
Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

Research Article

Smart offloading technique for CP‑ABE encryption schemes
in constrained devices

Mohammad Bany Taha1 · Hakima Ould‑Slimane1 · Chamseddine Talhi1

Received: 27 May 2019 / Accepted: 18 January 2020 / Published online: 25 January 2020
© Springer Nature Switzerland AG 2020

Abstract
Nowadays, we are attending to the wide proliferation of IoT devices in various computing environments. Actually, this
trend is the natural way to extend the M2M communication. However, these devices are facing serious resource con-
straints. To mitigate this problem, the huge amount of the exchanged data is collected from these devices for being
stored and processed by the Cloud. Furthermore, since the Cloud is honest but curious, it may reveal personal informa-
tion about users’ habits owning these devices and can even lead to user profiling. Consequently, security mechanisms
should be deployed at different levels to preserve data privacy so that only authorized users can gain access to the
smallest piece of data according to the collection purpose. By assuming that the Cloud-is-honest-but-curious, we can
not provide full or similar access to different untrusted Cloud services. Therefore, we should define the relevant privacy
level implementing the data access control for each Cloud service according to some criteria. In this context, CP-ABE is a
promising solution addressing this problem. This novel attribute-based public key encryption system provides a flexible
fine-grained access control to data for any data requestor. However, performing all the related cryptographic operations
on such devices is practically infeasible because of the resource constraints. For alleviating all the computation burden
on these resource-limited devices, several schemes have been proposed. In this work, we propose a smart offloading
technique that switches dynamically from full encryption to partial encryption according to a wise decision strategy
considering the available resources and some crucial parameters like the number of attributes and the size of the data
being encrypted. The relevant decision is based on a machine learning algorithm. To the best of our knowledge, this is
the first paper proposing an adaptive CP-ABE scheme for constrained device optimizing the overall available resources.

Keywords CP-ABE · Offloading · IoT · Machine learning

1 Introduction

Recently, the market of IoT devices has known a spec-
tacular boom. The number of these devices is expected
to grow to 10 billion by 2020 and 22 billion by 2025. In
fact, the emergence of this trend is mainly due to the
evolution of wireless technology combined with Inter-
net enhancement and the large demand for high-quality
sensing devices enabling smart living applications. From

a technological point of view, IoT can be seen as a conse-
quence of machine-to-machine (M2M) architecture and
its connectivity [1]. This key concept refers to the inter-
connection of machines via a network without any human
intervention. As an extension of this technology, IoT is
composed of billions of smart devices over a network con-
necting physical systems, people and smart applications
intended to collect, process and share data. Furthermore,
the flexibility and mobility of IoT devices are giving users

 * Mohammad Bany Taha, an35670@ens.etsmtl.ca; Hakima Ould-Slimane, cc-hakima.ould-slimane@etsmtl.ca; Chamseddine Talhi,
chamseddine.talhi@etsmtl.ca | 1Department of Software Engineering and IT, École de Technologie Supérieure, University of Quebec,
Quebec, Canada.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2074-z&domain=pdf

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

an easy and intuitive way to control their overall smart
environment [2]. However, these devices are suffering
from severe constraints on their basic resources related
to processing, storage, and energy, which is rising serious
performance issues.

In addition, the IoT devices are pervasively collecting
and processing a huge amount of data leading to a criti-
cal capacity bottleneck at any of the resources involved.
Fortunately, the Cloud constitutes the best alternative for
solving this resource limitation problem. In this context,
data owners will often outsource the collected data to take
advantage from the huge storage and processing capacity
of the Cloud. Usually, the Cloud is honest but curious [3],
hence data owners can not fully trust any Cloud server.
Indeed, since the data is outside of the controlled trusted
area, any untrusted party (including the service providers)
can potentially access to any sensitive data without the
data owner’s consent. Moreover, this uncontrolled access
may reveal personal information about users’ habits and
can even lead to user profiling and privacy violation issues.
Consequently, a strong security mechanism should be
deployed at different levels to preserve data privacy and
confidentiality to ensure that only authorized entities can
gain access to the smallest piece of data according to the
collection purpose and the data owner requirements.

To solve this problem, data owner should either use
an authenticated access control system that allows only
authorized users to access the data, or encrypt the data
before being outsourced to the Cloud. However, using
an authenticated access control system is not completely
secure because intruders could still access the data using
malicious software [4] or may tamper with the data [5, 6].
Therefore, preserving data privacy by adopting a strong
encrypting mechanism is certainly more effective in such
environment [7, 8].

There are two basic classes of encryption: symmetric
mechanisms based on secret keys and asymmetric mech-
anisms based on public keys. Symmetric encryption is
lighter than asymmetric encryption in terms of computa-
tion time [9]. On one hand, in symmetric encryption, the
data owner should precisely know the identity of who
requests the data to send him the right shared secret key
needed for decryption. In IoT environments, this constraint
is not feasible. In fact, once the data owner outsources his
encrypted data to the Cloud, he has no information about
the other users’ identities or requests, so he is unable to
provide any cryptographic material for any communica-
tion. On the other hand, in traditional asymmetric encryp-
tion, the data owner encrypts the data using a public key
while the requester will use his own private key to decrypt
the data. In this cryptosystem, the data owner should also
identify who requests the data to correctly encrypt his
data. Hence, traditional public-key systems are also not

suitable to implement an effective encryption mechanism
for IoT environments. Consequently, there is a need for an
encryption system that can effectively handle access con-
trol in such environments. As a solution, a novel encryp-
tion mechanism called Attribute-Based Encryption (ABE)
has been proposed [10]. This cryptosystem can specify
then one-to-many encryption requirement regardless of
the identity of the decryptors which is an inherent feature
of a Cloud-based IoT environments. This mechanism is
based on contextual information and identity attributes.

Attribute-Based Encryption (ABE) was first proposed in
2006 by Goyal et al. [11]. An attribute is a descriptive string
attached to a user who may be characterized by multiple
attributes. Hence, we can easily specify any group of users
by a well-defined set of describing attributes. This concept
fits very well with IoT environments since we can combine
many attributes using logical operators to formulate a
one-to-many access policy. The authors proposed a new
form of asymmetric encryption called Key-Policy Attrib-
ute Based Encryption (KP-ABE). Later, in 2007, Bethencourt
et al. [10] proposed a new type of Attribute Based encryp-
tion called Ciphertext policy Attribute Based Encryption
(CP- ABE). In KP-ABE, the ciphertext is described with a set
of attributes while the private keys are associated with an
access structure specifying which ciphertext the users can
decrypt. As a dual approach CP-ABE assigns attributes to
private keys and attaches an access policy to the cipher-
text so only users holding the set of attributes satisfying
the access policy can decrypt the ciphertext.

The main advantage provided by ABE is the possibility
of specifying flexible and expressive fine-grained access
control policies over encrypted data. This feature satisfies
the data minimization principle, a very important privacy
requirement. In addition, this encryption system does not
put any restriction on neither the number of authorized
entities nor their identities. This crucial feature enables a
reliable anonymous access control [12]. However, all the
ABE mechanisms are still infeasible since the required
encryption operations will lead to a heavy computation
burden requiring high resources in terms of CPU, Mem-
ory, and energy consumption, which is a major issue for
preserving privacy in such resource-constrained environ-
ments. Indeed, this infeasibility motivates the research-
ers to design variants of CP-ABE schemes that reduces
the cryptographic computation burden and resource
consumption to fit with the IoT environment constraints
[13–17].

