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Abstract
Nowadays, we are attending to the wide proliferation of IoT devices in various computing environments. Actually, this 
trend is the natural way to extend the M2M communication. However, these devices are facing serious resource con-
straints. To mitigate this problem, the huge amount of the exchanged data is collected from these devices for being 
stored and processed by the Cloud. Furthermore, since the Cloud is honest but curious, it may reveal personal informa-
tion about users’ habits owning these devices and can even lead to user profiling. Consequently, security mechanisms 
should be deployed at different levels to preserve data privacy so that only authorized users can gain access to the 
smallest piece of data according to the collection purpose. By assuming that the Cloud-is-honest-but-curious, we can 
not provide full or similar access to different untrusted Cloud services. Therefore, we should define the relevant privacy 
level implementing the data access control for each Cloud service according to some criteria. In this context, CP-ABE is a 
promising solution addressing this problem. This novel attribute-based public key encryption system provides a flexible 
fine-grained access control to data for any data requestor. However, performing all the related cryptographic operations 
on such devices is practically infeasible because of the resource constraints. For alleviating all the computation burden 
on these resource-limited devices, several schemes have been proposed. In this work, we propose a smart offloading 
technique that switches dynamically from full encryption to partial encryption according to a wise decision strategy 
considering the available resources and some crucial parameters like the number of attributes and the size of the data 
being encrypted. The relevant decision is based on a machine learning algorithm. To the best of our knowledge, this is 
the first paper proposing an adaptive CP-ABE scheme for constrained device optimizing the overall available resources.
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1 Introduction

Recently, the market of IoT devices has known a spec-
tacular boom. The number of these devices is expected 
to grow to 10 billion by 2020 and 22 billion by 2025. In 
fact, the emergence of this trend is mainly due to the 
evolution of wireless technology combined with Inter-
net enhancement and the large demand for high-quality 
sensing devices enabling smart living applications. From 

a technological point of view, IoT can be seen as a conse-
quence of machine-to-machine (M2M) architecture and 
its connectivity [1]. This key concept refers to the inter-
connection of machines via a network without any human 
intervention. As an extension of this technology, IoT is 
composed of billions of smart devices over a network con-
necting physical systems, people and smart applications 
intended to collect, process and share data. Furthermore, 
the flexibility and mobility of IoT devices are giving users 
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an easy and intuitive way to control their overall smart 
environment [2]. However, these devices are suffering 
from severe constraints on their basic resources related 
to processing, storage, and energy, which is rising serious 
performance issues.

In addition, the IoT devices are pervasively collecting 
and processing a huge amount of data leading to a criti-
cal capacity bottleneck at any of the resources involved. 
Fortunately, the Cloud constitutes the best alternative for 
solving this resource limitation problem. In this context, 
data owners will often outsource the collected data to take 
advantage from the huge storage and processing capacity 
of the Cloud. Usually, the Cloud is honest but curious [3], 
hence data owners can not fully trust any Cloud server. 
Indeed, since the data is outside of the controlled trusted 
area, any untrusted party (including the service providers) 
can potentially access to any sensitive data without the 
data owner’s consent. Moreover, this uncontrolled access 
may reveal personal information about users’ habits and 
can even lead to user profiling and privacy violation issues. 
Consequently, a strong security mechanism should be 
deployed at different levels to preserve data privacy and 
confidentiality to ensure that only authorized entities can 
gain access to the smallest piece of data according to the 
collection purpose and the data owner requirements.

To solve this problem, data owner should either use 
an authenticated access control system that allows only 
authorized users to access the data, or encrypt the data 
before being outsourced to the Cloud. However, using 
an authenticated access control system is not completely 
secure because intruders could still access the data using 
malicious software [4] or may tamper with the data [5, 6]. 
Therefore, preserving data privacy by adopting a strong 
encrypting mechanism is certainly more effective in such 
environment [7, 8].

There are two basic classes of encryption: symmetric 
mechanisms based on secret keys and asymmetric mech-
anisms based on public keys. Symmetric encryption is 
lighter than asymmetric encryption in terms of computa-
tion time [9]. On one hand, in symmetric encryption, the 
data owner should precisely know the identity of who 
requests the data to send him the right shared secret key 
needed for decryption. In IoT environments, this constraint 
is not feasible. In fact, once the data owner outsources his 
encrypted data to the Cloud, he has no information about 
the other users’ identities or requests, so he is unable to 
provide any cryptographic material for any communica-
tion. On the other hand, in traditional asymmetric encryp-
tion, the data owner encrypts the data using a public key 
while the requester will use his own private key to decrypt 
the data. In this cryptosystem, the data owner should also 
identify who requests the data to correctly encrypt his 
data. Hence, traditional public-key systems are also not 

suitable to implement an effective encryption mechanism 
for IoT environments. Consequently, there is a need for an 
encryption system that can effectively handle access con-
trol in such environments. As a solution, a novel encryp-
tion mechanism called Attribute-Based Encryption (ABE) 
has been proposed [10]. This cryptosystem can specify 
then one-to-many encryption requirement regardless of 
the identity of the decryptors which is an inherent feature 
of a Cloud-based IoT environments. This mechanism is 
based on contextual information and identity attributes.

Attribute-Based Encryption (ABE) was first proposed in 
2006 by Goyal et al. [11]. An attribute is a descriptive string 
attached to a user who may be characterized by multiple 
attributes. Hence, we can easily specify any group of users 
by a well-defined set of describing attributes. This concept 
fits very well with IoT environments since we can combine 
many attributes using logical operators to formulate a 
one-to-many access policy. The authors proposed a new 
form of asymmetric encryption called Key-Policy Attrib-
ute Based Encryption (KP-ABE). Later, in 2007, Bethencourt 
et al. [10] proposed a new type of Attribute Based encryp-
tion called Ciphertext policy Attribute Based Encryption 
(CP- ABE). In KP-ABE, the ciphertext is described with a set 
of attributes while the private keys are associated with an 
access structure specifying which ciphertext the users can 
decrypt. As a dual approach CP-ABE assigns attributes to 
private keys and attaches an access policy to the cipher-
text so only users holding the set of attributes satisfying 
the access policy can decrypt the ciphertext.

The main advantage provided by ABE is the possibility 
of specifying flexible and expressive fine-grained access 
control policies over encrypted data. This feature satisfies 
the data minimization principle, a very important privacy 
requirement. In addition, this encryption system does not 
put any restriction on neither the number of authorized 
entities nor their identities. This crucial feature enables a 
reliable anonymous access control [12]. However, all the 
ABE mechanisms are still infeasible since the required 
encryption operations will lead to a heavy computation 
burden requiring high resources in terms of CPU, Mem-
ory, and energy consumption, which is a major issue for 
preserving privacy in such resource-constrained environ-
ments. Indeed, this infeasibility motivates the research-
ers to design variants of CP-ABE schemes that reduces 
the cryptographic computation burden and resource 
consumption to fit with the IoT environment constraints 
[13–17].

