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Abstract
The application of several swarm intelligence and evolutionary metaheuristic algorithms in data clustering problems has 
in the past few decades gained wide popularity and acceptance due to their success in solving and finding good quality 
solutions to a variety of complex real-world optimization problems. Clustering is considered one of the most important 
data analysis techniques in the domain of data mining. A clustering problem refers to the partitioning of unlabeled 
data objects into a certain number of clusters based on their attribute values or features, with the objective of maxi-
mizing intra-clusters homogeneity and inter-cluster heterogeneity. This paper presents an up-to-date survey of major 
nature-inspired metaheuristic algorithms that have been employed to solve automatic clustering problems. Further, a 
comparative study of several modified well-known global metaheuristic algorithms is carried out to solve automatic 
clustering problems. Also, three hybrid swarm intelligence and evolutionary algorithms, namely, particle swarm differ-
ential evolution algorithm, firefly differential evolution algorithm and invasive weed optimization differential evolution 
algorithm, are proposed to deal with the task of automatic data clustering. In contrast to many of the existing traditional 
and evolutionary computational clustering techniques, the clustering algorithms presented in this paper do not require 
any predetermined information or prior-knowledge of the dataset that is to be classified, but rather they are capable of 
spontaneously identifying the optimal number of partitions of the data points during the course of program execution. 
Forty-one benchmarked datasets that comprise eleven artificial and thirty real world datasets are collated and utilized 
to evaluate the performances of the representative nature-inspired clustering algorithms. According to the extensive 
experimental results, comparisons and statistical significance, the firefly algorithm appeared to be more appropriate for 
better clustering of both low and high dimensional data objects than were other state-of-the-art algorithms. Further, 
an experimental study demonstrates the superiority of the three proposed hybrid algorithms over the standard state-
of-the-art methods in finding meaningful clustering solutions to the problem at hand.
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1 Introduction

Clustering is the process of organizing objects into groups 
whose members have similar traits to one other. It segre-
gates a collection of objects by partitioning it into groups 
called “clusters”, such that objects in a cluster are more 
similar to each other than to objects in another cluster [1]. 
A clustering task is said to be an instance of unsupervised 
learning if there is no external information provided with 
the objects, such as class labels [2]. The most common 
unsupervised learning method is cluster analysis, which is 
used for exploratory data analysis to find hidden patterns 
or grouping in data [3]. Data clustering has wide applica-
tion, because it uses valuable information that may have 
been hidden within groups, and it is applied in many fields 
such as engineering, computer science, medical science, 
earth science, life science, economics and bioinformatics 
[2]. Some specific interesting real-world applications of 
clustering are given below [2, 4].

• Marketing: finding groups of customers with similar 
behavior given a large database of customer data con-
taining their profiles and past purchase records,

• Biology: classification of plants and animals given their 
features,

• Libraries: book ordering,
• Insurance: identifying groups of motor insurance pol-

icy holders with a high average claim cost, identifying 
frauds,

• Data Mining: analyzing data from different perspectives 
and summarizing it into useful information in order to 
improve decision-making, reduce cost, develop new 
products and so on,

• Medicine: classification of patients as self-care patients 
or complete-care patients and patient illness as chronic 
or non-chronic in order to improve service delivery,

• Community detection: as has been recently devel-
oped, detection of community commonalities in real-
world graphs such as social networks (e.g., LinkedIn, 
Facebook, Twitter, etc.), biological networks, and web 
graphs.

In the past few decades, clustering has proven to be 
vital in the exploration and analysis of data. More so, 
clustering analysis has also been applied to problems in 
machine learning, artificial intelligence, pattern recogni-
tion, web mining, spatial database analysis, image seg-
mentation, software evolution, and anomaly detection 
[2]. Despite the ubiquity and the great importance of 
clustering, clustering is a difficult problem to solve, and as 
a consequence, tremendous research efforts have been 
devoted to designing new clustering algorithms since Karl 

Pearson’s earliest research in [5]. Some of the reasons that 
make clustering difficult include: (1) clustering is NP-hard, 
(2) there are no widely accepted theories for clustering 
that could be applied to every type of dataset, and (3) the 
definition of a cluster is determined by the characteristics 
of the dataset and the understanding of the user and is 
therefore, quite arbitrary [2].

