the outbound side of the 
warehouse, while the parts with lower demand from the 
customer are assigned to locations on the far end of the 
warehouse. This storage policy is motivated by the fact 
that order picking is one of the most crucial activities, 
which also has a limited time window. Indeed, storage 
locations for materials and parts can be decided by a vari-
ety of methods such as based on the type of materials and 
operation characteristics [20]. For example, the relation-
ship between storage policy and order picking travel time 
and distance has been studied where travel congestion is 
explicitly considered [20].

In the warehouses considered in this paper, customer 
demands are received in the form of Kanban triggers for 
manufacturing supporting warehouses, which need to be 
fulfilled before the start of shift at the production plant. 
The order fulfillment warehouses also work in a similar 
fashion with the limited deadlines for order picking. This 
requires a high degree of accuracy and speed from the 
outbound team, especially the order pickers. Along with 
the time constraint, another important constraint for order 
picking is the size of the demand. The demand size varies 
through peak and non-peak seasons. Hence, order pick-
ing has to be not only efficient but also robust enough 
to provide adequate and acceptable outcomes. In this 
regard, the order picking policy called wave picking can 
be considered where the frequency, timing, and size of 
order picking are to be optimized [5, 13, 14]. In order to 
ensure efficient resource utilization and timely fulfillment 
of customer demand, the order picking problem in general 
and the routing optimization in particular are a point of 
focus in this paper.

1.2 � Order picking and pick path optimization

Order picking is one of the most crucial activities asso-
ciated with warehousing and material handling [9, 36], 

which involves retrieving stored parts, materials, and/or 
partially finished products in order to fulfill a customer 
demand. This activity heavily impacts the warehouse 
operations and eventually the performance of the entire 
supply chain, and it has been identified as one of the most 
laborious and time consuming activities of warehouse 
operations. Furthermore, new trends in manufacturing 
and distribution such as just-in-time manufacturing and 
same-day shipping,and fast growing e-commerce have 
made order-picking more complex and difficult to man-
age. In order to be able to serve customers efficiently, it is 
vital that the process of order picking be optimized.

Order picking can be categorized into several ways on 
the basis of the methods that are used to organize and 
sequence the orders. There are varying degrees of auto-
mation involved in the different methods of order pick-
ing. This study focuses on manual order picking systems 
(which involves human operation/not fully automated). 
The different order picking systems are: picker-to-part, 
part-to-picker, and put systems. Picker-to-part systems 
involve the order picker traversing through the warehouse 
by means of material handling equipment such as fork-
lifts or reach-trucks, physically picking items from their 
locations to fulfill customer orders. This is the most com-
mon method for order picking, which is the focus of this 
study. Part-to-picker systems involve automated storage 
and retrieval systems that pick the loads from their loca-
tions and bring them to the depot. The primary difference 
between picker-to-part and part-to-picker systems is that 
in the former, the picker moves from location-to-location, 
picking items, whereas in the latter, the picker stays in one 
location and the items come to him/her. In put systems, 
the items are retrieved by one of the two above mentioned 
policies and then distributed into bins by customer. These 
systems are capable of meeting large number of customer 
demands within relatively short spans of time [9].

Another important factor that affects the method of 
order picking is the layout and zones of the warehouse. 
Items can be zoned if they have special storage require-
ments such as temperature, humidity, size, weight, etc. 
Another way of zoning would be by demand of the prod-
uct where the high demand products are stored closer to 
the outbound drop off locations, whereas slow moving 
items are stored further away from the drop off locations. 
In such cases, order pickers may be confined to an area, 
and picking items from their respective zones.

Based on the discussion above, we claim that the order 
picking optimization methods can be largely divided 
into two categories: pick policy optimization and routing 
optimization. For a pick policy optimization survey, Bar-
tholdi and Hackman [1] classify order picking operations 
on the basis of various pick policies: strict order picking, 
batch picking, zone picking, and wave picking. In the strict 
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order picking, a picker traverses the complete route and 
retrieves all the required materials for order completion 
while the batch picking involves the completion of multi-
ple orders at the same time. In the zone picking, the ware-
house is divided in multiple zones with dedicated pickers 
assigned to each zone to reduce travel time and distance. 
However, zone picking may reduce the number of items 
picked by the pickers. The wave picking policy involves 
processing and combining orders to be transported in one 
shipment all at once regardless of zone or location, instead 
of sending pickers as soon as an customer demand arrives. 
It aims to take advantage of economies of scale in picking 
operations, and the topics such as optimal frequency, tim-
ing, and size of wave release have been studied [5, 13, 14]. 
Note that these picking policies can be implemented in 
various combinations based on requirements.

When an order information including the item descrip-
tion, quantity, and cutoff time is received from a customer 
and once the picking policy is determined, order pickers 
using material handling equipment such as forklifts are 
dispatched to pick the items involved in that order. This 
is the stage where the routing optimization comes into 
play to minimize the distance traveled, thus reducing the 
time and cost of the order picking process as a whole. In 
this paper, the routing problem has been addressed as 
a special case of the vehicle routing problem (VRP). The 
VRP model is formulated and then implemented using the 
off-the-shelf solver in conjunction with Julia programming 
language in order to obtain the shortest path for order 
picking, such that the travel distance of the material han-
dling equipment can be minimized. Furthermore, the opti-
mal solution is then compared with routes obtained by 
other traditional routing policies such as S-shape, return, 
mid-point and largest gap methods by means of simula-
tion and statistical analysis. Visual Basic Application (VBA) 
is used for modeling and simulation. Simulation has been 
widely used for the analysis and optimization of supply 
chain and logistics operations, [see, e.g., 2, 4, 19, 26, 35].