However, these previous contributions suffer from two 
major weaknesses. First, some of the proposed schemes 
are restricted to specific types of access policy. Thus, these 
schemes will be restricted to a limited range of applica-
tions. Secondly, all of these proposed schemes consider 
that the availability of resources on constrained devices is 
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constant all the time which is not realistic. Indeed, in prac-
tice, the availability of the resources is a variable parameter 
depending on: (1) the number of tasks and loads assigned 
to each device and, (2) the data size and the complexity 
of the access policy. For this purpose, we investigate the 
impact of this changing availability on the CP-ABE scheme 
performance in an IoT environment.

In this article, we propose a smart offloading approach 
that switches dynamically from full encryption to partial 
encryption according to a wise resource-based decision. 
More precisely, the proposed algorithm implements an 
adaptive CP-ABE scheme for constrained devices optimiz-
ing the overall available resources. We adopted a machine 
learning technique to select the appropriate encryption 
technique according to the resources availability, the com-
plexity of access policy, and the data size. Finally, we vali-
date the performance of our scheme in terms of execution 
time, CPU and memory utilization, and power consump-
tion through several scenarios.

The rest of this paper discuss the related work in Sect. 2. 
The motivations of proposing adaptive CP-ABE scheme 
and the its challenges are discussed in Sect. 4. Then we 
present our proposed scheme in Sect. 6. Our results show 
in Sect. 7 followed by the conclusion in Sect. 9.

2  Related work

In this section, we discuss the main encryption schemes 
and the existing solutions to reduce computation cost 
under constrained devices.

In 2007, Bethencourt et al. [10] proposed the first CP-
ABE scheme. The encryption algorithm for this scheme 
performs atomically all cryptographic operations to gen-
erate the final ciphertext. The evaluation results of this 
scheme show that the intensive required computations 
consume high resources (CPU, Memory, and energy). The 
researchers tried to find a way to reduce the overhead 
due to the encryption algorithm of CP-ABE as well as the 
execution time of the algorithm. Zhou et al. [18] proposed 
an efficient extension of CP-ABE scheme that securely out-
sources most of encryption and decryption operations to 
the Cloud without revealing data content and secret keys. 
They built their contribution by working on the access tree 
structure. Indeed, the size of the access policy is among 
the factors that significantly affect the computation com-
plexity of CP-ABE. Since each access policy consists of a 
left sub-tree and a right sub-tree, Zhou et al. suppose that 
the left sub-tree of the access policy has more attributes 
than the right sub-tree. Accordingly, the users can encrypt 
their data with the right sub-tree of the access policy in 
order to generate the initial form of ciphertext CT1 . How-
ever, the efficiency of this work in terms of computation, 

communication, and storage is only possible by assuming 
that the root node of the access tree is always an “AND” 
gate, otherwise the scheme will not work.

Jin et al. improved Zhou et al. [19] work by propos-
ing a flexible and lightweight CP-ABE scheme on mobile 
devices. The restriction that arises from Zhou et al. scheme 
is fixed in Jin et al. scheme by adding a dummy attribute 
to the right sub-tree of the whole access policy which pro-
vides more expressive access policies. To reduce the com-
putation overheads at mobile client and preserve the data 
privacy, Jin et al scheme delegates most of the intensive 
ABE operations to Mobile Cloud Computing (MCC) and 
guarantees that neither the Encryption Service Provider 
(EPS) nor the Cloud provider which hosting the data can 
reveal that data. In Jin et al scheme, the user first encrypts 
their data with the right sub-tree of the access policy 
which contains only a dummy attribute to generate CTDum 
then uploads it to EPS. EPS generates CTAcc considering the 
right sub-tree and combines it with CTDum to generate the 
final ciphertext CT (CT = CTAcc ∧ CTDum).

Wang et al [20] proposed a verified outsourcing ABE 
scheme for key generation, encryption and decryption 
operations. The user encrypts the data partially to gener-
ate EPO and EPL , EPL never leaves the user device and EPO is 
sent to EPS. EPS performs more operations which entails 
more computation cost. The scheme successfully reduces 
the execution time. However, it generates high communi-
cation costs between user and client machines.

Zhao et al. proposed a scheme similar to Wang et al. 
works [21]. Zhao et al. reduce the overhead of CP-ABE on 
user device by encrypting the message using symmetric 
encryption then the data owner uses ABE to encrypt the 
symmetric key with attributes and sends CT1 with CSE to 
EPS. Same technique as in [20] is applied for the remaining 
part of the algorithms.

Touati et  al. [22] proposed a lightweight CP-ABE 
scheme. The scheme assumes that there is constrained 
and unconstrained nodes (assisting nodes) in IoT envi-
ronments. In summary, the scheme performs CP-ABE 
encryption by delegating these operations to assisting 
nodes. The authors take advantage of heterogeneous 
nodes in the environment to distribute the expensive 
computation of CP-ABE operations. However, the authors 
assume that all these nodes are trusted. Moreover, send-
ing and receiving parameters between the user node 
and assisting nodes increase the communication over-
head on user node and cannot be neglected. Nguyen 
et al. [23] proposed CP-ABE scheme to outsource ABE 
cryptography operations. The user device performs 
only one exponentiation to generate the initial CT1 , 
where Delegee component (DG) performs most of ABE 
expensive operations. DG is responsible of encrypting 
the data with access policy. Then, if DG is compromised 
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and the attacker changes the access policy to satisfy a 
client’s secret key (SK), the client will be able to decrypt 
the data since there is no relation between C’ and the 
access policy that the user sends to DG.

The overhead cost and the time of encryption algo-
rithm in CP-ABE schemes is related to number of expo-
nentiation that user devices perform [22]. Accordingly, 
we compare the time and the cost (CPU, Memory, and 
power consumption) of several CP-ABE schemes that 
were proposed for IoT devices in Table  1. The results 
shown on the table are related to a file whose size is 500 
MB and 30 attributes defining the access policy. Table 1 
shows that Touati et al. scheme [22] performs 0 exponen-
tiation in user device. This means that this scheme is the 
fastest and less resources consumption. Next, Nguyen 
et al. scheme [23] needs only one exponentiation to gen-
erate the ciphertext. In [18] work, the number of expo-
nentiations is based on the number of attributes in the 
right sub-tree.

Number of exponentiations in scheme [18] is 2|�r| + 2 , 
where |�r| is the length of attributes in the right access 
policy. The number of exponentiations in Bethencourt’s 
scheme [10] is dependent on the number of attributes 
in the access policy.