There are several clustering algorithms that have been 
implemented in the recent years, which can be grouped 
into hierarchical and partitional methods [6, 7]. Figure 1 
shows the taxonomy of clustering algorithms. These 
groupings are defined strictly based on the analyzed data-
sets arrangement. For example, in hierarchical clustering 
methods, data are arranged in a hierarchical tree structure 
based on the similarity among data points, while the total 
shape and size of clusters are ignored. In order words, at 
the onset of the clustering analysis process, a data point 
can only be assigned to one cluster at a time, which, in this 
method, makes the formation of a cluster static. In the case 
of partitional methods, the dataset inside a set of sepa-
rate clusters are directly analyzed, such that the dissimi-
larity found for intra-cluster is minimized and maximized 
for inter-cluster. Although, these two clustering methods 
are still used today, there usage and effectiveness centers 
on having a prior knowledge of the number of clusters 
in a dataset [8]. Therefore, the existing methods cannot 
be applied to solve real world problems, wherein prior 
information regarding the number of naturally occurring 
groups in the data is often not available and determining 
the optimal amount of clusters for such dataset becomes 
very difficult. More so, this is the reasons why the data 
clustering problem is classified as an NP-hard problem. To 
address this challenge, automatic clustering of datasets 
was introduced [6, 9]. Automatic clustering of a dataset 
involves spontaneously determining the number and 
structure of clusters in a dataset, without any prior infor-
mation of the datasets attribute values [8]. However, the 
implementation of automatic clustering for large volume 
dataset is an extremely challenging task, especially when 
clusters are very different in terms of shape, size, or density 
and more so when there is an overlap between groups or 
clusters [8, 10].

The most popular and simplest clustering algorithm is 
the k-mean, which has been used to solve a wide range of 
clustering problems. The algorithm is very efficient and 
effective, due specifically to its linear time complexity, 
but also because the deterministic local search used in its 
implementation usually converges the algorithm to the 
nearest local optima. However, in recent years, a few auto-
matic data clustering algorithms have been implemented, 
most of which are inspired by either natural or physically 
occurring phenomena, among which can be included 
genetic algorithm (GA) [11, 12], differential evolution (DE) 
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[13], particle swarm optimization (PSO) [14, 15], gravita-
tional search algorithm (GSA) [16], symbiotic organisms 
search (SOS) [17], bee colony optimization algorithm (BCA) 
[18, 19], invasive weed optimization (IWO) [20], and bac-
terial evolutionary algorithm (BEA) [21]. More detailed 
discussion of some related algorithm implementations 
applied to automatic clustering are presented in Sect. 2 
below. For further reading, interested researchers are 
referred to [10]. The automatic clustering algorithms can 
be classified into two main groups namely, evolutionary 
and swarm intelligence metaheuristic algorithms. The evo-
lutionary algorithms include GA and DE, while the swarm 
intelligence algorithms include PSO, SOS, BCA, and IWO. 
In both the evolutionary and swarm intelligence imple-
mentation methods, clustering analysis is considered to 
be an optimization tasks, which involves the minimization 
of dissimilarity within a cluster and maximization of dis-
similarity between clusters [10]. The aforementioned two 
classes of metaheuristic methods are preferred to the tra-
ditionally-based approaches for solving high dimensional 
data clustering problems because of their superior conver-
gence speeds and ability to obtain good quality solutions. 
Furthermore, the two automatic clustering algorithms (GA 
and DE) belong to the search-based clustering method 
highlighted with a dotted oval in Fig. 1 above. It is equally 
noteworthy to mention that this current study utilizes a 

search-based algorithm with specific focus on both the 
evolutionary and swarm intelligence algorithms.

Nature-inspired metaheuristics, in particular GA, DE, 
PSO, firefly algorithm (FA), IWO, and GA, have been used by 
researchers to solve a wide range of continuous and dis-
crete combinatorial optimization problems. For instance, 
the GA is an evolutionary algorithm with a wide area of 
applications, which has been employed to solve several 
real-world optimization problems such as location prob-
lems [22], flow shop problems [23], and data clustering 
problems [6, 11, 12]. The DE, as another evolutionary algo-
rithm, has received considerable research interest, where it 
has been applied to solve difficult optimization problems 
in computer science [24] and engineering [25, 26]. The DE 
and its hybrid variants have equally been used to solve 
many unsupervised data clustering problems [27, 28]. The 
PSO has several important applications with high profile 
successes in terms of good quality solutions and conver-
gence speed. It has been applied to solve problems such 
as hierarchical and partitional data clustering [29, 30]. The 
FA is another high profile metaheuristic algorithm that 
has dozens of successful applications recorded in solv-
ing many complex engineering problems [31, 32], data 
clustering problems [33], and unrelated parallel machine 
scheduling problems [34]. The IWO is another interesting 
algorithm that has found application in solving difficult 
problems like the travelling salesman problem [35] and 

Fig. 1  A taxonomy of clustering algorithms
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design of antenna configuration [36]. It is noteworthy to 
mention that these five basic algorithms stand out in their 
ability to obtain good quality solutions for complex and 
large-scale problems, short running times, ease of adapt-
ability, and implementation simplicity.