However, these previous contributions suffer from two
major weaknesses. First, some of the proposed schemes
are restricted to specific types of access policy. Thus, these
schemes will be restricted to a limited range of applica-
tions. Secondly, all of these proposed schemes consider
that the availability of resources on constrained devices is

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

constant all the time which is not realistic. Indeed, in prac-
tice, the availability of the resources is a variable parameter
depending on: (1) the number of tasks and loads assigned
to each device and, (2) the data size and the complexity
of the access policy. For this purpose, we investigate the
impact of this changing availability on the CP-ABE scheme
performance in an IoT environment.

In this article, we propose a smart offloading approach
that switches dynamically from full encryption to partial
encryption according to a wise resource-based decision.
More precisely, the proposed algorithm implements an
adaptive CP-ABE scheme for constrained devices optimiz-
ing the overall available resources. We adopted a machine
learning technique to select the appropriate encryption
technique according to the resources availability, the com-
plexity of access policy, and the data size. Finally, we vali-
date the performance of our scheme in terms of execution
time, CPU and memory utilization, and power consump-
tion through several scenarios.

The rest of this paper discuss the related work in Sect. 2.
The motivations of proposing adaptive CP-ABE scheme
and the its challenges are discussed in Sect. 4. Then we
present our proposed scheme in Sect. 6. Our results show
in Sect. 7 followed by the conclusion in Sect. 9.

2 Related work

In this section, we discuss the main encryption schemes
and the existing solutions to reduce computation cost
under constrained devices.

In 2007, Bethencourt et al. [10] proposed the first CP-
ABE scheme. The encryption algorithm for this scheme
performs atomically all cryptographic operations to gen-
erate the final ciphertext. The evaluation results of this
scheme show that the intensive required computations
consume high resources (CPU, Memory, and energy). The
researchers tried to find a way to reduce the overhead
due to the encryption algorithm of CP-ABE as well as the
execution time of the algorithm. Zhou et al. [18] proposed
an efficient extension of CP-ABE scheme that securely out-
sources most of encryption and decryption operations to
the Cloud without revealing data content and secret keys.
They built their contribution by working on the access tree
structure. Indeed, the size of the access policy is among
the factors that significantly affect the computation com-
plexity of CP-ABE. Since each access policy consists of a
left sub-tree and a right sub-tree, Zhou et al. suppose that
the left sub-tree of the access policy has more attributes
than the right sub-tree. Accordingly, the users can encrypt
their data with the right sub-tree of the access policy in
order to generate the initial form of ciphertext CT1 . How-
ever, the efficiency of this work in terms of computation,

communication, and storage is only possible by assuming
that the root node of the access tree is always an “AND”
gate, otherwise the scheme will not work.

Jin et al. improved Zhou et al. [19] work by propos-
ing a flexible and lightweight CP-ABE scheme on mobile
devices. The restriction that arises from Zhou et al. scheme
is fixed in Jin et al. scheme by adding a dummy attribute
to the right sub-tree of the whole access policy which pro-
vides more expressive access policies. To reduce the com-
putation overheads at mobile client and preserve the data
privacy, Jin et al scheme delegates most of the intensive
ABE operations to Mobile Cloud Computing (MCC) and
guarantees that neither the Encryption Service Provider
(EPS) nor the Cloud provider which hosting the data can
reveal that data. In Jin et al scheme, the user first encrypts
their data with the right sub-tree of the access policy
which contains only a dummy attribute to generate CTDum
then uploads it to EPS. EPS generates CTAcc considering the
right sub-tree and combines it with CTDum to generate the
final ciphertext CT (CT = CTAcc ∧ CTDum).

Wang et al [20] proposed a verified outsourcing ABE
scheme for key generation, encryption and decryption
operations. The user encrypts the data partially to gener-
ate EPO and EPL , EPL never leaves the user device and EPO is
sent to EPS. EPS performs more operations which entails
more computation cost. The scheme successfully reduces
the execution time. However, it generates high communi-
cation costs between user and client machines.

Zhao et al. proposed a scheme similar to Wang et al.
works [21]. Zhao et al. reduce the overhead of CP-ABE on
user device by encrypting the message using symmetric
encryption then the data owner uses ABE to encrypt the
symmetric key with attributes and sends CT1 with CSE to
EPS. Same technique as in [20] is applied for the remaining
part of the algorithms.

Touati et al. [22] proposed a lightweight CP-ABE
scheme. The scheme assumes that there is constrained
and unconstrained nodes (assisting nodes) in IoT envi-
ronments. In summary, the scheme performs CP-ABE
encryption by delegating these operations to assisting
nodes. The authors take advantage of heterogeneous
nodes in the environment to distribute the expensive
computation of CP-ABE operations. However, the authors
assume that all these nodes are trusted. Moreover, send-
ing and receiving parameters between the user node
and assisting nodes increase the communication over-
head on user node and cannot be neglected. Nguyen
et al. [23] proposed CP-ABE scheme to outsource ABE
cryptography operations. The user device performs
only one exponentiation to generate the initial CT1 ,
where Delegee component (DG) performs most of ABE
expensive operations. DG is responsible of encrypting
the data with access policy. Then, if DG is compromised

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

and the attacker changes the access policy to satisfy a
client’s secret key (SK), the client will be able to decrypt
the data since there is no relation between C’ and the
access policy that the user sends to DG.

The overhead cost and the time of encryption algo-
rithm in CP-ABE schemes is related to number of expo-
nentiation that user devices perform [22]. Accordingly,
we compare the time and the cost (CPU, Memory, and
power consumption) of several CP-ABE schemes that
were proposed for IoT devices in Table 1. The results
shown on the table are related to a file whose size is 500
MB and 30 attributes defining the access policy. Table 1
shows that Touati et al. scheme [22] performs 0 exponen-
tiation in user device. This means that this scheme is the
fastest and less resources consumption. Next, Nguyen
et al. scheme [23] needs only one exponentiation to gen-
erate the ciphertext. In [18] work, the number of expo-
nentiations is based on the number of attributes in the
right sub-tree.

Number of exponentiations in scheme [18] is 2|�r| + 2 ,
where |�r| is the length of attributes in the right access
policy. The number of exponentiations in Bethencourt’s
scheme [10] is dependent on the number of attributes
in the access policy.

Based on our literature review, we summarize our
encryption scheme requirements as the following:

– Correctness: The scheme should allow only the author-
ized user to decrypt the data.

– Scalability: The scheme should be able to handle a wide
range of applications and and access policies.

– Feasibility: The scheme should be usable on con-
strained devices.

– Flexibility: The scheme should take into consideration
the context of encryption information such as, number
of attributes, data size. Then, based on this information
the scheme should have the ability to select the appro-
priate technique (whether perform full encryption in
user device or delegate most of cryptography opera-
tions to another device).

3 Preliminaries

In this section, we present the technical terminology that
we use in this article.