Based on our literature review, we summarize our 
encryption scheme requirements as the following:

– Correctness: The scheme should allow only the author-
ized user to decrypt the data.

– Scalability: The scheme should be able to handle a wide 
range of applications and and access policies.

– Feasibility: The scheme should be usable on con-
strained devices.

– Flexibility: The scheme should take into consideration 
the context of encryption information such as, number 
of attributes, data size. Then, based on this information 
the scheme should have the ability to select the appro-
priate technique (whether perform full encryption in 
user device or delegate most of cryptography opera-
tions to another device).

3  Preliminaries

In this section, we present the technical terminology that 
we use in this article.

3.1  Bilinear map

Most of the CP-ABE schemes are based on a bilinear map. 
Assume �0 , �1 are two multiplicative groups of prime order 
p. Assume g is a generator of �0 and e is a bilinear map, e : 
�0 × �0 → �1 . The properties of a bilinear map are:

– Bilinear: for all a,b in �0 and c,d ∈ ℤp , ( ac,bd ) = (a, b)cd

– Non-degenerate: e(g,g) ≠1

�0 is a bilinear group if the group operation in �0 and the 
bilinear map e : �0 × �0 → �1 are both efficiently comput-
able. Map e is also symmetric: e(ga,gb ) = e (g, g))ab = e(gb,ga)

3.2  CP‑ABE

In this scheme, the access policy is embedded in the 
ciphertext (i.e., the encrypted data) and private keys are 
generated according to a set of attributes. To decrypt the 
ciphertext, the user should own the private key related to 
a set of attributes satisfying the access policy. The original 
form of CP-ABE [10] consists of four algorithms:

– Setup ( �)→ (PK, MSK). The algorithm uses security 
parameters ( � ) to generate a public key (PK) and master 
secret key (MSK). 

 Equation 1 is the Public Key (PK) equation. The Master 
Secret Key (MSK) is ( � , g� ). Where � and � are random 
exponents ( � , � ∈ ℤp ). �0 is a bilinear group of prime 
order p with generator (g).

– KeyGen (PK, � , MSK) → SK. The algorithm uses the pub-
lic key, � , MSK as input and generates the secret key 

(1)PK = G0, g, h = g� , f = g1∕� , e(g, g)�

Table 1  Number of 
cryptography exponentiations 
needs to perform in user 
deviceß

Scheme NumberofExp Time (s) CPU (MiB) Memory (MiB) Power 
consump-
tion (J)

First CP-ABE Scheme [10] |�| + 2 4.79 4.7 6.2 0.87
PP-CP-ABE [18] |�

r
| + 2 4.82 5.1 6.4 0.91

SL-CP-ABE [19] 2 0.332 3.6 2.7 0.424
Verifiable-Outsourced-CP-ABE [20] 4 0.83 4.1 4.8 0.81
VOC-CP-ABE [21] 4 0.79 4.2 5.1 0.781
OEABE [23] 1 0.24 2.1 2.6 0.39
C-CP-ABE [22] 0 0.189 1.9 2.6 0.388
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(SK). The SK contains D, Dj , and D′
j
 components. � is the 

client’s attributes list. 

 The SK algorithm selects r and rj random (r and rj ∈ ℤp ) 
for each attribute j ∈ � . H is a hash function.

– Encryption (PK, M, �)→CT, where CT is the ciphertext, 
� is the user’s access policy, and M is the message that 
the data owner wants to encrypt. 

 In Eq. 3, the encryption algorithm generates random 
value (s) to calculate the shared value ( �y ) for each 
attribute in the access policy ( � ) using linear secret 
sharing. Blinding each attribute in � with their share 
( �y ) is preventing a collusion attack [10].

– Decryption(CT,SK)→ M. The decryption algorithm 
decrypts the ciphertext (CT) using (SK) to output the 
message (M). 

Definition 1 Assume that node Z is a leaf node and let j = 
att(z), The decryption algorithm works as the following :

(2)
SK =

(
D = g(�+r)∕�),∀j ∈ � ∶ Dj = gr ⋅ H(j)rj ,D�

j
= grj

)

(3)
CT =

(
�, C� = Me(g, g)�s,C = hs,∀y ∈ Y ∶

Cy =g
�y ,Cyp = H(att(y))�y

)

(4)M =
e(Di ,Cx)

e(D�
i
,C�

x
)

These same steps are repeated for j ∈ � . If the attributes 
that the SK blinds with satisfy the policy � , then the algo-
rithm will be able to decrypt CT. Otherwise, the algorithm 
will return ⟂.

3.3  Access tree

The access tree is used to describe the access policy. The 
access tree consists of a set of nodes. The top node is called 
the root node whereas the inner nodes are either the logi-
cal operator (AND, OR, or OF) or leaf node. The leaf node 
represents the attributes and it is usually the lower level of 
the tree. Figure 1 shows samples of the access tree. The left 
tree in Fig. 1 is the original access tree ( � ) where the policy 
is � =

(
(A AND C) OR (BAND Z)

)
 . � is the access policy, A, 

C, B, and Z are the attributes that the CT encrypts with. The 
right access tree �D is the same access tree on the left of 
Fig. 1 but with an extra dummy attribute �

�
=
(
((A AND C

) OR (BAND Z))ANDDummy
)
 where �

�
 is the access policy 

with an extra dummy attribute. A dummy attribute has 
the same features as any other attributes and it might 
be owned by any user. The user who want to decrypt the 
data must have this attribute. To prevent a collision attack, 
each attribute blinds with a secret share � in the encryp-
tion algorithm [24]. We will further discuss the encryption 
algorithm in Sect. 6.

(5)

DecryptZ =
e(Dj ,Cx)

e(D�
j
,C�

x
)

=
e(gr ⋅ H(j)rj , h�Z )

e(grj ,H(j)�Z )

=e(g, g)r�Z

OR

AND

C B ZA

ORAND

C B ZA

Dummy

Access Tree Access Tree with Dummy Attribute

AND

OR

OR

Fig. 1  Access tree � (left side), Access tree with dummy attribute �
D

 (right side)
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4  Full versus partial encryption: incentive 
for adaptive scheme

The majority of related work shows that the ABE com-
putation is too heavy to be performed on constrained 
devices and thus, prior contributions were focusing on 
delegating all or most of ABE encryption/ decryption 
tasks to a remote/proxy machine. An efficient solution 
was proposed by Jin et al. [19] where partial, on-device 
CP-ABE encryption is performed using a one attribute 
(dummy attribute) policy and remote CP-ABE encryp-
tion is performed using the complete policy. However, 
recent revolution in hardware as well as software sys-
tems dedicated to constrained devices is enabling on-
device execution of all ABE tasks. However, the efficient 
management of constrained devices should take into 
consideration the variation of resources available (e.g., 
CPU, Memory, and battery). In other words, it will be 
preferable to perform all ABE tasks on the constrained 
device (full encryption) in some situations and in other 
situations, it will be better to perform only a few tasks 
(encryption based on the dummy attribute, called partial 
encryption) and offload the remaining tasks (encryption 
based on the original policy) to a remote server/proxy. 
We have investigated this aspect with the first experi-
ment comparing the execution time, CPU utilization, 
and the power consumption of full and partial CP-ABE 
encryption respectively by varying the attributes num-
ber from 2 to 500.