This study investigates the application of five modified 
standard metaheuristic algorithms namely, GA, DE, PSO, FA 
and IWO to solve automatic data clustering problems. As 
stated, they have proved their worth already. Furthermore, 
three hybrid automatic data clustering algorithms are 
implemented. The particle swarm optimization differential 
evolution (PSODE), firefly algorithm differential evolution 
(FADE), and invasive weed optimization differential evolu-
tion (IWODE) algorithms are also considered. On the basis 
of improving the qualities of clustering results and conver-
gence speeds of the modified representative algorithms. 
However, the main goal of the study centers on conduct-
ing detailed comparative performance evaluations of sev-
eral metaheuristic algorithms in order to determine which 
of these algorithms have better performance in terms of 
convergence speed and ability to obtain good quality 
clustering solutions. The computational experiment car-
ried out is based on a systematic evaluation of the seven 
proposed algorithms implemented in the course of the 
study on forty-one standard benchmark clustering dataset 
problems. The experimental results show that the FA and 
its hybrid counterpart, that is the FADE algorithm, not only 
achieve superior solution accuracy, but also achieve higher 
levels of stabilities than the other compared algorithms. 
This paper technically contributes with five main aspects:

1. A critical survey of existing literature on both single-
objective and multi-objective, nature-inspired meta-
heuristics applied to automatic clustering analysis 
problems.

2. A comprehensive evaluation of five nature-inspired 
metaheuristic algorithms namely, PSO, FA, IWO, GA, 
and DE for the tasks of solving automatic data clus-
tering problems. Further performance evaluation 
comparison with an additional six new generation 
metaheuristic algorithms are investigated and pos-
sible outcomes reported subsequently.

3. A proposal of three hybrid metaheuristic algorithms 
for solving the automatic data clustering task; these 
algorithms include PSODE, FADE, and IWODE. Nota-
bly, the proposed algorithms are able to conveniently 
handle high density and high dimensionality datasets.

4. For a fairer comparison, eight new generation 
metaheuristics algorithms are implemented for auto-
matic data clustering and compared according to the 
number of function evaluation consumed by the indi-
vidual algorithms.

5. Compilation of forty-one (41) synthetic and ground 
truth benchmark datasets for easy evaluation of the 
proposed algorithms. These datasets are often used 
by researchers to evaluate the performance of their 
new clustering algorithms. This list (which cannot be 
easily collated from a single source) provides an eas-
ily accessible collection of standard benchmark data-
sets for clustering analysis. More so, the dataset can 
be adopted as standard problems for evaluating new 
proposed metaheuristic algorithms in the field of data-
mining.

It is noteworthy to mention that the current study only 
used the existing standard clustering indices to compute 
fitness functions and to validate the practicality and per-
formance capability of the eight representative nature-
inspired clustering algorithms. Therefore, the study does 
not focus on evaluating the validity indices. Finally, it is 
equally important to specifically state here that despite 
the relevance of these five representative algorithms, to 
the best of our knowledge, no single paper on the com-
prehensive performance analysis study of several nature-
inspired metaheuristics with their hybrid variants for auto-
matic clustering has been published.

The rest of the paper is organized as follows: Sect. 2 pre-
sents a detailed literature review of previous work done in 
the field of swarm and evolutionary automatic clustering 
techniques. Section 3 introduces clustering problem pre-
liminaries with emphases on the clustering validity index 
and similarity measure. Section 4 describes the method-
ologies of the representative algorithms, specifically, GA, 
DE, PSO, FA, and IWO, and outlines the implementation 
procedures for the proposed hybrid algorithms. Sec-
tion 5 describes the experimental study. The section also 
covers discussions on synthetic and real-world datasets, 
experimental setups, numerical results, and comparison 
of proposed algorithms with literature results. Finally, con-
cluding remarks and statements for future directions are 
suggested in Sect. 6.

2  Literature review

A simple heuristic algorithm that can automatically detect 
any number of well separated clusters has been described 
by Chowdhury et al. [37]. The clusters may be of any shape 
e.g. convex and non-convex, and so the algorithms dif-
fers from the existing clustering algorithms, which assume 
a value for the number of clusters or a particular cluster 
structure with predefined features. The algorithm pro-
posed in [37] draws inspiration from the foraging behav-
ior of ants and it iteratively partitions a dataset based on 
its proximity matrix. Analysis of the runtime complexity 
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showed that the proposed algorithm runs in quadratic 
time, which depends on the size of the dataset. A novel 
technique was afterwards formulated by modifying the 
traditional sequential schemes with some simple strate-
gies, which can be attributed to the movements of ants. 
The ant dynamic-based clustering algorithm was com-
pared with other automatic clustering hybrid algorithms 
such as the genetic algorithm (GA)-CGUK proposed in [38], 
the particle swarm optimization (PSO)-DCPSO proposed 
in [39], and the fuzzy ant-based clustering algorithm. 
The ant based algorithm consistently outperformed the 
other methods in terms of quality of solutions and com-
putational cost. In a comparison, other methods were 
also able find a good number of clusters, except for the 
fuzzy ant-based algorithm, which required the correct 
number of clusters be supplied a priori. Nevertheless, 
the ant dynamic-based system result had better cluster 
compactness,