1.3 � Motivation and objective of the study

A literature review of relevant work reveals that a consider-
able amount of research has been conducted with a focus 
on vehicle routing in the field of supply chain and logis-
tics. While most research in the literature develops a new 
mathematical model and relevant methodology to tackle 
the transportation problem in supply chain and logistics, 
this paper employs both mathematical model and simu-
lation to focus on the order picking routing problem in a 
warehouse setting with the goal of optimizing the pro-
cess and improving overall productivity. The objective is 
to minimize the total distance and travel time for order 
picking operation by material handling equipment, thus 

minimizing the overall time taken for and costs associ-
ated with order picking. In more detail, this paper aims to 
achieve the following: 

1.	 Generating a mathematical model for routing with a 
consideration of various constraints in a warehouse 
order picking operation.

2.	 Implementing the mathematical model to provide an 
optimal picking route.

3.	 Performing simulation-based analyses and compare 
the mathematical model results with alternative pick-
ing policies.

4.	 Suggesting the order picking approach that is simple 
to implement with adequate outcomes.

The remainder of this paper is organized as follows. Sec-
tion  2 highlights the existing research and solutions 
towards solving the order picking problem. Section 3 
illustrates the methodology including the description of 
the system under study. It introduces and explains the 
mathematical model developed and implemented to solve 
the problem. Section 4 presents the results and discus-
sion. Finally, Sect. 5 concludes the paper and discusses the 
potential future research directions.

2 � Literature review

A significant amount of studies have been conducted in 
the domain of routing policies for various warehouse lay-
outs as well as in the area of vehicle routing. With respect 
to a literature survey, [9] provide an overview on charac-
teristic decision problems faced in the design and con-
trol of manual order-picking processes. This paper identi-
fies order picking as laborious in terms of cost, time, and 
man-power, and describes the complexity of order pick-
ing systems as shown in Fig. 3. In warehouse operations 
and management, routing, storage, batching, zoning, and 
order release mode are in the policy level while warehouse 
dimensionality, information availability, mechanisation 
level, and command cycle are in the strategy level. It also 
explicates various order picking methods and summarizes 
some of the established routing heuristics such as S-shape, 
return, mid-point and largest gap policies.

A variety of methods have been proposed for the rout-
ing optimization in a warehouse setting. For example, 
mathematical optimization approaches [10, 28, 31] and 
heuristics [3, 10, 29, 31] are proposed, along with the 
studies that compare the exact method and heuristics 
[29, 31]. For exact method examples, Ratliff and Rosenthal 
[28] propose an algorithm based on dynamic program-
ming for order-picking in a rectangular warehouse with 
crossovers only at the end of aisles. Roodbergen and 
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Koster [29] present a branch and bound algorithm for the 
TSP to find the shortest path in a parallel aisle warehouse 
with crossovers at the end of every aisle and also halfway 
along the aisles, which is compared with the routing heu-
ristics such as S-shape, Aisle-by-Aisle, largest gap and a 
combined method. This paper also discusses some layout 
consequences, which show that the addition of cross aisles 
may decrease the overall material handling time by reduc-
ing the travel time for picking. With respect to heuristics, 
Caron et al. [3] evaluate the routing heuristics for a manual 
picker-to-part system, which use the storage policy based 
on the cube-per-order index (COI) to ensure that the large 
and heavy items with high demand are placed as close to 
the outbound area as possible. Dekker et al. [10] present 
heuristics for the different order picking policies such as 
S-shape, mid-point, and Combined in conjunction with 
the storage policy, as the storage policy is closely related 
to the routing policy. For the studies that compare the 
exact methods and heuristics, Theys et al. [31] present an 
algorithm based on the NP-hard Steiner TSP to deal with 
the routing problem for order picking in a conventional 
multiparallel-aisle warehouse. Interestingly, they evalu-
ate the degree to which the TSP-based approach affects 
the performance improvement as opposed to dedicated 
heuristics such as S-shape, return, and largest gap. The 
authors validate whether it is necessary to use complex 
heuristics for routing of order pickers as compared to sim-
ple approaches such as S-shape method.

Turning our attention to the storage policy and ware-
house layout, there is also a considerable amount of 

research conducted because their close relationship to the 
routing policy and contribution to the overall warehouse 
operation effectiveness. For example, Hall [15] empha-
sizes on the impact of warehouse layout on order picking 
through an analytical approach and Petersen and Aase [26] 
evaluate the relationship between routing policies and the 
warehouse layout by simulation. In addition, Dekker et al. 
[10] put forth different storage policies including the ABC 
method where all the items to be stored are categorized 
into A, B, or C depending on their demand and turnover 
rate. As the storage policy eventually has an impact on the 
order picking route, the preferred routing policy is cor-
related with the chosen storage method, which is based 
on the skewness of the ABC-curve. The more skewed this 
curve is, the higher difference between pick frequencies of 
A, B, and C items. Gu et al. [14] highlight the impact of the 
traffic congestion caused by material handling equipment 
used for order picking such as forklifts and reach-trucks on 
order picking productivity, and show how the congestion 
is related to the warehouse layout.