Our results show that the full encryption scheme 
[10] is faster than the partial encryption scheme [19] as 
shown in Fig. 2. In the full encryption scheme, the total 

time is the time needed to perform CP-ABE operations 
before uploading CT to the Cloud. In partial encryption, 
the total time is the time of CP-ABE operations in the 
user device and proxy machine as well as the transmis-
sion time between two machines (part A and B of Fig. 4 
show the full and partial encryption schemes respec-
tively). However, our results show that full encryption 
consumes more CPU than partial encryption as shown 
in Fig. 3.

Based on the aforementioned results, we can identify 
an incentive to perform on-device full encryption when 
the available CPU and battery are sufficient and perform 
partial encryption when the available CPU and battery 
are less than the required budget. This rule-based deci-
sion making can be extended if more encryption param-
eters and performance metrics are investigated. In fact, 
the size of messages to be encrypted, their type, and their 
frequency should have an impact on the CPU utilization, 
power consumption, and execution time needed for their 
encryption. The available Memory and the quality of “WIFI/
mobile” connections are important performance metrics 
that should be studied.

Assuming such a decision-making process is available, 
the challenge arises when it comes to design an adaptable 
scheme that is capable of automatically switching from 
full to partial CP-ABE encryption according to the con-
text. Such a scheme should have the ability to generate a 
secret key that can decrypt the data regardless of which 
encryption technique (full or partial) is used to encrypt the 
data. More specifically, using Bethencourt’s scheme [10] 
to perform full encryption and Jin’s et al. [19] to perform 
partial encryption require two secret keys for each client 
to decrypt the same file. The first secret key will be used 

Fig. 2  Total time of full and 
partial encryption scheme
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when full encryption is applied while the second key will 
be used to decrypt data encrypted using a partial scheme. 
More precisely, in Jin’s scheme, the data is first encrypted 
with a dummy attribute before being encrypted by the 
access control policy. This is not supported in Bethen-
court’s scheme [10].

5  Mathematical model

In this section, we will discuss the mathematical specifica-
tion of an adaptive problem and we will find the formal 
definition of performing full and partial (local computation 
and offloading respectively) CP- ABE operations on a con-
strained device. Finally, we will discuss the optimization 
issue of in adaptive solution. Our variable notations are 
shown in Table 2.

5.1  Decision variable

In our article, the decision variable notation is xDi
 , where 

xDi
 is:

5.2  Assmptions

Let T i
ct

 be the total time required to generate the cipher-
text CT (the encrypted data generated by each device) for 
task i.

xDi =

{
0 Full Encryption

1 Partial Encryption

Assumption 1 Equation (6) shows that T i
ct

 is dependent on 
T i
fct

 and T i
t
 , where T i

fct
 is the time required to perform cryp-

Fig. 3  CPU utilization of full 
and partial encryption scheme

Table 2  Notations

Parameter

� Access policy
�

�
Access policy with dummy attribute

� Real access Tree
�D Access tree with dummy attribute

CT i Ciphertext of task i

CT i
1

Partial Ciphertext of task i

f i
ct

CP-ABE function that generate CT for task i

f i
ctl

CP-ABE function in local device to generate CT of task i

f i
ctr

CP-ABE function in remote device to generate CT of task i

Ui
l

CPU utilization of local device for task i

Ui
r

CPU utilization of proxy machine for task i

RAMi
l

Memory utilization of local device for task i

RAMi
r

Memory utilization of proxy machine for task i

Pi
l

Power consumption of local device for task i

Pi
r

Power consumption of proxy machine for task i

T i
ct

Total time required to generate CT for task i

T i
fct

Execution time required to perform CP-ABE

T i
t

Transmission time for task i

T i
l

Time required to perform CP-ABE locally

T i
r

Time required to perform CP-ABE remotely

T i
prop

Propagation delay for task i

lx Connection type between constraint device and the proxy

T i
trans

Transmission delay for task i

xi
D

Decision parameter whether local or offload operation i
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tography operations to generate the CT for task i. T i
t
 is the 

time required to either send the CT directly to the Cloud 
in case T i

ct
 performed a full encryption or the time needed 

to send the CT1 to the proxy machine and send CT to the 
Cloud.

Assumption 2 We find T i
t
 only in case CP-ABE is performed 

partially since we assume that the CP-ABE performed (full 
or partial) will take the same time to upload CT to the 
Cloud. Hence, we calculate T i

t
 only if CP-ABE performs a 

partial encryption because it is the time to send CT1 from 
RP1 to RP2 before uploading the final CT to the Cloud.

where T i
fct

 is the execution time required to perform CP-
ABE, and T i

t
 is the transmission time. T i

fct
 depends on the 

available resources in the constrainted device in terms of 
CPU and memory utilization as shown in Eq. (7).

where f i
ct

 is CP-ABE function that generate CT for task i. Ui
l
 

is the percentage of CPU utilization on a constraint device 
for task i and RAMi

l
 is the percentage of memory utiliza-

tion on a constraint device for task i. Pi
l
 is the power con-

sumption on a constraint device for task i. Ui
r
 and RAMi

r
 are 

the percentage of CPU, memory utilization in the proxy 
machine respectively. Pi

r
 is the power consumption in 

proxy machine. T i
l
 and T i

r
 are the time needed to perform 

CP-ABE operations (either full or partial encryption respec-
tively). xD is the decision variable taken to perform CP-ABE 
(either full or partial).

In addition to Tfct , Eq. (6) shows that T i
ct

 also depends on 
T i
t
 . T i

t
 consists of two terms shown in Eq. (8).

where T i
prop

 is the propagation delay and T i
trans

 is the trans-
mission delay. Propagation delay is the time of propagate 
data from the beginning link of RP1 to the target vehicle 
RP2 (lx). The propagation delay depends on the media that 
the data transfer is on. Transmission delay ( T i

trans
 ) is a fixed 

value and depends on the length a packet. T i
trans

 is the time 
needed to push out CT1 from RP1 into the link between 
RP1 and RP2 (lx).