Differential evolution (DE), which is one of the most 
robust evolutionary algorithms, has over time proved able 
to solve clustering problems successfully and efficiently, in 
that, its algorithmic design is able to automatically assign 
clusters and has less computational time while retain-
ing accuracy in test results. However, there have been 
consistent improvements on the DE algorithm to better 
bridge the anomalies that might come with its applica-
tion in other field of studies. Presented in [40] is an auto-
matic differential evolution fuzzy clustering algorithm 
for the automatic grouping of image pixels into different 
homogenous regions, which also does not require the 
number of clusters to be stated a priori. The optimization 
problem here was formulated as a fuzzy clustering task 
in the intensity space of an image. The improved DE was 
compared with fuzzy variable string genetic algorithm 
(FVGA) and the classical fuzzy c-means algorithm (FCM) 
over a range of test suite dataset problems comprised of 
ordinary grayscale images and remote sensing satellite 
images. Performance evaluation by the authors in [40] 
was judged according to the quality of solution obtained 
by the respective algorithms, their ability to find an opti-
mal number of clusters and computational cost. Accord-
ing to the results presented in [40], the FCM algorithm 
failed to handle an unknown number of clusters, while 
the improved DE and FVGA produced better results even 
with clustering of high dimensionality. The authors carried 
out further statistical analysis tests and showed that the 
improved DE outperformed both FVGA and FCM in terms 
of speed, accuracy and robustness.

A genetic based automatic clustering algorithm for 
unknown K (AGCUK) was proposed in [41]. In this algo-
rithm, noise selection and division-absorption mutation 
were designed to have a balance between selection pres-
sure and population diversity. The validity of the number 

of clusters was measured by adopting the Davies–Bouldin 
(DB) index. The experiments exploited both artificial and 
real-life datasets. The AGCUK algorithm showed effective-
ness in automatically evolving the number of clusters and 
providing cluster partitioning. The chromosomes (as in 
the genetic algorithm) of the AGCUK algorithm are made 
up of real numbers, which represent the coordinates of 
the cluster centers. The AGCUK algorithm is similar to the 
GA, in that, AGCUK also has the ‘noising selection stage’ 
(adopted to avoid the selected population from being 
occupied by several fitter individuals and to maintain pop-
ulation diversity) and ‘division-absorption mutation’ stage 
(introduced to determine the best candidate and other 
candidates) but they differ in terms of crossover operator. 
In the experimentation, the AGCUK algorithm was able to 
keep the balance between selection pressure and popula-
tion diversity created and neglected by the standard GA; 
thus filling a knowledge gap. Noising selection was also 
incorporated into the design of the algorithm to main-
tain diversity, so as to avoid the solution search process 
being trapped into local minima, which can occur in the 
classical GA, while the division-absorption mutation was 
designed to maintain selection pressure so as to acceler-
ate the convergence of the clustering algorithm. A super 
individual in the population after the selection operation 
is regarded as the best solution candidate, meaning that 
the stronger super individual is, the higher the selection 
pressure, and the weaker the super individual is, the lower 
the selection pressure. The AGCUK algorithm was evalu-
ated in comparison to the other clustering techniques 
presented by Bandyopadhyay and Maulik [42, 43], Lai [44] 
and Lin et al. [45]. It was observed that the AGCUK found 
the correct number of clusters and provided optimal clus-
tering partition, although its run time was greater than for 
the method proposed in Lin et al. [45]. The methods used 
by Bandyopadhyay and Maulik [42, 43] and Lai [44], were 
unable to give accurate cluster partition within the defined 
number of generations. The limitation of the AGCUK algo-
rithm is the high computational cost required to produce 
solutions of better quality as compared to that of the Lin 
et al. method, and it may also accept bad individuals in its 
noising selection stage during the evolution process. Con-
clusively, AGCUK algorithm provided an accurate number 
of clusters for artificial and real-life datasets, with lower 
misclassified rates than shown by the other compared 
methods. AGCUK and the Bandyopadhyay and Maulik [42, 
43] algorithms, as well as the Lai [44] methods produced 
the same time complexity. Also, due to the noising selec-
tion of AGCUK algorithm, the run time was optimized to 
get a better quality clustering cost although, it may absorb 
bad individuals in the process. This finally inferred that, by 
increasing the population size of AGCUK method against 
Lin et al.’s algorithm, the former outperformed the latter. 
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The author suggested that further important research may 
be carried out regarding improvement of the convergence 
speed of the AGCUK algorithm, without decreasing its 
search capability.

In [46], improved versions of the DE algorithm and 
GA were employed to solve the automatic fuzzy cluster-
ing problem in a multi-objective approach. The existing 
study also compared the performance of a hybrid genetic 
algorithm and differential evolution algorithm (GADE) 
over a fuzzy clustering problem, whereby a case of two 
(2) conflicting fuzzy validity indexes were being simulta-
neously optimized. Further in the study, the conjugation 
of GADE was made in comparison and contraction with 
two (2) other prominent multi-objective schemes (MOCK 
and NSGA II). For the computation experiment, six artificial 
datasets and two real-life datasets were used for testing. 
Numerical results showed that GADE produced a better 
clustering outcome than did the multi-objective schemes.