It is worth providing a brief survey on TSP and VRP 
because these are the basis of our proposed approach 
to tackle the order picking routing problem. Dantzig 
and Ramser [8] originally propose and formulate the 
VRP to minimize the total travel cost, subject to a set of 
constraints. Ratliff and Rosenthal [28] focus on a special 
case of the traveling salesman problem with a class of 
matrices that follow a pattern of Hamiltonian circuits. 
This is an exemplary work that shows the mathemati-
cal approaches involved in TSP and VRP require a heavy 

Fig. 3   Complexity of order 
picking systems. Source: [9]
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mathematical calculation, namely an NP-hard problem. 
Fukasawa et al. [12] highlight the importance of taking 
into account uncertain demand, traffic conditions, and/
or service times. This study uses the robust optimization 
method for the VRP under uncertainty. Furthermore, Juan 
et al. [18] emphasize a particular case of the TSP known 
as the Vehicle Routing Problem with Stochastic Demand 
(VRPSD). The Monte-Carlo simulation approach is chosen 
owing to the random nature of the demand and the pos-
sibility of unfeasible solutions when the demand exceeds 
vehicle capacity. Similarly, a simulation-based algorithm 
for the capacitated vehicle routing problem (CVRP) with 
stochastic travel time is presented [34]. For easy imple-
mentation, Jiang [17] uses Microsoft Excel Solver to solve 
the TSP. This paper considers two cases of the TSP, viz. 
Euclidean Traveling Salesman Problems (ETSP) and the 
Random Link Traveling Salesman Problems (RLTSP). This 
paper highlights the pros of using Microsoft Excel to solve 
routing problems such as the TSP. The work of Toth and 
Vigo [32] explicates in detail the various types of VRPs, and 
it is also an excellent textbook for VRP.

In summary, a vast amount of research has been carried 
out in the field of picking policies, routing policies, and 
VRP in a warehouse setting. However, the research that 
evaluates the VRP-based routing policy compared with 
other heuristics by means of simulation and statistical 
analysis, which also employs plausible scenarios, is scarce. 
This research aims to fill such a gap, provide a practical 
guidance to the industry, and contribute to the literature.

3 � Model and methodology

This section illustrates the routing model and methodol-
ogy. First, the system under study is described in detail, 
followed by the assumptions used in the model. The VRP 
model is formulated and the alternative heuristics policies 
are introduced. Furthermore, the simulation approach is 
explained.

3.1 � System description

The system under study is a typical warehouse facil-
ity, usually run by a third party logistics company, for 
a manufacturing plant, or functions as a order fulfill-
ment center. The warehouse holds parts needed by the 
manufacturer in order to assemble and produce the final 
product, or works as a buffer between suppliers and end 
customers in the capacity of an order fulfillment center. 
Warehouses have in general two primary location types: 
floor locations and rack storage locations. The floor loca-
tions are used for unloading area, temporary spaces 
during the put-away operation, and storage space for 

bulky and large items such as major mechanical parts, 
while smaller parts are stored in appropriate containers 
in the racks. As the rack space takes the vast majority of 
spaces in most warehouses, the focus of this study is the 
rack locations. However, the same VRP approach can be 
applied to the general warehouse storage types includ-
ing the floor space.

The warehouse we consider in the case study is based 
on the actual one from a partner company, which has 
30 parallel racks having 7 levels, with 24 bay locations 
for each row, as shown in Fig. 4. Each bay location has 3 
bins. Also, levels 5, 6, and 7 have a bay in the middle cross 
aisle. Hence, there are 25 bay locations for each row for 
levels 5–7, while there are 24 bay locations for each row 
for levels 1–4. This layout is a multiparallel-aisle with cross 
aisles at the middle and both ends of the rack. Materials 
are stored and retrieved from the bay locations based on 
the two criteria. First, the location should be able to sustain 
the size and weight of the material. In accordance with 
this, heavy materials are stored at the bottom levels and 
smaller parts are stored in high racks. The second deci-
sion factor is based on demand. The high flowing materi-
als are stored towards the front end, near the outbound 
dock doors while the slow moving materials are stored 
towards the back end, close to the inbound docks. This 
implies that the pick locations are more towards the front 
end and less towards the back end of the warehouse. In 
this study, to examine the impact of different storage 
policies, we consider the two scenarios: one with uniform 
pick up locations throughout the warehouse (for random 
storage policy) and the other with more pick up locations 
towards the front side (for demand-based storage policy). 
The customer requirements are generated through a ware-
house management system by means of a batch program 
in the form of Kanban triggers. The batch program gener-
ates these requirements in two batches, once for the day 
shift and once for the night shift. Based on the produc-
tion requirements, the number of triggers dropped by the 
system ranges between 1500 and 3500 per day, and on 
an average 1500 and 2000 triggers are dropped each day. 
Pick tickets are generated and printed for each trigger by 
the system. These pick tickets are then manually sorted 
based on the destination/consumption point and assigned 
to the order pickers. Each trigger is fulfilled by picking the 
material from the location printed on the pick ticket and 
dropping it off to the assigned outbound area. Each order 
picker uses the material handling equipment such as a 
forklift or a reach-truck to pick the items. The order pickers 
physically pick parts from respective locations and stage 
them in the staging area before loading them onto trailers, 
which are then dispatched to the customer. Figure 5 pro-
vides a high level flowchart of the order picking process.
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3.2 � Assumptions

The proposed model and methodology require certain 
assumptions to reasonably simplify and appropriately 
represent the system, achieve computational tractabil-
ity, and solve the problem. First, it is assumed that the 
travel path chosen for travel between any two pick loca-
tions is always the shortest possible path. Practically, this 
may be a little arduous to achieve since it would require 
the order pickers to know the shortest possible route 
between any two nodes. However, with appropriate 
visual aid and/or voice aid that can be attached to the 
material handling equipment, this can be made possible. 
Indeed, there has been a significant progress for semi-
autonomous or autonomous material handling equip-
ment such as automatic forklifts employing sensors, 
RFID and ultra wide band technologies, and adaptive 
algorithms to enhance safety and productivity of order 

picking operations [33]. Next, the drop-off location (stag-
ing area) is assumed to be at the bottom-right corner of 
the warehouse for the sake of simplicity. However, this 
assumption can be easily modified for further analysis. 
An important assumption is that the size of the items to 
be picked allows multiple picks on a single tour without 
exceeding the vehicle capacity. Also, vehicle capacity is 
assumed to be 14 items for the purpose of calculations, 
which implies that the number of picks can be up to 14 
in a single picking run. This number can be modified for 
further research. It is also assumed that a single vehi-
cles is used in the case study, which can be updated to 
accommodate multiple order pickers. Another impor-
tant assumption is that each pick-up location can be 
visited only once in a single picking operation. Finally, 
it is assumed that there are no obstacles on the travel 
path, thus enabling uninterrupted travel.