3.1 Bilinear map

Most of the CP-ABE schemes are based on a bilinear map.
Assume �0 , �1 are two multiplicative groups of prime order
p. Assume g is a generator of �0 and e is a bilinear map, e :
�0 × �0 → �1 . The properties of a bilinear map are:

– Bilinear: for all a,b in �0 and c,d ∈ ℤp , (ac,bd) = (a, b)cd

– Non-degenerate: e(g,g) ≠1

�0 is a bilinear group if the group operation in �0 and the
bilinear map e : �0 × �0 → �1 are both efficiently comput-
able. Map e is also symmetric: e(ga,gb) = e (g, g))ab = e(gb,ga)

3.2 CP‑ABE

In this scheme, the access policy is embedded in the
ciphertext (i.e., the encrypted data) and private keys are
generated according to a set of attributes. To decrypt the
ciphertext, the user should own the private key related to
a set of attributes satisfying the access policy. The original
form of CP-ABE [10] consists of four algorithms:

– Setup (�)→ (PK, MSK). The algorithm uses security
parameters (�) to generate a public key (PK) and master
secret key (MSK).

 Equation 1 is the Public Key (PK) equation. The Master
Secret Key (MSK) is (� , g�). Where � and � are random
exponents (� , � ∈ ℤp). �0 is a bilinear group of prime
order p with generator (g).

– KeyGen (PK, � , MSK) → SK. The algorithm uses the pub-
lic key, � , MSK as input and generates the secret key

(1)PK = G0, g, h = g� , f = g1∕� , e(g, g)�

Table 1 Number of
cryptography exponentiations
needs to perform in user
deviceß

Scheme NumberofExp Time (s) CPU (MiB) Memory (MiB) Power
consump-
tion (J)

First CP-ABE Scheme [10] |�| + 2 4.79 4.7 6.2 0.87
PP-CP-ABE [18] |�

r
| + 2 4.82 5.1 6.4 0.91

SL-CP-ABE [19] 2 0.332 3.6 2.7 0.424
Verifiable-Outsourced-CP-ABE [20] 4 0.83 4.1 4.8 0.81
VOC-CP-ABE [21] 4 0.79 4.2 5.1 0.781
OEABE [23] 1 0.24 2.1 2.6 0.39
C-CP-ABE [22] 0 0.189 1.9 2.6 0.388

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

(SK). The SK contains D, Dj , and D′
j
 components. � is the

client’s attributes list.

 The SK algorithm selects r and rj random (r and rj ∈ ℤp)
for each attribute j ∈ � . H is a hash function.

– Encryption (PK, M, �)→CT, where CT is the ciphertext,
� is the user’s access policy, and M is the message that
the data owner wants to encrypt.

 In Eq. 3, the encryption algorithm generates random
value (s) to calculate the shared value (�y) for each
attribute in the access policy (�) using linear secret
sharing. Blinding each attribute in � with their share
(�y) is preventing a collusion attack [10].

– Decryption(CT,SK)→ M. The decryption algorithm
decrypts the ciphertext (CT) using (SK) to output the
message (M).

Definition 1 Assume that node Z is a leaf node and let j =
att(z), The decryption algorithm works as the following :

(2)
SK =

(
D = g(�+r)∕�),∀j ∈ � ∶ Dj = gr ⋅ H(j)rj ,D�

j
= grj

)

(3)
CT =

(
�, C� = Me(g, g)�s,C = hs,∀y ∈ Y ∶

Cy =g
�y ,Cyp = H(att(y))�y

)

(4)M =
e(Di ,Cx)

e(D�
i
,C�

x
)

These same steps are repeated for j ∈ � . If the attributes
that the SK blinds with satisfy the policy � , then the algo-
rithm will be able to decrypt CT. Otherwise, the algorithm
will return ⟂.

3.3 Access tree

The access tree is used to describe the access policy. The
access tree consists of a set of nodes. The top node is called
the root node whereas the inner nodes are either the logi-
cal operator (AND, OR, or OF) or leaf node. The leaf node
represents the attributes and it is usually the lower level of
the tree. Figure 1 shows samples of the access tree. The left
tree in Fig. 1 is the original access tree (�) where the policy
is � =

(
(A AND C) OR (BAND Z)

)
 . � is the access policy, A,

C, B, and Z are the attributes that the CT encrypts with. The
right access tree �D is the same access tree on the left of
Fig. 1 but with an extra dummy attribute �

�
=
(
((A AND C

) OR (BAND Z))ANDDummy
)
 where �

�
 is the access policy

with an extra dummy attribute. A dummy attribute has
the same features as any other attributes and it might
be owned by any user. The user who want to decrypt the
data must have this attribute. To prevent a collision attack,
each attribute blinds with a secret share � in the encryp-
tion algorithm [24]. We will further discuss the encryption
algorithm in Sect. 6.

(5)

DecryptZ =
e(Dj ,Cx)

e(D�
j
,C�

x
)

=
e(gr ⋅ H(j)rj , h�Z)

e(grj ,H(j)�Z)

=e(g, g)r�Z

OR

AND

C B ZA

ORAND

C B ZA

Dummy

Access Tree Access Tree with Dummy Attribute

AND

OR

OR

Fig. 1 Access tree � (left side), Access tree with dummy attribute �
D

 (right side)

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

4 Full versus partial encryption: incentive
for adaptive scheme

The majority of related work shows that the ABE com-
putation is too heavy to be performed on constrained
devices and thus, prior contributions were focusing on
delegating all or most of ABE encryption/ decryption
tasks to a remote/proxy machine. An efficient solution
was proposed by Jin et al. [19] where partial, on-device
CP-ABE encryption is performed using a one attribute
(dummy attribute) policy and remote CP-ABE encryp-
tion is performed using the complete policy. However,
recent revolution in hardware as well as software sys-
tems dedicated to constrained devices is enabling on-
device execution of all ABE tasks. However, the efficient
management of constrained devices should take into
consideration the variation of resources available (e.g.,
CPU, Memory, and battery). In other words, it will be
preferable to perform all ABE tasks on the constrained
device (full encryption) in some situations and in other
situations, it will be better to perform only a few tasks
(encryption based on the dummy attribute, called partial
encryption) and offload the remaining tasks (encryption
based on the original policy) to a remote server/proxy.
We have investigated this aspect with the first experi-
ment comparing the execution time, CPU utilization,
and the power consumption of full and partial CP-ABE
encryption respectively by varying the attributes num-
ber from 2 to 500.

Our results show that the full encryption scheme
[10] is faster than the partial encryption scheme [19] as
shown in Fig. 2. In the full encryption scheme, the total

time is the time needed to perform CP-ABE operations
before uploading CT to the Cloud. In partial encryption,
the total time is the time of CP-ABE operations in the
user device and proxy machine as well as the transmis-
sion time between two machines (part A and B of Fig. 4
show the full and partial encryption schemes respec-
tively). However, our results show that full encryption
consumes more CPU than partial encryption as shown
in Fig. 3.

Based on the aforementioned results, we can identify
an incentive to perform on-device full encryption when
the available CPU and battery are sufficient and perform
partial encryption when the available CPU and battery
are less than the required budget. This rule-based deci-
sion making can be extended if more encryption param-
eters and performance metrics are investigated. In fact,
the size of messages to be encrypted, their type, and their
frequency should have an impact on the CPU utilization,
power consumption, and execution time needed for their
encryption. The available Memory and the quality of “WIFI/
mobile” connections are important performance metrics
that should be studied.