In [18], the shortcomings and weaknesses in automatic 
kernel clustering was addressed by the proposal of a new 
automatic clustering algorithm based on the bee colony 
optimization algorithm, referred to as AKC-BCO. This 
algorithm helps to determine the appropriate number 
of clusters and also assigns the correct number of clus-
ters to data points. This is achieved by the kernel func-
tion, which enhances clustering capability to the said data 
points. AKC-BCO was furthermore applied to a real-world 
scenario of a medical problem (prostate cancer case), as 
well as being tested on seven of the benchmark datasets 
(Iris, Wine, Glass, Vowel, R15, D31 and bank marketing) to 
validate its effectiveness and accuracy. The resulting tests 
showed AKC-BCO to be more stable and accurate than 
were other automatic clustering algorithms.

The AKC-BCO works so that an initial population is 
generated by employed bees, and then the onlooker 
bees implement the neighborhood searches. Eventually, 
a global search is implemented by scout bees which is 
done through an iterative search until an optimal solution 
is obtained. Although in comparison to other clustering 
methods, the AKC-BCO took longer computational time, 
which is due to the AKC-BCO adopting, in each of its itera-
tions, three different roles for bees (the employed bees, 
the onlooker bees and the scout bees) and for each itera-
tion each bee is updated with each data element that has 
been assigned to the nearest active cluster. AKC-BCO also 
proved from test results that it converges better with few 
number of iterations than did the compared evolutionary 
algorithms. From the results for mean and standard devia-
tion, AKC-BCO performed better than the other three evo-
lutionary algorithms on all the individual benchmark data-
sets. In the case of the prostate cancer dataset, cells in the 
prostate can mutate and multiply out of control and can 
metastasize to other body organs. A stepwise regression 

approach was used in this case and it showed that biopsy, 
initial PSA and DRE readings are critical to the accuracy of 
a prognosis, which served as the clustering features. Since 
the three data types (biopsy, initial PSA and DRE) served 
as the number of clusters, DCPSO, AKC-MEPSO, DCPG and 
AKC-BCO algorithms were directly applied on them. Nev-
ertheless, in comparison with DCPSO, AKC-MEPSO, and 
DCPG, the AKC-BCO had better improvement performance 
ratio, better stability, and greater accuracy compared to 
others and also converged better. It also showed a bet-
ter survival chance for prostate patients. Although, the 
result seemed as accurate as those from the AKC-MEPSO 
algorithm, with both having a close outcome, AKC-BCO 
predicted a higher survival chance for patients and it also 
clustered the patients’ test data better than did the other 
three algorithms. The authors suggested that further 
improvements could involve integrating the AKC-BCO with 
other evolutionary algorithms to increase its performance.

An in-depth review of all the common and major 
nature-inspired metaheuristics algorithms that have been 
used to solve automatic data clustering problems over the 
past few decades was reported in [10]. The study further 
reviewed and presented some of the important compo-
nents, such as encoding schemes, validity indexes and 
proximity measures, datasets and applications involved in 
the formulation of these major metaheuristics algorithms. 
A total of sixty-five potential metaheuristics approaches 
for automatic clustering were identified, giving an up-
to-date overview on single-solution, single-objective 
and multi-objective metaheuristic techniques. From the 
authors’ observation, automatic clustering algorithms 
based on single-objectives are adequate for clustering 
datasets of linear separability without overlapping and 
datasets of near separability with overlapping, while few 
of the automatic clustering algorithms were used in an 
attempt to cluster datasets of non-linear separability with-
out overlapping.

For the single-solution metaheuristics, the simulated 
annealing (SA) and K-mean search techniques were con-
sidered, in which the SA outperformed K-means algorithm. 
The SA was able to jump between clusters of different 
dimensions as well as automatically provide the appropri-
ate number of clusters with better index values. Similarly, 
a revised tabu search (TS) algorithm was considered in 
the extensive review study. The TS is an enhanced search 
method that enables it to escape from being entrapped 
into local minima by using a tabu memory. Logically, 
single-solution metaheuristics are exploitation-oriented, 
and for this reason, they are seldom applied to solve 
automatic clustering problems. Consequently, a single-
solution approach would, undoubtedly, require additional 
mechanism to explore the whole search space for the opti-
mal solution, although with the risk of solutions being 
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entrapped within the local minima. This brought about 
the concept of a single-objective solution, which offers a 
better and more accurate solution.