Fig. 4   Layout of racks section

Fig. 5   Order picking process
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3.3 � Mathematical model

This section introduces the mathematical formulation of the 
VRP model that is used in this study. Each pick location is 
considered to be a node with the drop-off location (defined 
as a depot) being node 0. The set of all nodes excluding the 
depot is denoted by N = {1,… , n} and N0 = {0} ∪ {1,… , n} 
is the set of all nodes. Let i and j be the index nodes such that 
i, j ∈ N0 . The vehicle (material handling equipment, e.g., fork-
lift) capacity is denoted by C and the set of vehicles is denoted 
by K = {1, 2,… |K |} . The travel distance, which can be con-
verted to travel time by assuming the constant average speed 
of the vehicles, between node i and j is denoted by tij while 
the pick quantity or demand at each node i is denoted by di . 
T is defined as the maximum time allowed for each tour and 
the flow of the vehicle after visiting node i is denoted by ui 
while ai represents the arrival time of the vehicle at node i. 
Let the binary variable xij be an indicator of travel from node 
i to j (1 implying travel between the two nodes; 0 implying 
otherwise). Now the VRP based on the MTZ formulation [32] 
can be formulated as follows:

subject to

(1)min
∑

i∈N0

∑

j∈N0

tijxij

(2)
∑

i∈N0

xij = 1 ∀j ∈ N

(3)
∑

j∈N0

xij = 1 ∀i ∈ N

(4)
∑

i∈N

xi0 = |K |

(5)
∑

j∈N

x0j = |K |

(6)ui + dj − C(1 − xij) ≤ uj ∀i, j ∈ N

(7)di ≤ ui ≤ C ∀i ∈ N

(8)ai + tij − T (1 − xij) ≤ aj ∀i, j ∈ N

(9)t1i ≤ ai ∀i ∈ N

(10)xij ∈ {0, 1} ∀i, j ∈ N0

The objective function (1) is to minimize the total travel dis-
tance/time to complete the order picking process while con-
straints (2) and (3) ensure that each node is visited only once. 
Constraints (4) and (5) specify the number of vehicles used 
and constraints (6) are for sub-tour elimination. Constraints 
(7) specify the demand and capacity while the arrival time 
and time related constraints are represented (8) and (9).

Note that the MTZ-based VRP is NP-hard with the com-
putational complexity of O(2n) . Accordingly, it is not an 
easy task to solve the VRP, especially when the size of the 
problem is large with hundreds or thousands of variables. 
This is clearly a limitation of the mathematical model, which 
becomes apparent if order picking routing is to be sought for 
a very large warehouse. However, as the focus of this paper is 
not on the investigation of computational complexity of VRP 
but on examining the potential of VRP and simulation-based 
routing methods for order picking, we refer readers to Toth 
and Vigo [32] for the computational challenge VRP poses. 
Indeed, VRP has been studied quite extensively, and a variety 
of effective heuristic algorithms, e.g., the insertion method in 
conjunction with tabu search [21], simulated annealing [24], 
and brand-and-cut [22], have been developed, which can be 
easily applied to solving our problem.

Note also that the route obtained by solving the math-
ematical optimization model may not be intuitive to order 
pickers because it will not have structured rules that other 
routings policies have. In fact, the names for other policies 
such as S-shape, return, mid-point, and largest gap rep-
resent the routing rules order pickers follows. This issue, 
however, may be easily resolved with the aid of portable 
IT-enabled devices that can tell directions to order pick-
ers. Such portable devices with the real-time navigation 
may be attached to the material handling machines such 
as forklifts.

3.4 � Distance matrix

The distance between a pair of nodes is provided by 
means of a distance matrix. The shortest distance between 
any two nodes is calculated as follows. Let x be the across 
aisle coordinate and z be the coordinate along the aisle as 
shown in Fig. 6. If x1 = x2 , i.e., the two nodes are located in 
the same aisle, the distance between the two nodes can 
be easily calculated: t12 = z2 − z1 where t12 is the distance 
between node 1 and 2. Otherwise, the distance between 
the two nodes can be calculated as follows [23]:

(11)

t12 = min
(
∣ z1 − B ∣ + ∣ x2 − x1 ∣ + ∣ z2 − B ∣,

∣ z1 −M ∣ + ∣ x2 − x1 ∣ + ∣ z2 −M ∣,

∣ z1 − T ∣ + ∣ x2 − x1 ∣ + ∣ z2 − T ∣
)
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where T, M, and B are the z-coordinate of top cross aisle, 
middle cross aisle, and bottom cross aisle, respectively. The 
top cross aisle, middle cross aisle, and bottom cross aisle 
locations are shown in Fig. 6. The distance matrix calcu-
lated this way is used for the optimization model, alterna-
tive policies, and simulation.

3.5 � Alternative routing policies

The objective of the vehicle routing model is to minimize 
the travel distance/time. It is important to note that the 
optimal shortest route may not be the most frequently 
used one by order pickers in practice. This is mainly 
because the optimal route may not be readily available 
to order pickers when they start a tour, which consists of 
the set of pick locations and associated routes, for order 
picking. Moreover, the optimal shortest route for each tour 
will be different, which may be not very convenient for 
order pickers because it is in general easier to follow cer-
tain consistent rules instead of following different routes 
for each tour. Finally, the vehicle routing problem needs 
to be solved for each order picking tour, which could be 
time consuming that may require a high level of comput-
ing power. For those reasons, other routing policies such 
as S-shape, return, mid-point, and largest gap, which will 
be briefly introduced in this section, have been employed.