Assuming such a decision-making process is available,
the challenge arises when it comes to design an adaptable
scheme that is capable of automatically switching from
full to partial CP-ABE encryption according to the con-
text. Such a scheme should have the ability to generate a
secret key that can decrypt the data regardless of which
encryption technique (full or partial) is used to encrypt the
data. More specifically, using Bethencourt’s scheme [10]
to perform full encryption and Jin’s et al. [19] to perform
partial encryption require two secret keys for each client
to decrypt the same file. The first secret key will be used

Fig. 2 Total time of full and
partial encryption scheme

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

when full encryption is applied while the second key will
be used to decrypt data encrypted using a partial scheme.
More precisely, in Jin’s scheme, the data is first encrypted
with a dummy attribute before being encrypted by the
access control policy. This is not supported in Bethen-
court’s scheme [10].

5 Mathematical model

In this section, we will discuss the mathematical specifica-
tion of an adaptive problem and we will find the formal
definition of performing full and partial (local computation
and offloading respectively) CP- ABE operations on a con-
strained device. Finally, we will discuss the optimization
issue of in adaptive solution. Our variable notations are
shown in Table 2.

5.1 Decision variable

In our article, the decision variable notation is xDi
 , where

xDi
 is:

5.2 Assmptions

Let T i
ct

 be the total time required to generate the cipher-
text CT (the encrypted data generated by each device) for
task i.

xDi =

{
0 Full Encryption

1 Partial Encryption

Assumption 1 Equation (6) shows that T i
ct

 is dependent on
T i
fct

 and T i
t
 , where T i

fct
 is the time required to perform cryp-

Fig. 3 CPU utilization of full
and partial encryption scheme

Table 2 Notations

Parameter

� Access policy
�

�
Access policy with dummy attribute

� Real access Tree
�D Access tree with dummy attribute

CT i Ciphertext of task i

CT i
1

Partial Ciphertext of task i

f i
ct

CP-ABE function that generate CT for task i

f i
ctl

CP-ABE function in local device to generate CT of task i

f i
ctr

CP-ABE function in remote device to generate CT of task i

Ui
l

CPU utilization of local device for task i

Ui
r

CPU utilization of proxy machine for task i

RAMi
l

Memory utilization of local device for task i

RAMi
r

Memory utilization of proxy machine for task i

Pi
l

Power consumption of local device for task i

Pi
r

Power consumption of proxy machine for task i

T i
ct

Total time required to generate CT for task i

T i
fct

Execution time required to perform CP-ABE

T i
t

Transmission time for task i

T i
l

Time required to perform CP-ABE locally

T i
r

Time required to perform CP-ABE remotely

T i
prop

Propagation delay for task i

lx Connection type between constraint device and the proxy

T i
trans

Transmission delay for task i

xi
D

Decision parameter whether local or offload operation i

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

tography operations to generate the CT for task i. T i
t
 is the

time required to either send the CT directly to the Cloud
in case T i

ct
 performed a full encryption or the time needed

to send the CT1 to the proxy machine and send CT to the
Cloud.

Assumption 2 We find T i
t
 only in case CP-ABE is performed

partially since we assume that the CP-ABE performed (full
or partial) will take the same time to upload CT to the
Cloud. Hence, we calculate T i

t
 only if CP-ABE performs a

partial encryption because it is the time to send CT1 from
RP1 to RP2 before uploading the final CT to the Cloud.

where T i
fct

 is the execution time required to perform CP-
ABE, and T i

t
 is the transmission time. T i

fct
 depends on the

available resources in the constrainted device in terms of
CPU and memory utilization as shown in Eq. (7).

where f i
ct

 is CP-ABE function that generate CT for task i. Ui
l

is the percentage of CPU utilization on a constraint device
for task i and RAMi

l
 is the percentage of memory utiliza-

tion on a constraint device for task i. Pi
l
 is the power con-

sumption on a constraint device for task i. Ui
r
 and RAMi

r
 are

the percentage of CPU, memory utilization in the proxy
machine respectively. Pi

r
 is the power consumption in

proxy machine. T i
l
 and T i

r
 are the time needed to perform

CP-ABE operations (either full or partial encryption respec-
tively). xD is the decision variable taken to perform CP-ABE
(either full or partial).

In addition to Tfct , Eq. (6) shows that T i
ct

 also depends on
T i
t
 . T i

t
 consists of two terms shown in Eq. (8).

where T i
prop

 is the propagation delay and T i
trans

 is the trans-
mission delay. Propagation delay is the time of propagate
data from the beginning link of RP1 to the target vehicle
RP2 (lx). The propagation delay depends on the media that
the data transfer is on. Transmission delay (T i

trans
) is a fixed

value and depends on the length a packet. T i
trans

 is the time
needed to push out CT1 from RP1 into the link between
RP1 and RP2 (lx).

(6)Tct =

I∑

i=1

(T i
fct
+ T i

t
)

(7)

Tfct =

I∑

i=1

(1 − xi
D
)(fct

i
l
× Ui

l
× RAMi

l
× Pi

l
) × ti

l

+

I∑

i=1

xi
D
(fct

i
l
× Ui

l
× RAMi

l
× Pi

l

+ fctr
ir × Ui

r
× RAMi

r
× Pi

r
) × ti

r

(8)Tt =

I∑

i=1

2xD

xD + 1
(T i

prop
+ T i

trans
)

Problem Definition. Consider constraint device j performs
multi CP-ABE tasks fct I , I = {i1, i2, ..in }. Each CP-ABE operation
needs T i

ct
 to generate CT i . T i

ct
 depends on Ui

l
 CPU utilization

and RAMi
l
 (memory) utilization, and Pi

l
 (battery) power con-

sumption, T i
propl

 , and T i
transl

 in case f i
ct

 is performed locally (full
encryption). On the other hand, T i

ct
 depends on Ui

l
 CPU utiliza-

tion, RAMi
l
 memory utilization, Pi

l
 power consumption, T i

proplx
 ,

T i
propr

 , T i
transl

 , and T i
transpx

 in case f i
ct

 selects (partial encryption)

or offloading option. Accordingly, all of these factors should
be considered when deciding if f i

ct
 should perform full or

partial (delegating to proxy machine) encryption. In this
article, we aim to reduce Tct for all I. In constraint devices,
this is considered a challenge for the following reasons:

We discussed in Sect. 4 that the relation between
resources and Tct is an inverse relation. More precisely,
more resources (Ui , RAMi , Pi) take less time to generate CT.
In addition to the resource, the total time (T i

ct
) depends on

whether fct will be performed locally or will be offloaded.
Therefore, minimizing Tct by taking into consideration the
factors that can minimize Tct and guaranteeing that gen-
erating CT is visible with maximum available resources is
our objective.

Lemma 1 Optimizing the total time (T i
ct

) of performing CP-
ABE operations in constrained devices is NP-Hard.