Single-objective metaheuristics, otherwise known 
as population-based metaheuristics, are processes that 
iteratively attempt to improve a population of solutions, 
whereby the fittest individual emerges as the best can-
didate solution, being picked after a thorough search or 
exploration has been carried out on all the search space. 
Unlike single-solution metaheuristics, which are exploita-
tion based, single-objective are exploration-based. Explo-
ration gives a better diversification of the search than does 
exploitation [10, 47]. The population-based algorithms 
are very able to find multiple candidates simultaneously 
for clustering solutions. These algorithms have over time 
shown their ability to solve clustering problems. Forty-five 
of these algorithms that can been used to solve automatic 
data clustering problems were studied in [10]. It is impor-
tant to note that only three (3) of the revised genetic algo-
rithm-based algorithms were tested with complete eval-
uation on both synthetic datasets and real-life datasets. 
Furthermore, twenty-nine (29) of the revised algorithms 
were evaluated with synthetic datasets, with most of them 
been linear separable. In an attempt to solve non-linear 
separable clusters, six (6) algorithms were evaluated, but 
they obtained inadequate clustering solutions, because 
the objective function considered not only the clusters 
compactness but also the separation of clusters repre-
sented by their respective single prototypes. To overcome 
the problem posed by this single-objective algorithms, 
the multi-objective and hybrid algorithm approaches 
were suggested as clustering solution methods. These 
approaches could integrate other objective functions to 
measure both cluster compactness and the connected-
ness of clusters, so were suggested as more robust and 
efficient alternatives.

Multi-objective algorithms endeavor to optimize mul-
tiple objective functions because the optimal solution 
of multi-objective optimization problem is not a single-
solution as in the case of the single-solution metaheuris-
tics, but rather it is a set of Pareto-optima solutions (i.e., 
solutions where it is impossible to improve a given objec-
tive without disintegrating at least one another). In turn, 
this set of solutions presents solutions that compromise 
between two conflicting objectives [10, 43] in which clus-
tering tasks are formulated as a multi-objective problem 
whereby multiple objective criteria are set and evaluated 
simultaneously. The most important distinction of the 
multi-objective metaheuristics approach is that the algo-
rithms partitions the datasets into appropriate number 
of clusters automatically along with the correct group-
ing. The study presented in [10] reviewed eighteen (18) 
multi-objective algorithms that had been used to solve 

automatic clustering problems. Only two of these algo-
rithms underwent a complete evaluation test with syn-
thetic datasets, real-world datasets and application field. 
Fourteen of these algorithms used synthetic datasets to 
evaluate performances, in particular they were not consid-
ered in linear separable clusters. Only four of the revised 
algorithms considered non-linear separable clusters and 
they obtained better results than did single-objective 
methods.

Out of the sixty-five revised algorithms reviewed in 
[10], single-solution metaheuristics algorithms amounted 
to 3% solvability of automatic clustering problem, sin-
gle-objective metaheuristics turned in 69% solvability, 
which proved to be the most preferred approach of all, 
while there was a 28% tendency for the multi-objective 
metaheuristic algorithms to solve automatic clustering 
problems. The authors suggested further that distinct 
datasets in different scenarios should be used to evalu-
ate the clustering performance of automatic clustering 
algorithms. The authors identified three (3) main cases, as 
discussed earlier, to simulate their datasets (linear sepa-
rability without overlapping, near separability with over-
lapping, and non-linear separability without overlapping). 
It is however important to note that the success of any 
nature-inspired metaheuristic algorithm depends strongly 
on its design.

According to the study presented by José-García and 
Gómez-Flores [10], no extensive and comprehensive 
research has been conducted to demonstrate the supe-
riority of a specific automatic clustering algorithm or 
nature-inspired metaheuristics algorithm. Their further 
suggestions included the recommendation that several 
comparative studies should be used to develop at least 
a common benchmark data or application field. Con-
clusively, they suggested that more deep learning and 
research should still be done on the best way or approach 
to solving automatic data clustering problems.

2.1  Summary of related studies

Table 1 summarizes relevant details about some of the 
existing automatic clustering algorithms. The clustering 
techniques are based on nature-inspired metaheuristic 
algorithms, with corresponding columns for the author 
name, application area, dataset used as the test problem 
and the type of cluster validity index used.

2.2  Representative algorithm clustering networks

A total of 1649 publications indexed in Scopus databases, 
which had been published from the inception of the five 
selected algorithms to the year 2020, were collected and 
analysed to show the relevance of each algorithm to the 
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Table 1  A summary of some existing automatic data clustering approaches

Authors Application area Datasets Cluster validity index

Omran et al. [84] Cluster analysis and image segmenta-
tion

Real life datasets Dunn index (DI), Turi index, and S_Dbw 
index

Masoud et al. [85] Cluster analysis and combinatorial 
optimization problem

Artificial and real life datasets Variance Ratio, Criterion (VRC) and DB 
index

Ling et al. [86] Cluster analysis Artificial and real life datasets Rand index (RI)
Kuo and Zulvia [87] Cluster analysis Real life datasets VI index
Satyasai and Ganapati [88] Cluster analysis and 3D human 

models
Artificial and real life datasets –

Das et al. [15] Cluster analysis Artificial and real life datasets CS index
Kao and Chen [89] Cluster analysis and cell formation Artificial and real life datasets –
Abubaker et al. [90] Cluster analysis Artificial and real life datasets DB index, Symmetry (Symm) index, and 