However, the recent rapid development of informa-
tion technology including Internet of Things (IoT) and 
portable/mobile electronic devices, state-of-the-art com-
puting power, real-time location tracking techniques, 
and enhanced heuristic algorithms make it possible to 
provide a real-time routing and guidance information for 
order pickers through the navigation device embedded 

or attached to the material handling equipment. Hence, it 
is important to compare traditional intuitive routing poli-
cies with the vehicle routing-based shortest path routing, 
and evanluate the shortest path routing policy. In order 
to achieve this, a simulation model is built in which two 
order demand scenarios (one with uniform distribution 
and the other with more pick-ups assigned to the areas 
close to drop-off location) are considered. Before we 
proceed further, the traditional routing policies such as 
S-shape, return, mid-point and largest gap, illustrated in 
Fig. 10 where pick locations are shown as blue boxes, are 
briefly introduced in this paper.

3.5.1 � S‑shape

In the S-shape policy, the path followed by the order pick-
ers is in the shape of an S. This implies that any aisle con-
taining at least one pick is traveled entirely by the order 
picker as illustrated in Fig. 7a. Aisles without picks are not 
entered and the order picker returns to the drop-off loca-
tion (depot) from the last visited aisle.

3.5.2 � Return

In the return policy, an aisle is entered and exited from 
the same end as shown in Fig. 7b. Only aisles with picks 
are entered. If most of the pick locations are on one end 
of each aisle, this method can be quite effective. For exam-
ple, in a warehouse where a class-based storage method 
is implemented and the highest-velocity items are placed 
at the front of each aisle, it is likely that return routing will 
be a favorable policy.

3.5.3 � Mid‑point

In the mid-point policy, the warehouse is divided into 
two halves. Picks from the bottom half are retrieved from 
the bottom cross aisle, while picks from the top half are 
retrieved from the top cross aisle, which is illustrated in 
Fig. 7c. If the number of picks per aisle are small, this policy 
provides better results than the S-shape policy [23].

3.5.4 � Largest gap

In the largest gap policy, order pickers avoid the largest 
gap during the picking operation. When there is a pick up 
location in an aisle, there can be three gaps: (1) the dis-
tance between the top cross aisle and the first pick loca-
tion in the aisle, (2) the distance between two middle pick 
locations, and (3) the distance between the bottom cross 

Fig. 6   Distance between two nodes. Source: [23]
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aisle and the last pick location. The largest of these three 
gaps is avoided as shown in Fig. 7d.

3.6 � Simulation model

The effectiveness of the shortest picking route is evalu-
ated and compared with other routing policies using 
simulation. In particular, two random demand scenarios 
are considered: one with the uniform demand distribution 
throughout the warehouse and the other with differenti-
ated demand distribution (half of the warehouse has more 
demand than the other half ). This is analogous to the two 
storage policies: random and zone storage policies, which 
are frequently used in practice.

Visual Basic for Applications (VBA), a programming lan-
guage embedded in Microsoft Excel, is used for simulation 
due to its ability of building user defined functions (for 
more flexibility), automating processes and ease of access, 

and integration with the database. The following sections 
explain the development and working of the simulation 
model developed using VBA.

3.6.1 � Warehouse layout and distance matrix development

This section explicates the warehouse layout and devel-
opment of the distance matrix. The data has been col-
lected by physically inspecting and measuring the layout 
of the partner company’s actual warehouse rack sec-
tions. In the warehouse considered in this paper, there 
are 450 bay locations. The layout of the warehouse (rack 
section) shown in Fig. 4 is transferred into a 2-dimen-
sional graph with the vertical axis x and the horizontal 
axis z. For the sake of simplicity, the height of the rack 
is ignored. The x axis denotes the across aisle coordi-
nate while the z axis represents the coordinate along 
the aisles (see Fig. 6). Each bay is assigned with x and z 

Fig. 7   Alternative policies. Revised from De Koster et al. [9]
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coordinates, considering its actual locations and dimen-
sions. These coordinates enable the creation of a dis-
tance matrix for each pair of nodes (bay locations), which 
plays an important role in the mathematical model and 
simulation. The sample distance matrix for 15 locations 
is shown in Fig. 8.

3.6.2 � Scenario description

To evaluate the routing policies by simulation, the inher-
ent random pick locations and random pick amount need 
to be considered for which two scenarios are generated. 
In scenario 1, it is assumed that the pick locations are uni-
formly distributed throughout the racks section of the 
warehouse as shown in Fig. 9a, which may correspond to 
the random storage policy. In scenario 2, the warehouse is 
divided into two sections as shown in Fig. 9b, which may 
correspond to the zone storage policy. The first section 
(left section) is near to the inbound area and has less fre-
quency items whereas the second section (right section) 

is close to the outbound area and holds high frequency 
items. As the high frequency items are placed near the 
outbound area, 75% of pick locations are generated from 
the right section while 25% of them are from the left sec-
tion. As such, the number of picks generated on the right 
section near the outbound area are three times more 
than that of the left section near the inbound area. Note 
that within each section, the pick locations are uniformly 
distributed.

In each scenario, 14 pick locations are generated. 
Including the depot (drop-off location), there are a total of 
15 locations. In scenario 1, the 14 locations are uniformly 
distributed among the 450 location points (bays), which 
implies that each location has an equal probability to be 
chosen. The size of demand (number of items to be picked) 
at each location is also randomly generated between 1 
and 2, such that the total number of items for a single tour 
does not exceed the vehicle capacity that is assumed to be 
30. In scenario 2, a pick location is generated in two steps. 
In the first step, either left or right section of the racks is 

Fig. 8   Sample distance matrix

Fig. 9   Two scenarios



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:311 | https://doi.org/10.1007/s42452-020-2076-x

chosen with the probability of 75% and 25%, respectively. 
Then, a pick location is chosen based on the uniform distri-
bution within the selected section. This process is repeated 
until all pick locations are generated. The number of items 
to be picked (size of demand) is still randomly distributed 
between 1 and 2 for each pick location, such that the vehi-
cle capacity is never exceeded.