Proof We reduce the 0–1 knapsack problem to reduce
the total time of generating CT (Eq. 9) since the binary
partition is made on a serial task graph. Therefore, as 0–1
knapsack problem is NP-hard [25], deciding if the scheme
should perform full or partial encryption to achieve Eq. 9
is NP-hard. Considering a simple scenario of our problem.
The constraint device will perform only one CP-ABE opera-
tion to generate CT i . The total time of performing CP-ABE
using full encryption (locally in a constraint device) is T i

ct
 ,

whereas it is T ′ i
ct

 for the same task (i) in case i is performed
using partial encryption (offloading technique). Due to
limitation of resources in constraint devices, taking the
decision (xi

D
) of whether task i should be performed using

full or partial encryption is a NP-hard. T i
ct

 is depends on
the execution time (T i

fct
) and the transmission time T i

t
 . T i

ct

depends on Ui , RAMi , and Pi of the constrained device and
the assistant device (proxy server). T i

ct
 also depends on �

and the size of data. We take these factors into consid-
eration to select the appropriate technique (full or partial
encryption) that can generate CT i with a minimum total
time

�
T i
ct
= min

∑I

t=0
T i
ct

�
 . ◻

5.3 Optimization formulation

To achieve our goal discussed above (minimum total time),
we discuss the optimization formula in this section.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

The c1 constraint ensures that the number of tasks is natu-
ral. Constraint c2 to ensures that the decision variable xi

D

is a binary value based on the decision taken. c3, c4, and
c5 ensure the status of CPU (idle, meduim, critical) of the
machine that will perform task i. c6, c7, and c8 ensure the
status of memory (idle, medium, critical) of the machine

(9)T I
ct
=min(

I∑

i=1

T i
fct
+ T i

t
)

(10)

T I
fct
=min

(I∑

i=1

(1 − xD
i)(fct

i
l
× Ui

l
× RAMi

l
× Pi

l
) × T i

l

+

I∑

i=1

xi
D
(fct

i
l
× Ui

l
× RAMi

l
× Pi

l

+ fctr
i
r
× Ui

r
× RAMi

r
× Pi

r
) × T i

r

)

(11)T i
t
=min

(I∑

i=1

2xD
i

xD
i + 1

(T i
prop

+ T i
trans

)
)

S.t

i ∈ I (c1)

xi
D
= {0, 1} (c2)

10% ≤ Ui
c
< 35% (c3)

35% ≤ Ui
m
< 55% (c4)

55% ≤ Uidl
i ≤ 100% (c5)

10% ≤ RAMi
c
< 35% (c6)

35% ≤ RAMi
m
< 55% (c7)

55% ≤ RAMidl
i ≤ 100% (c8)

T i
prop

= {wire,wireless} (c9)

that will perform task i. c9 ensures that the connection
media between the constraint device and the proxy
machine is either wire or wireless.

In order to achieve our optimization objective, we
use machine learning that considers all factors that may
increase the Tct . Then it makes the decision whether the
machine should perform CP-ABE locally or it should
offload CP-ABE. We will discuss this machine learning
technique in Sect. 8 .

6 Adapted CP‑ABE

In this section, we will discuss how to switch from the
scheme proposed by Bethencourt et al. [10] and the
scheme proposed by Jin et al. [19] without involving two
different private keys per user. Both schemes are secure as
discussed in Sect. 2. We will start with defining the main
use case scenario. We then compare the schemes before
proposing adaptive CP-ABE encryption.

6.1 Main use case

Figure 4 shows three schemes. Scheme (A) represents full
encryption [10] where the data is totally encrypted in the
device (the gateway RP1 in Fig. 4). Scheme (B) is the partial
encryption scheme proposed by Jin et al. in [19]. Scheme
(C) is our proposed scheme. We call it the adaptive encryp-
tion scheme. The adaptive scheme selects the appropriate
encryption (full or partial) to encrypt the data based on
the context of the policy, file size, and the availability of
resources on the device (RP1).

The main job of the gateway (RP1) in all three schemes
is to encrypt data (either full or partial encryption) before
uploading it to the Cloud. In full encryption (Fig. 4), RP1
performs all CP-ABE operations and then uploads the CT

Fig. 4 Full (a), partial (b) and (c) adaptive Schemes

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

to the Cloud. In partial encryption, RP1 performs a few
CP-ABE operations to generate intermediate CT1. Then,
RP1 send CT1 and non-critical parameters to RP2 to per-
form the remain part of CP-ABE. Even though the scheme
delegates most of the CP-ABE operations to RP2, the data
cannot be revealed by attacker (such as Man in The Middle
Attack) [19].

In this article, we assume that RP1 and RP2 are on the
same network. They could communicate through LAN or
WLAN. The performance results related to experimenting
partial encryption show an important difference depend-
ing on whether RP1 and RP2 are connected through LAN
or WLAN. This will be discussed later in Sect. 7.

6.2 Comparison of [10] and [19] encryption
schemes

In a full encryption scheme, the data is encrypted com-
pletely in the gateway (RP1) (by encrypting the data with
a policy and generating the final CT), then uploading it
to the Cloud. Algorithm 1 shows the cryptography opera-
tions of full encryption that the gateway (RP1) performs
before it uploads the CT to the Cloud. In Algorithm 1, the
algorithm generates a key and security parameter in line 1
and 2 respectively. In line 3 of Algorithm 1, the sub-secret
� calculated for each node y in � including leaf nodes. � is
a polynomial chosen for all nodes in the access tree from
the top node (root node) until the last leaf node in a top
down manner. The algorithm selects a random s that gen-
erated in line 2 of algorithm 1 and set �R = s, where �R is the
polynomial value of the root node. Then it moves down
to the next node (y) and finds �y = qparent(y)(index(y)) . It
chooses dy to define qy where dy is a degree of polynomial
�y [10]. Lines 4 and 5 of Algorithm 1 show how to calculate
the security parameters C, C’, Cy , and Cyp . Note that Cy , and
Cyp in line 6 are calculated for each attribute (att(y)) in the
access policy (�).

In a partial scheme (B of Fig. 4), data is encrypted with
only the dummy attribute and most of the CP-ABE cryp-
tography operations are delegated to another assistant
device or a proxy server. Several schemes proposed this
idea such as the scheme in [19]. Algorithm 2 shows the

steps of partial encryption performed in the gateway, and
the operations in step 1, 2, and 3 are the same as those
performed in the full encryption scheme (Algorithm 1).
However, in step 4 of Algorithm 2, the gateway only cal-
culates the security parameters (CyD and CypD) of �D where �D
is an access tree with a dummy attribute as shown in Fig. 1.

Therefore, in partial encryption, the device takes less
time and consumes less resources compared to encryp-
tion since the algorithm calculates CyD and CypD only for one
attribute (the dummy attribute) instead of calculating Cy
and Cyp for all attributes � in � as it is in full encryption. The
assistant device completes the encryption process by per-
forming most of the CP-ABE encryption operations (Algo-
rithm 3). Indeed, it computes the security parameters Cy
and Cyp for all attributes (�D) in the access tree � except the
dummy attribute (CyD ,CypD). Algorithm 3 shows the steps
of generating the second part of ciphertext. In Fig. 4, the
assistant device is (RP2). In a full encryption scheme, there
is no assistant device since it performs all CP-ABE opera-
tions on the user device (RP1).

6.3 Adaptive CP‑ABE

We solve the second challenge that we have discussed in
Sect. 4 by adding one attribute (dummy attribute) to any
access policy in the full encryption algorithm. Thus, in
our encryption algorithm (Algorithm 4), the client will be
able to decrypt the data using one secret key regardless
of whether full or partial encryption is performed on the
gateway. Algorithm 4 shows the encryption algorithm
in the constraint device (RP1). In our algorithm, the cli-
ent is able to use his/her secret key to decrypt cipher-
text whether the data is encrypted using a full or partial
encryption scheme.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

Adding one attribute to the access policy should
increase the execution time and resource consump-
tion. However, we found that the introduced overhead
is negligible. In fact, we measured the execution time,
CPU and memory utilization of our full encryption algo-
rithm (Algorithm 4) with the full encryption algorithm
(Algorithm 1) proposed in [10]. Figure 5 shows that the
difference in execution time between the two algorithms
is around 0.04 seconds. Moreover, the CPU and memory
utilization of the two algorithms are almost equal.