Conn index
Das et al. [13] Cluster analysis and image segmenta-

tion
Real life datasets DB and CS indices

Lee and Chen [91] Cluster analysis Real life datasets I index
Saha et al. [92] Cluster analysis Artificial and real life datasets Xie-Beni (XB) index
Maulik and Saha [93] Image segmentation Real life datasets XB index
Suresh et al. [28] Cluster analysis Artificial and real life datasets XB index, FCM index, Rand index (RI), 

and Silhouette index (SI)
Kundu et al. [46] Cluster analysis Artificial and real life datasets XB index and FCM index
Zhong et al. [94] Cluster analysis and remote sensing Real life datasets XB and Jm indices
Liu et al. [95] Cluster analysis Artificial and real life datasets DB index
He and Tan [11] Cluster analysis Artificial and real life datasets Calinski–Harabasz (CH) index and RI
Rahman and Islam [96] Cluster analysis Real life datasets Adjusted rand index (ARI) and XB index
Ozturk et al. [97] Cluster analysis Real life datasets VI index and correct classification per-

centage (CCP)
Kuo et al. [18] Cluster analysis and medicine (Pros-

tate Cancer)
Artificial and real life datasets CSkernel and VI index

Kuo and Zulvia [98] Customer segmentation Real life datasets VI index and ARI
Chowdhury et al. [20] Cluster analysis Artificial and real life datasets Sym-K index
Murthy et al. [99] Cluster analysis Real life datasets CS index
Das et al. [21] Cluster analysis Artificial and real life datasets CS index
Peng et al. [100] Cluster analysis and membrane 

computing
Real life datasets CS index

Kumar et al. [101] Image segmentation Real life datasets Inter-intra cluster ratio and fitness func-
tion evaluation

Liu et al. [41] Image segmentation Real life datasets PMB index
Kumar et al. [16] Cluster analysis and image segmenta-

tion
Real life datasets Point symmetry-based cluster validity 

index
Kapoor et al. [102] Cluster analysis and image segmenta-

tion
Real life datasets Inter-intra cluster ratio and DB index

Anari et al. [103] Cluster analysis and image segmenta-
tion

Real life datasets S_Dbw index

Zhou et al. [17] Cluster analysis Real life and artificial datasets Fitness function evaluation
Pacheco et al. [104] Cluster analysis Real life datasets SI
Elaziz et al. [105] Cluster analysis Real life and artificial datasets Dunn index, SI, DB index and Calinski–

Harabasz (CH) index
Chowdhury and Das [37] Pattern recognition Real life and artificial datasets Huang’s accuracy measure
Sheng et al. [106] Miscellaneous Real life and artificial datasets DB, CH, I-index
Zhou et al. [107] GPS data based trajectory Real life: Taxi GPS Datasets DB index
Agbaje et al. [108] Cluster analysis Real life datasets DB and CS indices
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problem at hand. From this analysis, GA has 887, PSO 
has 524, DE has 180, FA has 49, and DE has 9 published 
documents. Based on these documents, a full counting 
co-occurrence network analysis was constructed. The co-
occurrence network visualization was constructed and 
illustrated for each algorithm to show how relevant and 
impactful the selected representative algorithms are to the 
field of data clustering and clustering analysis as whole.

Figures 2, 3, 4, 5 and 6 present visualizations of the co-
occurrence of the GA, PSO, DE, FA, and IWO algorithms in 
relation to their applications to different clustering related 
problems. Problem specific domains are represented with 
circles and labels. The size of the label and the circle on 
the graph represent the weight or publication count for 

each algorithm to the corresponding problem type. The 
network lines represent the links between the candidate 
algorithm, the version of clustering algorithm and the 
nature of the problem being addressed. Colours in the 
graph are used to represent the clusters of algorithms to 
which a specific problem belongs. Further, each of the 
network graphs clearly depicts a densely connected net-
work of clusters and sub-clusters, which are linked, either 
directly or indirectly, to the selected candidate algorithms, 
showing that the algorithms have wider applications to 
the field of clustering analysis or data clustering problems. 
However, for the FA algorithm illustrated in Fig. 5, which 
is a more recent algorithm than the GA, PSO and DE, the 
network graphs still reveals a moderate relevance impact 

Fig. 2  Visualization of GA application to clustering related studies
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of the FA application to clustering problem. The IWO algo-
rithm, as shown in Fig. 6, has sparse links and fewer clus-
ter connections, which clearly shows that the algorithm 
has received limited applications for clustering problems. 
Despite this observation, IWO was selected as part of the 
representative algorithm on the ground of exploiting and 
exploring some of its latent performance potential, as 
highlighted in existing studies [48–50].

2.3  Representative algorithms strengths 
and weakness

The five algorithms whose performances are being inves-
tigated in this paper have their general strengths and 
weaknesses. For some of them, the optimization tech-
niques require much iterative power and they even per-
form very poorly without adequate parameter fine-tuning. 