3.6.3 � Vehicle routing model and alternative policies

The VRP has been solved using the programming lan-
guage Julia in conjunction with the off-the-shelf solver 
Gurobi. The distance and demand matrices are used as an 
input to this model. Once the model is implemented and 
an optimal solution is found, the total distance traveled on 
the route is calculated. As it is assumed that the average 
speed of material handling equipment is 5 miles per hour, 
which is determined based on the discussion with the 
partner company’s warehouse manager, the total travel 
time can also be calculated.

Next, for the same pick locations and demand quanti-
ties, the distances traveled for the alternative policies are 
calculated. These include S-shape, return, mid-point and 
largest gap. The logic for each policy is developed and 
coded by means of VBA. For the S-shape policy, any aisle 
containing at least one pick is traversed entirely. Aisles 
with no picks are not entered. Order pickers return to the 
depot after the last visited aisle. For the return policy, order 
pickers enter and leave the aisle from the same side of the 
aisle. Only the aisles with pick locations are entered and 
each aisle is traversed as far as the last pick location in 
the aisle. For the mid-point policy, warehouse is divided 
into two areas. Picks in the front half are accessed from the 
front cross aisle, while picks in the back half are accessed 
by the back cross aisle. The picks in the middle cross aisle 

are accessed from the front cross aisle. Finally, for the larg-
est gap policy, the order pickers avoid the largest gap dur-
ing the picking operation. The distances are then trans-
lated into travel time in the aforementioned manner.

3.7 � Model validation and verification

After the formulation of the problem, data collection, and 
model development, the next essential steps of a simu-
lation study are model verification and validation. The 
assumptions document is examined to ensure valid the 
representation of the system, which has been carried out 
by discussions with the warehouse manager and a care-
ful study and analysis of the real order picking processes. 
Next, the models developed on Julia and VBA, i.e., the 
mathematical and simulation models, respectively, have 
been verified by means of line-by-line debugging and 
trial runs with simple problems of which the answers are 
known. After the verification step, the models are vali-
dated to be an apt representation of the system. For this, 
experimental runs are carried out, and then the results are 
compared with the actual system outputs.

4 � Results, analyses, and discussion

The mathematical model is solved with Julia 1.1 in con-
junction with Gurobi 9.0 solver and the simulation is 
implemented by VBA. The implementation is done using 
a Mac computer with an Intel core i7 CPU @ 2.2 GHz and 
16 GB RAM. The computation time is within a reasonable 
range (e.g., within 15 seconds) for experiments. A custom-
ized random number generator (prime modulus multipli-
cative linear congruential generator) is used to generate 
uniform variates for pick locations. For each scenario in 
simulation, 30 replications are made to obtain reliable 

Fig. 10   Travel distance and time for routing policies
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results and perform statistical analysis. The results are 
shown in Figs. 10 and 11. In particular, the average travel 
time and distance are shown in Fig. 10. The VRP results 
are 4.53 min (1994 ft) and 4.65 min (2044 ft) for scenario 1 
and 2, respectively, in terms of travel time (distance), while 
other routing policy results are more than 6 min for both 
scenarios. The box plots of travel time for 30 replication 
results are shown in Fig. 11 in which VRP travel times are 
significantly lowers than other routing policy travel times 
in both scenarios. Interestingly, the scenario 2 result for 
VRP policy is not significantly better than scenario 1 result 
while other policies show some improvements in scenario 
2 over scenario 1. More detailed analyses follow for each 
scenario in the subsequent sections.

4.1 � Scenario 1 results

To analyze and compare the performance of different 
routing methods using statistical methods, we employ a 
one-way ANOVA that tests the equality of two or more 
means. Then, we perform a Tukey’s multiple comparison 
test to identify which routing policy performs better than 
the other pairwise in terms of the average travel time. In 
ANOVA, the null hypothesis is that all travel time means 
are equal and the alternative hypothesis is that at least one 
mean is different. That is, H0 = �1 = �2 = �3 = �4 = �5 and 
Ha = At least one pair of means are different from each other 
where H0 and Ha represent the null and alternate hypoth-
eses, respectively, and �1,�2,�3,�4 , and �5 are the five 
routing policies’ population means for travel times. The 
significance level chosen is 5% and the equal variance 
assumption is taken for the analysis. The ANOVA results 
are summarized in Table 1.

The decision-making process for a hypothesis test is 
based on the p value, which indicates the probability of 
falsely rejecting the null hypothesis when it is indeed true. 
The null hypothesis is rejected because the p value is 0.00, 
which implies that the average travel times are not the 
same for different routing policies.

To assign the routing policies to the group of the similar 
travel times, the Tukey’s test is conducted, which is shown 
in Table 2. The five routing polices can be divided into 
three groups, denoted by A, B, and C where each group 
has statistically similar polices with respect to their aver-
age travel time. In Table 2, mid-point and return polices 
belong to the same group A while largest gap and S-shape 
are in the B group. Note that the VRP is the only one that 
is in group C, which implies that VRP is significantly differ-
ent than other polices. Indeed, VRP outperforms all the 