Based on our experiments and discussion, offloading
for CP-ABE operations is required in the constrained device
to adapt the limitation of the resources problem. However,
applying offloading technique on two different schemes (
[10] and [19]) is not straightforward. Assume that the data
owner uses the Bethencourt et al. scheme [10] to encrypt
message M with policy ((B}}OR��C)}}AND��D) to generate
CT’. And assuming the client want to decrypt CT’, and his/
her SK is generated using Jin et al. [19], and Assume client’s
attributes is (B, D, and dummy attributes). Then, the client
will not be able to decrypt CT’ for the following reason; The
policy that CT’ blinds with is � . Therefore, to decrypt CT’,
all attributes in � need to reconstruct the random values
(line 2 of Algorithm 1) based on Eqs. 4 and 5 [10]. The client
SK will have Dj and D′

j
 for all �D which will not satisfy � , thus,

random value (s) will not recover since � ≠ �D [10]. There-
fore, Eq. 4 will return ⟂ . In our Algorithm, we fixed this
problem in line 13. We compute Cy and Cyp for all �D even if
the decision is to perform full encryption. Therefore, the

client’s SK is able to decrypt CT because CT will have Cy and
Cyp for all �D.

We find the security parameters that need to encrypt
the message M as shown in line 2 and 3 of Algorithm 4.
In line 4 to line 6, the algorithm calculates � for each node
in �D . After this, our algorithm checks the resources in the
device that run in (RP1) and the resources in the proxy
(RP2). This is shown in line 7 of Algorithm 4 where Ul and Ur
are the CPU utilization in the local device (RP1) and proxy
machine (RP2) respectively. RAMl and RAMr are the mem-
ory utilization in the local device (RP1) and proxy devices
(RP2) respectively. lx in line 7 of Algorithm 4 is the media
type of connection between RP1 and RP2. These variables
in addition to the policy length that the data will encrypt
with (�) impact the decision of whether the algorithm
will perform the encryption locally or by offloading the
encryption. Figure 14 shows the decision tree that we use
for performing CP-ABE operations locally or by offloading
to the assistant device. We will further discuss the machine
learning technique that we used in Sect. 8. Line 8 of Algo-
rithm 4 shows that the algorithm takes the decision (xD)
whether it will perform the encryption locally or by off-
loading the task to the proxy. If the decision based on the
context at the time of encryption is to perform full encryp-
tion (locally where xD = 0), the Algorithm will perform the
lines from 11 to 15. The Algorithm Computes C and C’ first,
and Cy and Cyp for all �D . Finally, the algorithm uploads the
CT to the Cloud in line 15 of the algorithm.

If the decision (xD = 1) is to perform partial encryption,
then the algorithm performs the steps from line 17–20 in
the constrained device (RP1). The first two steps are the

Fig. 5 Comparison between
full-D and full encryption
scheme

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

same as in full encryption where the algorithm computes
C and C’ (line 17). However, unlike full encryption, the algo-
rithm computes only CyD and CypD for the dummy attribute
(line 18). The remaining components will be computed in
assistant device (RP2) and this will reduce the computation
cost on the constraint device and the time complexity of
the algorithm.

Algorithm 5 shows the steps that RP2 performs to gen-
erate the final CT of CP-ABE after it receives the CT1 from
RP1. RP2 computes Cyand Cyp respectively for all attributes
in �D (Algorithm 5, line 2 and 3) except CyD and CypD since
these two components are computed in RP1. The algo-
rithm combines CT1 with the components that were com-
puted to generate a final CT as shown in line 5. Finally, RP2
uploads CT to the Cloud.

Lemma 2 The time complexity of our algorithm (Algorithm 4)
in the data owner device (RP1) is O(n).

Proof The time complexity of our algorithm (4) in the con-
straint device depends on the length of the access tree
�D . In line 2 and 3, the Algorithm 4 generates a random
number where the time complexity in these two opera-
tions is O(1) . The algorithm in line 4 to line 6 calculates the
polynomial � for each node in �D . The time complexity for
this part of the algorithm is O(n + 1) . The time complexity
for “if condition” (line 10) is O(1) . In case the number of
nodes in �D is n, then the time complexity of the algorithm
is O(n + 1) to compute Cy and Cyp components for all nodes
in �D . The time complexity for /’for’/ loop in the algorithm
(line 18) in case the decision is xD = 1 is O(1) , because the
algorithm will compute CyD and CypD for only the dummy
attribute. The time complexity of the algorithm is O(n)
 ◻

7 Experimental results and analysis

In this section, we discuss the performance of a full-D and
partial CP-ABE encryption in different scenarios. Table 3
shows the hardware specifications of the gateway (RP1)
and the assistant device (RP2) that have been used in our
experiments. We use the Charm framework to run several
CP-ABE schemes [26]. We also use the TOP tool to measure
the CPU and memory utilization, and we use USB power
meter to measure the power consumption. As we dis-
cussed earlier, the execution time and CPU utilization of
encryption algorithm increases whenever the number of
attributes in the access policy increases. In addition to the
number of attributes, we found that the size of the file also
influences the execution time and CPU utilization in con-
strained devices. Figures 6 and 7 show the execution time
of full-D and partial encryption applied on two files, one of
size 1-byte and the other of size 500-MB. Each figure shows
that large files need more time to perform encryption than
small files. Also, large files consume more resources than
small files as shown in Figs. 8 and 9. In terms of energy
consumption, the results are proportional to those of
CPU usage as it is expected, since the energy consump-
tion for partial and full encryption is the one consumed
their usage of the CPU. Figures 10 and 11 show the power
consumption of partial and full-D encryption schemes
respectively.

In this experiments, we assume that all files are stored
locally in the gateway. This will help to get accurate results.
Moreover, to conduct a fair comparison between full
and partial encryption, we investigate several scenarios
applied on full and partial encryption. As shown in Table 4,
each scenario consists of several properties. For example,
in S1, the file size is 1-byte, the number of attributes in the
access policy is nine, the status of resources (Avg − Res) is
medium (around 50% of the resources is available), and

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

the connection between RP1 and RP2 is LAN. In Table 4,
there are three Avg-Res statuses (Idle, Medium, and Criti-
cal). Idle status means only 20% of RP1 (CPU, memory, and
battery) is reserved which means 80% of the CPU is avail-
able. Medium status means 50% of RP1 Avg − Res is avail-
able. Finally, critical status means 20% of the Avg − Res is
available.

Figure 12 shows the total time of full and partial CP-ABE
encryption in scenarios S1 to S15. We can observe inter-
esting facts. In S1 and S2, there are two different file sizes,

1-byte in S1 and 1-KB in S2. Both files are encrypted with
the same number of attributes (9) as shown in Table 4. In
S1, the connection between RP1 and RP2 is LAN while it is
WLAN in S2. The results in Fig. 12 show that full encryption
is faster than partial encryption in S1 while partial encryp-
tion is faster than full encryption in S2. The fact that the
file size in S2 is bigger than the file size in S1 can explain
these results.