(6)Tct =

I∑

i=1

(T i
fct
+ T i

t
)

(7)

Tfct =

I∑

i=1

(1 − xi
D
)(fct

i
l
× Ui

l
× RAMi

l
× Pi

l
) × ti

l

+

I∑

i=1

xi
D
(fct

i
l
× Ui

l
× RAMi

l
× Pi

l

+ fctr
ir × Ui

r
× RAMi

r
× Pi

r
) × ti

r

(8)Tt =

I∑

i=1

2xD

xD + 1
(T i

prop
+ T i

trans
)

Problem Definition. Consider constraint device j performs 
multi CP-ABE tasks fct I , I = {i1, i2, ..in }. Each CP-ABE operation 
needs T i

ct
 to generate CT i . T i

ct
 depends on Ui

l
 CPU utilization 

and RAMi
l
 (memory) utilization, and Pi

l
 (battery) power con-

sumption, T i
propl

 , and T i
transl

 in case f i
ct

 is performed locally (full 
encryption). On the other hand, T i

ct
 depends on Ui

l
 CPU utiliza-

tion, RAMi
l
 memory utilization, Pi

l
 power consumption, T i

proplx
 , 

T i
propr

 , T i
transl

 , and T i
transpx

 in case f i
ct

 selects (partial encryption) 

or offloading option. Accordingly, all of these factors should 
be considered when deciding if f i

ct
 should perform full or 

partial (delegating to proxy machine) encryption. In this 
article, we aim to reduce Tct for all I. In constraint devices, 
this is considered a challenge for the following reasons:

We discussed in Sect.  4 that the relation between 
resources and Tct is an inverse relation. More precisely, 
more resources ( Ui , RAMi , Pi ) take less time to generate CT. 
In addition to the resource, the total time ( T i

ct
 ) depends on 

whether fct will be performed locally or will be offloaded. 
Therefore, minimizing Tct by taking into consideration the 
factors that can minimize Tct and guaranteeing that gen-
erating CT is visible with maximum available resources is 
our objective.

Lemma 1 Optimizing the total time ( T i
ct

 ) of performing CP-
ABE operations in constrained devices is NP-Hard.

Proof We reduce the 0–1 knapsack problem to reduce 
the total time of generating CT (Eq. 9) since the binary 
partition is made on a serial task graph. Therefore, as 0–1 
knapsack problem is NP-hard [25], deciding if the scheme 
should perform full or partial encryption to achieve Eq. 9 
is NP-hard. Considering a simple scenario of our problem. 
The constraint device will perform only one CP-ABE opera-
tion to generate CT i . The total time of performing CP-ABE 
using full encryption (locally in a constraint device) is T i

ct
 , 

whereas it is T ′ i
ct

 for the same task (i) in case i is performed 
using partial encryption (offloading technique). Due to 
limitation of resources in constraint devices, taking the 
decision ( xi

D
 ) of whether task i should be performed using 

full or partial encryption is a NP-hard. T i
ct

 is depends on 
the execution time ( T i

fct
 ) and the transmission time T i

t
 . T i

ct
 

depends on Ui , RAMi , and Pi of the constrained device and 
the assistant device (proxy server). T i

ct
 also depends on � 

and the size of data. We take these factors into consid-
eration to select the appropriate technique (full or partial 
encryption) that can generate CT i with a minimum total 
time 

�
T i
ct
= min

∑I

t=0
T i
ct

�
 .   ◻

5.3  Optimization formulation

To achieve our goal discussed above (minimum total time), 
we discuss the optimization formula in this section.



Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

The c1 constraint ensures that the number of tasks is natu-
ral. Constraint c2 to ensures that the decision variable xi

D
 

is a binary value based on the decision taken. c3, c4, and 
c5 ensure the status of CPU (idle, meduim, critical) of the 
machine that will perform task i. c6, c7, and c8 ensure the 
status of memory (idle, medium, critical) of the machine 

(9)T I
ct
=min(

I∑

i=1

T i
fct
+ T i

t
)

(10)

T I
fct
=min

( I∑

i=1

(1 − xD
i)(fct

i
l
× Ui

l
× RAMi

l
× Pi

l
) × T i

l

+

I∑

i=1

xi
D
(fct

i
l
× Ui

l
× RAMi

l
× Pi

l

+ fctr
i
r
× Ui

r
× RAMi

r
× Pi

r
) × T i

r

)

(11)T i
t
=min

( I∑

i=1

2xD
i

xD
i + 1

(T i
prop

+ T i
trans

)
)

S.t

i ∈ I (c1)

xi
D
= {0, 1} (c2)

10% ≤ Ui
c
< 35% (c3)

35% ≤ Ui
m
< 55% (c4)

55% ≤ Uidl
i ≤ 100% (c5)

10% ≤ RAMi
c
< 35% (c6)

35% ≤ RAMi
m
< 55% (c7)

55% ≤ RAMidl
i ≤ 100% (c8)

T i
prop

= {wire,wireless} (c9)

that will perform task i. c9 ensures that the connection 
media between the constraint device and the proxy 
machine is either wire or wireless.

In order to achieve our optimization objective, we 
use machine learning that considers all factors that may 
increase the Tct . Then it makes the decision whether the 
machine should perform CP-ABE locally or it should 
offload CP-ABE. We will discuss this machine learning 
technique in Sect. 8 .

6  Adapted CP‑ABE

In this section, we will discuss how to switch from the 
scheme proposed by Bethencourt et  al. [10] and the 
scheme proposed by Jin et al. [19] without involving two 
different private keys per user. Both schemes are secure as 
discussed in Sect. 2. We will start with defining the main 
use case scenario. We then compare the schemes before 
proposing adaptive CP-ABE encryption.

6.1  Main use case

Figure 4 shows three schemes. Scheme (A) represents full 
encryption [10] where the data is totally encrypted in the 
device (the gateway RP1 in Fig. 4). Scheme (B) is the partial 
encryption scheme proposed by Jin et al. in [19]. Scheme 
(C) is our proposed scheme. We call it the adaptive encryp-
tion scheme. The adaptive scheme selects the appropriate 
encryption (full or partial) to encrypt the data based on 
the context of the policy, file size, and the availability of 
resources on the device ( RP1).

The main job of the gateway (RP1) in all three schemes 
is to encrypt data (either full or partial encryption) before 
uploading it to the Cloud. In full encryption (Fig. 4), RP1 
performs all CP-ABE operations and then uploads the CT 

Fig. 4  Full (a), partial (b) and (c) adaptive Schemes
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to the Cloud. In partial encryption, RP1 performs a few 
CP-ABE operations to generate intermediate CT1. Then, 
RP1 send CT1 and non-critical parameters to RP2 to per-
form the remain part of CP-ABE. Even though the scheme 
delegates most of the CP-ABE operations to RP2, the data 
cannot be revealed by attacker (such as Man in The Middle 
Attack) [19].