Fig. 11   Travel time box plot for routing policies

Table 1   ANOVA results: scenario 1

Source DF Adj SS Adj MS F-Value p Value

Routing 
algorithms

4 293.6 73.41 51.57 0.00

Error 145 206.4 1.424
Total 149 500.1

Table 2   Grouping using Tukey’s test

Routing algorithm N Mean SD 95% CI Group

Largest gap 30 7.18 0.96 (6.75, 7.61) B
Mid-point 30 8.49 1.62 (8.06, 8.92) A
Return 30 8.22 1.65 (7.79, 8.65) A
S-shape 30 7.14 0.79 (6.71, 7.57) B
VRP 30 4.53 0.46 (4.10, 4.96) C
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other routing methods, which can be verified from pair-
wise Tukey’s test summarized in Table 3 and Fig. 12. The 
pairwise Tukey’s test has the null hypothesis: H0 ∶ �i = �j , 
and the alternative hypothesis: Ha ∶ �i ≠ �j where i and j 
are indexes for routing policies. If the p value of the test 
pair is less then 0.05 (at the significance level of 5%), then 
we reject the null hypothesis, otherwise not. As shown in 
Table 3 and Fig. 12, the VRP result is significantly less than 
largest gap, mid-point, return, and S-shape. In addition, 
the largest gap shows the worst results compared to other 
routing policies. In summary, VRP is the best and largest 
gap is the worst in scenario 1.

4.2 � Scenario 2 results

Similar to Sect. 4.1, ANOVA and Tukey’s test are used to 
compare different routing policies in terms of the travel 
time for scenario 2. The same hypotheses and signifi-
cance level are used. The ANOVA results are summarized 
in Table 4. Consistent with scenario 1, the null hypothesis 

Fig. 12   Tukey’s test: scenario 1

Table 3   Tukey simultaneous 
tests for differences of means

Difference of levels Difference of 
means

SE of difference 95% CI T-Value p Value

VRP—Largest gap − 2.64 0.31 (− 3.50, − 1.79) − 8.58 0
VRP—Mid-point − 3.96 0.31 (− 4.81, − 3.11) − 12.86 0
VRP—Return − 3.69 0.31 (− 4.54, − 2.83) − 11.96 0
VRP—S-shape − 2.61 0.31 (− 3.46, − 1.76) − 8.48 0
Mid-point—Largest gap 1.32 0.31 (0.46, 2.17) 4.27 0
S-shape—Largest gap − 0.03 0.31 (− 0.88, 0.82) − 0.11 1
Return—Mid-point − 0.28 0.31 (− 1.13, 0.57) − 0.9 0.90
S-shape—Mid-point − 1.35 0.31 (− 2.20,− 0.50) − 4.38 0
Return—Largest gap 1.04 0.31 (0.19, 1.89) 3.38 0.01
S-shape—Return − 1.07 0.31 (− 1.92, − 0.22) − 3.48 0.01

Table 4   ANOVA results

Source DF Adj SS Adj MS F-Value p Value

Routing 
algorithms

4 65.41 16.35 31.76 0.00

Error 145 74.67 0.52
Total 149 1140.08

Table 5   Grouping using Tukey test

Routing algorithm N Mean SD 95% CI Grouping

Largest gap 30 6.35 0.57 (6.09,6.61) A
Mid-point 30 6.42 0.87 (6.61,6.68) A
Return 30 6.12 0.89 (5.86,6.38) A
S-shape 30 6.21 0.68 (5.95, 6.47) A
VRP 30 4.65 0.49 (4.39,4.91) B
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is rejected in scenario 2. That is, the average travel times 
are not the same for different routing policies.

Furthermore, to assign the routing policies to the 
group of the similar travel times, Tukey’s test is con-
ducted, which is shown in Table  5. The five routing 
polices can be divided into two groups, denoted by A 
and B where each group has statistically similar polices 
with respect to their average travel time. In Table 5, mid-
point, return, largest gap and S-shape are in the A group 
while the VRP is in group B, which implies that VRP is 
significantly different than other polices. Unlike sce-
nario 1, there are two groups, instead of 3, which implies 
that while VRP (in group B) is significantly differnt than 

others, all other routing policies are indifferent to each 
other. VRP again outperforms all other polices, which 
can be verified from pairwise Tukey’s test summarized 
in Table 6 and Fig. 13. The VRP result is significantly less 
than largest gap, mid-point, return, and S-shape. In sum-
mary, VRP is the best policy for scenario 2 as well as for 
scenario 1 (Table 7).  

4.3 � Summary of results

The simulation results are summarized in Table 8 along 
with comments that contain some suggestions and 
insights. With a 95 percent confidence level, VRP outper-
forms all other routing policies for both scenarios. That is, 
the VRP travel time is significantly smaller than that of the 
alternative routing policies. The average travel time for 
VRP is 4.53 min for scenario 1 and 4.64 min for scenario 
2. S-shape and largest gap policies are the next best ones 
for scenario 1 but this is not the case in scenario 2. No 
significant differences is found between these two rout-
ing methods, with the mean time for S-shape being 7.14 

Fig. 13   Tukey’s pairwise test: 
scenario 2

Table 6   Tukey simultaneous 
tests for differences of means

Difference of levels Difference of 
means

SE of difference 95% CI T-Value p Value

VRP—Largest gap − 1.71 0.18 (− 2.22, − 1.19) − 9.21 0
VRP—Mid-point − 1.77 0.18 (− 2.29, − 1.26) − 9.58 0
VRP—Return − 1.47 0.18 (− 1.99, − 0.96) − 7.96 0
VRP—S-shape − 1.56 0.18 (− 2.07, − 1.05) − 8.43 0
Mid-point—Largest gap 0.07 0.18 (− 0.44, 0.58) 0.37 0.99
Return—Largest gap − 0.23 0.18 (− 0.74, 0.28) − 1.25 0.72
S-shape—Largest gap − 0.14 0.18 (− 0.66, 0.37) − 0.78 0.94
S-shape—Mid-point − 0.21 0.18 (− 0.72, 0.30) − 1.15 0.78
Return—Mid-point − 0.30 0.18 (− 0.81, 0.21) − 1.62 0.48
S-shape—Return 0.09 0.18 (− 0.42, 0.60) 0.47 0.99

Table 7   Sample T-test for VRPs

Sample N Mean SD SE mean

VRP (scenario 1) 30 4.53 0.46 0.08
VRP (scenario 2) 30 4.64 0.49 0.09
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min and that for largest gap being 7.18 min in scenario 
1. The mid-point and return routing policies are signifi-
cantly more time consuming with the mean times being 
8.49 and 8.22 min, respectively, in scenario 1. However, all 
four polices except VRP are very similar to each other in 
scenario 2.