When we compare S3 and S4, we can see that the
two scenarios have the same file size and these files are

Fig. 6 Overall execution time
of full-D encryption for the file
size 1 Byte and 500 MB

Fig. 7 Overall execution time
of partial encryption for the file
size 1 Byte and 500 MB

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

encrypted with access policies that have the same num-
ber of attributes. Figure 12 shows that in S3, full encryp-
tion is faster than partial encryption whereas in S4, partial
encryption is faster than full encryption. The connection
between RP1 and RP2 in S3 is WLAN which is slower than
LAN. This makes full encryption faster than partial encryp-
tion. However, when the connection is LAN in S4, partial
encryption is faster than full encryption.

S5, S6, and S7 are three scenarios with the same file
size (1 KB) and number of attributes in the access policy
(50). The difference between these three scenarios is in
terms of available Avg − Res in RP1 and the connection
type between RP1 and RP2. Our experiment shows that full
encryption is faster than partial encryption in S5 whereas
partial encryption is faster than full encryption in S6 and
S7. This shows that full encryption becomes slow when

Fig. 8 CPU utilization of full-D
encryption algorithm for the
file size 1 Byte and 500 MB

Fig. 9 CPU utilization of partial
encryption algorithm for the
file size 1 Byte and 500 MB

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

the length of the access policy is large and the available
Avg − Res % is small. This also explains why full encryption
is faster than partial encryption in S6 and S7.

In S8, S11, S13, and S15, full encryption is faster than
partial encryption when there are enough resources
and the number of attributes in the access policy are
small. However, partial encryption is faster when there
are not enough resources in constrained devices and the

Fig. 10 Power consumption of
full-D encryption algorithm for
the file size 1 Byte and 500 MB

Fig. 11 Power consumption of
partial encryption algorithm
for the file size 1 Byte and 500
MB

Table 3 Technical specifications of the gateway and trusted nodeß

RP1 RP2

CPU Quad-Coretex A53 1.2GHz Quad-Coretex
A53@
1.2GHz

Memory 1 GB SDRAM 1 GB SDRAM
Storage MicroSD 4 GB MicroSD 4 GB
Network 10/100 Mbps 10/100 Mbps

Table 4 Several scenarios

Scenario MSG − size |�
�
| CPU − RP1 Connection

S1 1-Byte 9 Medium LAN
S2 1-KB 9 Medium WLAN
S3 1-KB 9 Critical WLAN
S4 1-KB 9 Critical LAN
S5 1-KB 50 Idle LAN
S6 1-KB 50 Medium LAN
S7 1-KB 50 Medium WLAN
S8 10-MB 12 Idle LAN
S9 10-MB 12 Medium LAN
S10 100-KB 5 Critical LAN
S11 100-KB 5 Medium LAN
S12 100-KB 5 Critical WLAN
S13 1-MB 5 Medium LAN
S14 1-Byte 20 Critical WLAN
S15 1-MB 20 Idle LAN

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

number of attributes in the access policy is big such as
in S9, S10, S12, and S14.

Based on the results presented in this section, we
found that the total time of CP-ABE encryption algo-
rithms depends on several factors in addition to the com-
plexity of the access policy. In some cases, performing
full encryption is faster than partial if there are enough
resources available in constrained devices. Moreover,
file size is the main factor for choosing between full and
partial encryption. Finally, the connection between the
constrained devices plays an important role in this deci-
sion since LAN is faster than WLAN.

8 Full or partial encryption decision xi

D

As discussed in Sect. 7, the total time of the CP-ABE encryp-
tion algorithm depends on various factors such as length
of access policy, file size, available resources (CPU, Mem-
ory, and power consumption), and network connection
between devices. Hence, designing an adaptive scheme
that is able to select the appropriate encryption technique
(whether full or partial) at the time of encryption is manda-
tory. Therefore, a machine learning technique is needed
to allow automatic selection of the encryption algorithm
based on the context related to the data to be encrypted,
the available resources on the device and the network

connection characteristics. It is worth mentioning that
these factors change over time.

There are several machine learning algorithms investi-
gated in related work [27]. In this work, we utilize machine
learning to select the appropriate encryption technique
based on the execution context. Indeed, we have experi-
mented with several machine learning algorithms using
the Weka tool [28]. Hereafter, we recall some of the main
metrics commonly investigated when we study machine
learning algorithms.

The accuracy of a machine learning algorithm indicates
the correctly classified elements [29]. Accuracy is defined
by the following equation:

where TP, TN, FP, and FN are explained as follows. Each true
predictive value that is equal to the actual value is consid-
ered as True Positive (TP). When a true predictive value is
not equal to the actual value, it is called False Positive (FP).
If the negative predictive value is equal to the actual value,
then this value is called True Negative (TN). Finally, if the
negative predictive value is not equal to the actual value,
we call it False Negative (FN).

The exactness and quality of machine learning can
be measured by the precision [30] metric defined by the
following equation:

Accuracy =
(TN + TP)

(TP + FP + FN + TP)

Fig. 12 Total time of full and partial CP-ABE encryption on different scenarios

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

The completeness or quantity of the algorithm is meas-
ured by the recall metric defined by the following
equation:

Finally, the weight harmonic of precision and recall called
the F-measure [29] metric is defined by the following
equation:

In order to select the best-fit machine learning for our
work, we built a dataset and we experimented with three
machine learning algorithms: decision tree, Support-Vec-
tor-Machine, and K-Nearest-Neighbor. We have compared
the results of the three algorithms in terms of accuracy,
precision, and F-measure as shown in Fig. 13.

To build our dataset, we selected six files having the fol-
lowing sizes: 1byte, 1 KB, 10 KB, 100 KB, 1 MB, and 10 MB.
For each file, we measured the CPU utilization and total
time while varying the number of attributes in the access
policy (from 2 to 500), the available CPU (Idle, Medium,
Critical), and the connection type (LAN or wireless). For
each of the tested configurations, we have identified the
most appropriate scheme (either full or partial).

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure =
2 ∗ precision ∗ recall

precision + recall

Based on our dataset, we found that the accuracy of
the decision tree algorithm is 91.48. We use the decision
tree algorithm to take the decision (xD) whether Algo-
rithm 4 should perform full or partial CP-ABE encryption.
On the other hand, since we carried out the training phase
of decision tree (DT) in capable device, we evaluate the
overhead of decision tree model by running the pickle
file deployed on raspberry pi to generate classification
scores. Our results show that CPU, memory, and power
consumption of the DT model are 13.5 MiB, 4.6 MiB, and
2.12 J respectively.

Referring back to Fig. 13, the accuracy of the decision
tree algorithm is 91.48 whereas it is 81.5152 and 75.5251
in the Support-Vector-Machine and K-Nearest-Neighbor
respectively. Based on these results, we have identified the
decision tree as the best algorithm for our decision taking
problem.

Figure 14 shows our decision tree. The tree compares
first the number of attributes in access policy to five. If
the number is less than or equal to four, it recommends
performing full encryption. Otherwise, the decision tree
checks the available Avg − Res in the gateway device.
Avg − Res is the avarage resource (CPU, memory, battery)
of IoT device. Hereby, the decision tree facilities the auto-
mation of the selection process to whether to perform
the encryption or to check the file size. If the number of
attributes in the access policy is more than five, then the
tree checks the available Avg − Res in the gateway device.
Based on the available CPU, either it checks the file size or
the number of attributes or it performs encryption.