In this article, we assume that RP1 and RP2 are on the 
same network. They could communicate through LAN or 
WLAN. The performance results related to experimenting 
partial encryption show an important difference depend-
ing on whether RP1 and RP2 are connected through LAN 
or WLAN. This will be discussed later in Sect. 7.

6.2  Comparison of [10] and [19] encryption 
schemes

In a full encryption scheme, the data is encrypted com-
pletely in the gateway (RP1) (by encrypting the data with 
a policy and generating the final CT), then uploading it 
to the Cloud. Algorithm 1 shows the cryptography opera-
tions of full encryption that the gateway (RP1) performs 
before it uploads the CT to the Cloud. In Algorithm 1, the 
algorithm generates a key and security parameter in line 1 
and 2 respectively. In line 3 of Algorithm 1, the sub-secret 
� calculated for each node y in � including leaf nodes. � is 
a polynomial chosen for all nodes in the access tree from 
the top node (root node) until the last leaf node in a top 
down manner. The algorithm selects a random s that gen-
erated in line 2 of algorithm 1 and set �R = s, where �R is the 
polynomial value of the root node. Then it moves down 
to the next node (y) and finds �y = qparent(y)(index(y)) . It 
chooses dy to define qy where dy is a degree of polynomial 
�y [10]. Lines 4 and 5 of Algorithm 1 show how to calculate 
the security parameters C, C’, Cy , and Cyp . Note that Cy , and 
Cyp in line 6 are calculated for each attribute (att(y)) in the 
access policy ( � ). 

In a partial scheme (B of Fig. 4), data is encrypted with 
only the dummy attribute and most of the CP-ABE cryp-
tography operations are delegated to another assistant 
device or a proxy server. Several schemes proposed this 
idea such as the scheme in [19]. Algorithm 2 shows the 

steps of partial encryption performed in the gateway, and 
the operations in step 1, 2, and 3 are the same as those 
performed in the full encryption scheme (Algorithm 1). 
However, in step 4 of Algorithm 2, the gateway only cal-
culates the security parameters ( CyD and CypD ) of �D where �D 
is an access tree with a dummy attribute as shown in Fig. 1.

Therefore, in partial encryption, the device takes less 
time and consumes less resources compared to encryp-
tion since the algorithm calculates CyD and CypD only for one 
attribute (the dummy attribute) instead of calculating Cy 
and Cyp for all attributes � in � as it is in full encryption. The 
assistant device completes the encryption process by per-
forming most of the CP-ABE encryption operations (Algo-
rithm 3). Indeed, it computes the security parameters Cy 
and Cyp for all attributes ( �D ) in the access tree � except the 
dummy attribute ( CyD ,CypD ). Algorithm 3 shows the steps 
of generating the second part of ciphertext. In Fig. 4, the 
assistant device is (RP2). In a full encryption scheme, there 
is no assistant device since it performs all CP-ABE opera-
tions on the user device (RP1). 

6.3  Adaptive CP‑ABE

We solve the second challenge that we have discussed in 
Sect. 4 by adding one attribute (dummy attribute) to any 
access policy in the full encryption algorithm. Thus, in 
our encryption algorithm (Algorithm 4), the client will be 
able to decrypt the data using one secret key regardless 
of whether full or partial encryption is performed on the 
gateway. Algorithm 4 shows the encryption algorithm 
in the constraint device (RP1). In our algorithm, the cli-
ent is able to use his/her secret key to decrypt cipher-
text whether the data is encrypted using a full or partial 
encryption scheme.
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Adding one attribute to the access policy should 
increase the execution time and resource consump-
tion. However, we found that the introduced overhead 
is negligible. In fact, we measured the execution time, 
CPU and memory utilization of our full encryption algo-
rithm (Algorithm 4) with the full encryption algorithm 
(Algorithm 1) proposed in [10]. Figure 5 shows that the 
difference in execution time between the two algorithms 
is around 0.04 seconds. Moreover, the CPU and memory 
utilization of the two algorithms are almost equal.

Based on our experiments and discussion, offloading 
for CP-ABE operations is required in the constrained device 
to adapt the limitation of the resources problem. However, 
applying offloading technique on two different schemes ( 
[10] and [19]) is not straightforward. Assume that the data 
owner uses the Bethencourt et al. scheme [10] to encrypt 
message M with policy ( (B}}OR��C)}}AND��D ) to generate 
CT’. And assuming the client want to decrypt CT’, and his/
her SK is generated using Jin et al. [19], and Assume client’s 
attributes is (B, D, and dummy attributes). Then, the client 
will not be able to decrypt CT’ for the following reason; The 
policy that CT’ blinds with is � . Therefore, to decrypt CT’, 
all attributes in � need to reconstruct the random values 
(line 2 of Algorithm 1) based on Eqs. 4 and 5 [10]. The client 
SK will have Dj and D′

j
 for all �D which will not satisfy � , thus, 

random value (s) will not recover since � ≠ �D [10]. There-
fore, Eq. 4 will return ⟂ . In our Algorithm, we fixed this 
problem in line 13. We compute Cy and Cyp for all �D even if 
the decision is to perform full encryption. Therefore, the 

client’s SK is able to decrypt CT because CT will have Cy and 
Cyp for all �D.

We find the security parameters that need to encrypt 
the message M as shown in line 2 and 3 of Algorithm 4. 
In line 4 to line 6, the algorithm calculates � for each node 
in �D . After this, our algorithm checks the resources in the 
device that run in (RP1) and the resources in the proxy 
(RP2). This is shown in line 7 of Algorithm 4 where Ul and Ur 
are the CPU utilization in the local device (RP1) and proxy 
machine (RP2) respectively. RAMl and RAMr are the mem-
ory utilization in the local device (RP1) and proxy devices 
(RP2) respectively. lx in line 7 of Algorithm 4 is the media 
type of connection between RP1 and RP2. These variables 
in addition to the policy length that the data will encrypt 
with ( � ) impact the decision of whether the algorithm 
will perform the encryption locally or by offloading the 
encryption. Figure 14 shows the decision tree that we use 
for performing CP-ABE operations locally or by offloading 
to the assistant device. We will further discuss the machine 
learning technique that we used in Sect. 8. Line 8 of Algo-
rithm 4 shows that the algorithm takes the decision ( xD ) 
whether it will perform the encryption locally or by off-
loading the task to the proxy. If the decision based on the 
context at the time of encryption is to perform full encryp-
tion (locally where xD = 0 ), the Algorithm will perform the 
lines from 11 to 15. The Algorithm Computes C and C’ first, 
and Cy and Cyp for all �D . Finally, the algorithm uploads the 
CT to the Cloud in line 15 of the algorithm.