To analyze the VRP results between scenario 1 and 
scenaro 2, we conduct a 2-sample t-test to compare 
the time taken by the VRP policy for the two scenarios. 
First, the box plots for the two VRP results are drawn in 
Fig. 14, in which scenario 1 result shows more variabil-
ity between the first and third quartiles (blue boxes). 
However, in scenario 2 the VRP travel time shows big-
ger maximum and minimum values compared to sce-
nario 1. This implies that the zone storage could result 
in some extreme travel times in some situations. In the 
two sample t-test, the null hypothesis is that the travel 
time means are equal between the two scenarios while 

the alternative hypothesis is that the means are differ-
ent. That is, H0 ∶ �1 = �2 and Ha ∶ �1 ≠ �2 . The signifi-
cance level chosen is 5% and the results are summarized 
in Table 9. From the results, as p value > 0.05 the null 
hypothesis cannot be rejected, implying the two VRP 
results show no significant differences. We may conclude 
that the storage policy between random and zone meth-
ods have no statistical impacts on the VRP results while 
other routing policy results improve for scenario 2 in our 
example.  

4.4 � Analyses and discussion

It is evident that the solution vehicle routing model 
entails the least amount of travel time, and is signifi-
cantly better than the other routing method. However, 
the solution of this algorithm is unique for every order 
and needs to be executed for each individual set of pick 
locations. Also, it is not intuitive for the forklift operators 
unless each operator is assigned a tablet or other device 
to view the path that is to be traveled. Even though, sta-
tistically, the largest gap routing method performs as 
well as the S-shape method, the largest gap method 
is not intuitive for the operators. It is not possible to 
visually determine the largest gap without the aid of 
mathematical calculations. Hence, the S-shape policy Fig. 14   VRP boxplots for two scenarios

Table 8   Summary of results Routing policy Avg. time (min) Avg. tme (min) Comment
(Scenario 1) (Scenario 2)

Vehicle routing 4.53 (Rank = 1) 4.64 (Rank = 1) Provides the shortest possible travel time
Additional software needed
Not intuitive for operators

S-shape 7.14 (Rank = 2) 6.21 (Rank = 2) Does not provide the shortest possible travel time
No additional software required
Intuitive for operators

Largest gap 7.18 (Rank = 2) 6.12 (Rank = 2) Does not provide the shortest possible travel time
No additional software required
Not intuitive for operators

Return 8.22 (Rank = 3) 6.42 (Rank = 2) Time consuming
No additional software required
Intuitive for operators

Mid-point 8.49 (Rank = 3) 6.35 (Rank = 2) Time consuming
No additional software required
Intuitive for operators

Table 9   Sample T-test results

Difference CI (95%) T-Value DF p value

− 0.11 (− 0.36, 0.13) − 0.93 57 0.35
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works better because of its intuitive nature. The return 
and mid-point routing methods are the least preferred 
methods because of the additional travel time. Hence, 
the vehicle routing model is recommended since its 
provides the optimal solution. However, in certain situ-
ations, it is not possible to use the vehicle routing model 
due to software/manpower limitations. In this case the 
S-shape method is recommended.

5 � Conclusion and future work

Order picking is one of the most critical, time restrained 
activity of warehouse operations. It has the ability to 
impact the entire supply chain. This study provides a solu-
tion to the routing optimization problem for order picking 
in a rectangular, multiparallel-aisle warehouse with cross 
aisles at the middle and end of every aisle. The objective 
of this study is to propose a routing policy that minimizes 
the total travel time/distance in the order picking process, 
which in turn minimizes the overall operating costs. This 
was achieved by means of optimization and simulation, 
followed by statistical analysis.

First, a mathematical model was developed as a spe-
cial case of the vehicle routing problem. This model was 
implemented using Julia in conjuction with Gurobi. Next, 
a simulation model was generated using VBA based on 
the actual warehouse layout. Two scenarios based on 
the picking demand distribution within the warehouse 
were simulated. For a set of 15 pick locations, the simu-
lation delivered routes for multiple routing policies: VRP, 
S-shape, return, mid-point, and largest gap for both sce-
narios. For both the scenarios, VRP outperforms the other 
routing methods, which was validated using ANOVA and 
Tukey’s test. The results show that the proposed VRP 
based approach outperforms the S-shape, return, mid-
point, largest gap methods by 36.55%, 44.89%, 46.64%, 
and 36.9 %, respectively, for scenario 1, and by 25.12%, 
24.01%, 27.57%, and 26.77%, respectively, for scenario 2.

Future work can be directed towards overcoming the 
limitations of the current model. The simulation scenario 
can be modified for pick locations to accommodate more 
realistic situation. For this, actual data from the warehouse 
can be used and the state-of-the-art data analysis tech-
niques can be used. Furthermore, heuristic algorithms can 
be developed to tackle more complex, realistic situations 
such as multiple pickers/vehicles in a large warehouse. 
In addition, uncertain factors such as traffic jam, errors in 
Kanban triggers can be considered by means of stochastic 
optimization. A VRP solution can be different if the capac-
ity of order pickers is considered. Even though the capacity 
constraints are not considered in this paper to focus on the 
main topic of examining the VRP-based method for order 

picking routing with the aid of simulation, it will be a valu-
able direction to be sought in the future work.
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