Fig. 13 Comparison between
three different machine learn-
ing algorithms

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z

The usage of a machine learning algorithm is motivated
by the fact that it can smartly choose the appropriate
encryption (whether full or partial encryption). The per-
centage of accuracy is important to select the appropriate
machine learning algorithm [29].

9 Conclusion

In this article, we proposed a selective approach that
allows choosing between performing all the CP-ABE
encryption steps (full encryption) on constrained devices
or performing only partial encryption and offloading the
heaviest tasks to a remote device or proxy. We started the
article by proposing an encryption scheme that allows
switching between full and partial encryption without
requiring different decryption keys. We provided experi-
mental results that motivate the need for dynamic selec-
tion of the appropriate encryption scheme. Then we
experimented with various machine learning algorithms
over a dataset covering various configurations of param-
eters including available CPU, type of network connection,
file size, and number of attributes.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Cuka M, Elmazi D, Bylykbashi K, Spaho E, Ikeda M, Barolli L (2019)
Implementation and performance evaluation of two fuzzy-
based systems for selection of iot devices in opportunistic net-
works. J Ambient Intell Hum Comput 10(2):519–529

 2. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Inter-
net of things for smart cities. IEEE Internet Things J 1(1):22–32

 3. Taha MB, Talhi C, Ould-Slimane H (2019) Performance evaluation
of cp-abe schemes under constrained devices. Procedia Comput
Sci 155:425–432

 4. Ali M, Dhamotharan R, Khan E, Khan SU, Vasilakos AV, Li K, Zom-
aya AY (2017) Sedasc: secure data sharing in clouds. IEEE Syst J
11(2):395–404

 5. Taha MMB, Chaisiri S, Ko RKL (2015) Trusted tamper-evident data
provenance. In: Trustcom/BigDataSE/ISPA, 2015 IEEE, vol 1, pp
646–653. IEEE

 6. Liu M, Wu Y, Xue R, Zhang R (2019) Verifiable outsourcing com-
putation for modular exponentiation from shareable functions.
Cluster Comput, 1–13

 7. Miloslavskaya N, Tolstoy A (2019) Internet of things: information
security challenges and solutions. Cluster Comput 22:103–119

 8. Zhou L, Varadharajan V, Hitchens M (2015) Generic constructions
for role-based encryption. Int J Inf Secur 14(5):417–430

 9. Sasi SB, Dixon D, Wilson J, No P (2014) A general comparison
of symmetric and asymmetric cryptosystems for WSNs and an
overview of location based encryption technique for improving
security. IOSR J Eng 4(3):1

 10. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attrib-
ute-based encryption. In: 2007 IEEE symposium on security and
privacy (SP’07), pp 321–334. IEEE

 11. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based
encryption for fine-grained access control of encrypted data.
In: Proceedings of the 13th ACM conference on computer and
communications security, pp 89–98. ACM

Fig. 14 Decision tree

Vol.:(0123456789)

SN Applied Sciences (2020) 2:274 | https://doi.org/10.1007/s42452-020-2074-z Research Article

 12. Chowdhury R, Ould-Slimane H, Talhi C, Cheriet M (2017) Attrib-
ute-based encryption for preserving smart home data privacy.
In: International conference on smart homes and health telem-
atics, pp 185–197. Springer

 13. Yao X, Chen Z, Tian Y (2015) A lightweight attribute-based
encryption scheme for the internet of things. Future Gener
Comput Syst 49:104–112

 14. Morales-Sandoval M, Vega-Castillo AK, Diaz-Perez A (2014) A
secure scheme for storage, retrieval, and sharing of digital docu-
ments in cloud computing using attribute-based encryption on
mobile devices. Inf Secur J Global Perspect 23(1–2):22–31

 15. Taha MB, Talhi C, Ould-Slimanec H (2019) A cluster of cp-abe
microservices for vanet. Procedia Comput Sci 155:441–448

 16. Borgh J, Ngai E, Ohlman B, Malik AM (2017) Employing attribute-
based encryption in systems with resource constrained devices
in an information-centric networking context. In: 2017 global
internet of things summit (GIoTS). IEEE, pp 1–6

 17. Bany Taha M, Talhi C, Ould-Slimane H, Alrabaee S (2020) TD‐PSO:
task distribution approach based on particle swarm optimiza-
tion for vehicular ad hoc network. Trans Emerg Telecommun
Technol, e3860

 18. Zhou Z, Huang D (2012) Efficient and secure data storage oper-
ations for mobile cloud computing. In: Network and service
management (cnsm), 2012 8th international conference and
2012 workshop on systems virtualiztion management (svm),
pp 37–45. IEEE

 19. Jin Y, Tian C, He H, Wang F (2015) A secure and lightweight data
access control scheme for mobile cloud computing. In: 2015
IEEE fifth international conference on big data and cloud com-
puting (BDCloud), pp 172–179. IEEE

 20. Wang H, He D, Shen J, Zheng Z, Zhao C, Zhao M (2016) Verifi-
able outsourced ciphertext-policy attribute-based encryption
in cloud computing. Soft Comput 21:7325–7335

 21. Zhiyuan Z, Jianhua W (2017) Verifiable outsourced ciphertext-
policy attribute-based encryption for mobile cloud computing.
KSII Trans Internet Inf Syst 11(6):3254–3272

 22. Touati L, Challal Y, Bouabdallah A (2014) C-cp-abe: cooperative
ciphertext policy attribute-based encryption for the internet of
things. In: 2014 international conference on advanced network-
ing distributed systems and applications (INDS), pp 64–69. IEEE

 23. Nguyen KT, Oualha N, Laurent M (2017) Securely outsourcing
the ciphertext-policy attribute-based encryption. World Wide
Web 21:169–183

 24. Singh S, Singh N (2018) Role based security for cloud based
data with data reliability. Int J Res Eng IT Soc Sci 07(ISSN:
2250-0588):23–28

 25. Karp RM (1972) Reducibility among combinatorial problems. In:
Complexity of computer computations. Springer, Boston, MA,
pp 85–103

 26. Charm (2011). https ://githu b.com/JHUIS I/charm
 27. Cui L, Yang S, Chen F, Ming Z, Lu N, Qin J (2018) A survey on

application of machine learning for internet of things. Int J Mach
Learn Cybern 9:1399–1417

 28. Mark H, Eibe F, Geoffrey H, Bernhard P, Reutemann P, Witten IH
(2009) The weka data mining software: an update. ACM SIGKDD
Explor Newslett 11(1):10–18

 29. Peng Y, Kou G, Wang G, Wang H, Ko FIS (2009) Empirical evalua-
tion of classifiers for software risk management. Int J Inf Technol
Decis Mak 8(04):749–767

 30. Patil TR, Sherekar SS (2013) Performance analysis of naive bayes
and j48 classification algorithm for data classification. Int J Com-
put Sci Appl 6(2):256–261

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/JHUISI/charm

	Smart offloading technique for CP-ABE encryption schemes in constrained devices
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Bilinear map
	3.2 CP-ABE
	3.3 Access tree

	4 Full versus partial encryption: incentive for adaptive scheme
	5 Mathematical model
	5.1 Decision variable
	5.2 Assmptions
	5.3 Optimization formulation

	6 Adapted CP-ABE
	6.1 Main use case
	6.2 Comparison of [10] and [19] encryption schemes
	6.3 Adaptive CP-ABE

	7 Experimental results and analysis
	8 Full or partial encryption decision
	9 Conclusion
	References