If the decision ( xD = 1 ) is to perform partial encryption, 
then the algorithm performs the steps from line 17–20 in 
the constrained device (RP1). The first two steps are the 

Fig. 5  Comparison between 
full-D and full encryption 
scheme
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same as in full encryption where the algorithm computes 
C and C’ (line 17). However, unlike full encryption, the algo-
rithm computes only CyD and CypD for the dummy attribute 
(line 18). The remaining components will be computed in 
assistant device (RP2) and this will reduce the computation 
cost on the constraint device and the time complexity of 
the algorithm.

Algorithm 5 shows the steps that RP2 performs to gen-
erate the final CT of CP-ABE after it receives the CT1 from 
RP1. RP2 computes Cyand Cyp respectively for all attributes 
in �D (Algorithm 5, line 2 and 3) except CyD and CypD since 
these two components are computed in RP1. The algo-
rithm combines CT1 with the components that were com-
puted to generate a final CT as shown in line 5. Finally, RP2 
uploads CT to the Cloud.

Lemma 2 The time complexity of our algorithm (Algorithm 4) 
in the data owner device (RP1) is O(n).

Proof The time complexity of our algorithm (4) in the con-
straint device depends on the length of the access tree 
�D . In line 2 and 3, the Algorithm 4 generates a random 
number where the time complexity in these two opera-
tions is O(1) . The algorithm in line 4 to line 6 calculates the 
polynomial � for each node in �D . The time complexity for 
this part of the algorithm is O(n + 1) . The time complexity 
for “if condition” (line 10) is O(1) . In case the number of 
nodes in �D is n, then the time complexity of the algorithm 
is O(n + 1) to compute Cy and Cyp components for all nodes 
in �D . The time complexity for /’for’/ loop in the algorithm 
(line 18) in case the decision is xD = 1 is O(1) , because the 
algorithm will compute CyD and CypD for only the dummy 
attribute. The time complexity of the algorithm is O(n)  
 ◻

7  Experimental results and analysis

In this section, we discuss the performance of a full-D and 
partial CP-ABE encryption in different scenarios. Table 3 
shows the hardware specifications of the gateway (RP1) 
and the assistant device (RP2) that have been used in our 
experiments. We use the Charm framework to run several 
CP-ABE schemes [26]. We also use the TOP tool to measure 
the CPU and memory utilization, and we use USB power 
meter to measure the power consumption. As we dis-
cussed earlier, the execution time and CPU utilization of 
encryption algorithm increases whenever the number of 
attributes in the access policy increases. In addition to the 
number of attributes, we found that the size of the file also 
influences the execution time and CPU utilization in con-
strained devices. Figures 6 and 7 show the execution time 
of full-D and partial encryption applied on two files, one of 
size 1-byte and the other of size 500-MB. Each figure shows 
that large files need more time to perform encryption than 
small files. Also, large files consume more resources than 
small files as shown in Figs. 8 and 9. In terms of energy 
consumption, the results are proportional to those of 
CPU usage as it is expected, since the energy consump-
tion for partial and full encryption is the one consumed 
their usage of the CPU. Figures 10 and 11 show the power 
consumption of partial and full-D encryption schemes 
respectively.

In this experiments, we assume that all files are stored 
locally in the gateway. This will help to get accurate results. 
Moreover, to conduct a fair comparison between full 
and partial encryption, we investigate several scenarios 
applied on full and partial encryption. As shown in Table 4, 
each scenario consists of several properties. For example, 
in S1, the file size is 1-byte, the number of attributes in the 
access policy is nine, the status of resources ( Avg − Res ) is 
medium (around 50% of the resources is available), and 
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the connection between RP1 and RP2 is LAN. In Table 4, 
there are three Avg-Res statuses (Idle, Medium, and Criti-
cal). Idle status means only 20% of RP1 (CPU, memory, and 
battery) is reserved which means 80% of the CPU is avail-
able. Medium status means 50% of RP1 Avg − Res is avail-
able. Finally, critical status means 20% of the Avg − Res is 
available.

Figure 12 shows the total time of full and partial CP-ABE 
encryption in scenarios S1 to S15. We can observe inter-
esting facts. In S1 and S2, there are two different file sizes, 

1-byte in S1 and 1-KB in S2. Both files are encrypted with 
the same number of attributes (9) as shown in Table 4. In 
S1, the connection between RP1 and RP2 is LAN while it is 
WLAN in S2. The results in Fig. 12 show that full encryption 
is faster than partial encryption in S1 while partial encryp-
tion is faster than full encryption in S2. The fact that the 
file size in S2 is bigger than the file size in S1 can explain 
these results.

When we compare S3 and S4, we can see that the 
two scenarios have the same file size and these files are 

Fig. 6  Overall execution time 
of full-D encryption for the file 
size 1 Byte and 500 MB

Fig. 7  Overall execution time 
of partial encryption for the file 
size 1 Byte and 500 MB
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encrypted with access policies that have the same num-
ber of attributes. Figure 12 shows that in S3, full encryp-
tion is faster than partial encryption whereas in S4, partial 
encryption is faster than full encryption. The connection 
between RP1 and RP2 in S3 is WLAN which is slower than 
LAN. This makes full encryption faster than partial encryp-
tion. However, when the connection is LAN in S4, partial 
encryption is faster than full encryption.

S5, S6, and S7 are three scenarios with the same file 
size (1 KB) and number of attributes in the access policy 
(50). The difference between these three scenarios is in 
terms of available Avg − Res in RP1 and the connection 
type between RP1 and RP2. Our experiment shows that full 
encryption is faster than partial encryption in S5 whereas 
partial encryption is faster than full encryption in S6 and 
S7. This shows that full encryption becomes slow when 

Fig. 8  CPU utilization of full-D 
encryption algorithm for the 
file size 1 Byte and 500 MB

Fig. 9  CPU utilization of partial 
encryption algorithm for the 
file size 1 Byte and 500 MB
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the length of the access policy is large and the available 
Avg − Res % is small. This also explains why full encryption 
is faster than partial encryption in S6 and S7.

In S8, S11, S13, and S15, full encryption is faster than 
partial encryption when there are enough resources 
and the number of attributes in the access policy are 
small. However, partial encryption is faster when there 
are not enough resources in constrained devices and the 

Fig. 10  Power consumption of 
full-D encryption algorithm for 
the file size 1 Byte and 500 MB

Fig. 11  Power consumption of 
partial encryption algorithm 
for the file size 1 Byte and 500 
MB

Table 3  Technical specifications of the gateway and trusted nodeß

RP1 RP2

CPU Quad-Coretex A53 1.2GHz Quad-Coretex 
A53@ 
1.2GHz

Memory 1 GB SDRAM 1 GB SDRAM
Storage MicroSD 4 GB MicroSD 4 GB
Network 10/100 Mbps 10/100 Mbps

Table 4  Several scenarios

Scenario MSG − size |�
�
| CPU − RP1 Connection

S1 1-Byte 9 Medium LAN
S2 1-KB 9 Medium WLAN
S3 1-KB 9 Critical WLAN
S4 1-KB 9 Critical LAN
S5 1-KB 50 Idle LAN
S6 1-KB 50 Medium LAN
S7 1-KB 50 Medium WLAN
S8 10-MB 12 Idle LAN
S9 10-MB 12 Medium LAN
S10 100-KB 5 Critical LAN
S11 100-KB 5 Medium LAN
S12 100-KB 5 Critical WLAN
S13 1-MB 5 Medium LAN
S14 1-Byte 20 Critical WLAN
S15 1-MB 20 Idle LAN
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number of attributes in the access policy is big such as 
in S9, S10, S12, and S14.

Based on the results presented in this section, we 
found that the total time of CP-ABE encryption algo-
rithms depends on several factors in addition to the com-
plexity of the access policy. In some cases, performing 
full encryption is faster than partial if there are enough 
resources available in constrained devices. Moreover, 
file size is the main factor for choosing between full and 
partial encryption. Finally, the connection between the 
constrained devices plays an important role in this deci-
sion since LAN is faster than WLAN.

8  Full or partial encryption decision xi

D

As discussed in Sect. 7, the total time of the CP-ABE encryp-
tion algorithm depends on various factors such as length 
of access policy, file size, available resources (CPU, Mem-
ory, and power consumption), and network connection 
between devices. Hence, designing an adaptive scheme 
that is able to select the appropriate encryption technique 
(whether full or partial) at the time of encryption is manda-
tory. Therefore, a machine learning technique is needed 
to allow automatic selection of the encryption algorithm 
based on the context related to the data to be encrypted, 
the available resources on the device and the network 

connection characteristics. It is worth mentioning that 
these factors change over time.

There are several machine learning algorithms investi-
gated in related work [27]. In this work, we utilize machine 
learning to select the appropriate encryption technique 
based on the execution context. Indeed, we have experi-
mented with several machine learning algorithms using 
the Weka tool [28]. Hereafter, we recall some of the main 
metrics commonly investigated when we study machine 
learning algorithms.

The accuracy of a machine learning algorithm indicates 
the correctly classified elements [29]. Accuracy is defined 
by the following equation:

where TP, TN, FP, and FN are explained as follows. Each true 
predictive value that is equal to the actual value is consid-
ered as True Positive (TP). When a true predictive value is 
not equal to the actual value, it is called False Positive (FP). 
If the negative predictive value is equal to the actual value, 
then this value is called True Negative (TN). Finally, if the 
negative predictive value is not equal to the actual value, 
we call it False Negative (FN).

The exactness and quality of machine learning can 
be measured by the precision [30] metric defined by the 
following equation:

Accuracy =
(TN + TP)

(TP + FP + FN + TP)

Fig. 12  Total time of full and partial CP-ABE encryption on different scenarios
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The completeness or quantity of the algorithm is meas-
ured by the recall metric defined by the following 
equation:

Finally, the weight harmonic of precision and recall called 
the F-measure [29] metric is defined by the following 
equation:

In order to select the best-fit machine learning for our 
work, we built a dataset and we experimented with three 
machine learning algorithms: decision tree, Support-Vec-
tor-Machine, and K-Nearest-Neighbor. We have compared 
the results of the three algorithms in terms of accuracy, 
precision, and F-measure as shown in Fig. 13.

To build our dataset, we selected six files having the fol-
lowing sizes: 1byte, 1 KB, 10 KB, 100 KB, 1 MB, and 10 MB. 
For each file, we measured the CPU utilization and total 
time while varying the number of attributes in the access 
policy (from 2 to 500), the available CPU (Idle, Medium, 
Critical), and the connection type (LAN or wireless). For 
each of the tested configurations, we have identified the 
most appropriate scheme (either full or partial).

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure =
2 ∗ precision ∗ recall

precision + recall

Based on our dataset, we found that the accuracy of 
the decision tree algorithm is 91.48. We use the decision 
tree algorithm to take the decision ( xD ) whether Algo-
rithm 4 should perform full or partial CP-ABE encryption. 
On the other hand, since we carried out the training phase 
of decision tree (DT) in capable device, we evaluate the 
overhead of decision tree model by running the pickle 
file deployed on raspberry pi to generate classification 
scores. Our results show that CPU, memory, and power 
consumption of the DT model are 13.5 MiB, 4.6 MiB, and 
2.12 J respectively.

Referring back to Fig. 13, the accuracy of the decision 
tree algorithm is 91.48 whereas it is 81.5152 and 75.5251 
in the Support-Vector-Machine and K-Nearest-Neighbor 
respectively. Based on these results, we have identified the 
decision tree as the best algorithm for our decision taking 
problem.

Figure 14 shows our decision tree. The tree compares 
first the number of attributes in access policy to five. If 
the number is less than or equal to four, it recommends 
performing full encryption. Otherwise, the decision tree 
checks the available Avg − Res in the gateway device. 
Avg − Res is the avarage resource (CPU, memory, battery) 
of IoT device. Hereby, the decision tree facilities the auto-
mation of the selection process to whether to perform 
the encryption or to check the file size. If the number of 
attributes in the access policy is more than five, then the 
tree checks the available Avg − Res in the gateway device. 
Based on the available CPU, either it checks the file size or 
the number of attributes or it performs encryption.

Fig. 13  Comparison between 
three different machine learn-
ing algorithms
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The usage of a machine learning algorithm is motivated 
by the fact that it can smartly choose the appropriate 
encryption (whether full or partial encryption). The per-
centage of accuracy is important to select the appropriate 
machine learning algorithm [29].

9  Conclusion

In this article, we proposed a selective approach that 
allows choosing between performing all the CP-ABE 
encryption steps (full encryption) on constrained devices 
or performing only partial encryption and offloading the 
heaviest tasks to a remote device or proxy. We started the 
article by proposing an encryption scheme that allows 
switching between full and partial encryption without 
requiring different decryption keys. We provided experi-
mental results that motivate the need for dynamic selec-
tion of the appropriate encryption scheme. Then we 
experimented with various machine learning algorithms 
over a dataset covering various configurations of param-
eters including available CPU, type of network connection, 
file size, and number of attributes.
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