However, these algorithms have potentials or merits that 
have been widely explored and applied to solve several 
complex optimization and real-world problems. More so, 
the strengths of these algorithms are better tapped when 
they are combined with other traditional techniques or 
even similar global metaheuristic algorithms. Some of 
the sought after merits for these algorithms include their 
innate mechanisms for information sharing, ability to 
escape entrapment from local optima and great poten-
tial for exploitation and exploration capability. Further, 
these algorithms are very simple to understand, design 
and implement. In Table 2, some of the specific strengths 
and weaknesses of the five algorithms evaluated in this 
paper are outlined. Similarly, additional information on the 
advantages and disadvantages of these algorithms can be 
obtained from [51].

Fig. 3  Visualization of PSO application to clustering related studies
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3  Clustering problem preliminaries

Data clustering is considered to be an unsupervised learn-
ing process, whereby similar objects are clustered together 
in the same group, while dissimilar objects are clustered 
together in different groups. It is however, important to 
mention here that although there are instances where 
information regarding the number of clusters is prede-
fined, in most cases, especially with large or high dimen-
sional data objects, the number of clusters is not usually 
predetermined. More so, the task of clustering, or the clus-
tering analysis process, is based on the similarity and dis-
similarity measures between two data points. Therefore, in 
principle, the main goal of clustering analysis is to obtain 
high intra-cluster similarity and low inter-cluster similarity. 
An example illustrating the clustering analysis process is 
represented in Fig. 7.

The data clustering problem can be formulated as fol-
lows: Consider a dataset X  , which contains n data points 

x1, x2,… , xn , with each of the date items having d-dimen-
sional attributes, features, variables, components. Formally, 
X =

{
x1, x2,… , xn

}
 is a set of n data points, each having d 

real-valued features. In other words, xi ∈ ℝ
d ,∀i = 1, 2,… n , 

xi =
{
xi1, xi2,… , xij ,… xid

}
 , where xij denote all the features 

of xi . The dataset X  can also be expressed in matrix form 
as follows:

The data points X =
{
x1, x2,… , xn

}
, can be classified 

into a certain number of clusters, C =
{
c1, c2,… , ck

}
 , for 

some k > 1 , such that the following conditions hold [1]:

(1)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮

xi
⋮

xn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,d
x2,1 x2,2 ⋯ x2,d
⋮ ⋮ ⋮ ⋮

xi,1 xi,2 xi,j xi,d
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,d

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fig. 4  Visualization of DE application to clustering related studies
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1. 

2. 
 3. ci ≠ � ∀i ∈ {1, 2,… k}, i ≠ j.

Furthermore, assuming that the number of cluster k is 
predetermined, then each cluster must have one center 
denoted by gi(i = 1, 2,… , k) . Then it is also assumed that 
G =

{
g1, g2,… , gk

}
 represents the collections of centroids 

of X =
{
x1, x2,… , xn

}
 . In this case the centroid gi is defined 

as follows:

where ||ci|| represents the number of points in a classified 
collections of ci.

∪k
i=1

ci = X

ci ∩ cj = � ∀i, j ∈ {1, 2,… k}, i ≠ j

(2)gi =
1

||ci||
∑
xj∈ci

xj

In this paper, clustering is considered to be an optimiza-
tion problem and similarly its belongs to the family of NP-
hard optimization problems [2], for the reason that with 
a complex clustering task, the number of clusters are not 
determined prior to the clustering analysis. In other words, 
the number of clusters is not defined as an input variable. 
Therefore, the process of clustering C =

{
c1, c2,… , ck

}
 

of X  data items is such that the function f (C ,D) is opti-
mized over all possible clusterings of X  , where the func-
tion f  denotes the global validity index used to capture 
the notion of high quality clustering solutions and D is the 
distance metric.

3.1  Clustering validity index

There are several quantitative evaluation methods that 
are akin to statistical mathematical functions employed 
to analyze the quality of results obtained by clustering 
algorithms. Among these, to mention but a few, we find 

Fig. 5  Visualization of FA application to clustering related studies
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the Davies–Bouldin (DB) validity index [52], Dunn validity 
index [53], Calinsky-Harabasz validity index [54] and Pakh-
ira Bandyopadhyay Maulik validity index [55]. According 
to Das [56], a cluster validity index serves two main pur-
poses. Firstly, it helps to determine the actual number of 
clusters in a dataset and secondly it is also used to find the 
corresponding best cluster portioning. More so, in terms 
of clustering, the validity index is principally concerned 
with clustering cohesion, or compactness and separation, 
as explained subsequently. For the current study, focus is 
given only to the DB clustering validity index, which is 
used as the proposed representative algorithms’ objec-
tive function, upon which the quality of each individual 
algorithm clustering solution is evaluated and compared.

The Davies–Bouldin (DB) validity index is used to ana-
lyze the quality of the clustering solution across different 
dimensionality of benchmark dataset used in this study. 
The DB index treats clustering as a minimization case of 
optimization, because its attempts to minimize the aver-
age distance between each chosen cluster and the one 

most similar to it. However, in this research, the choice 
of selecting the DB validity index is based on computa-
tional cost efficiency, capability of finding feasible high 
quality results for data of arbitrary dimensionality, and 
limited number of parameter specifications with little or 
no user interference. In general, the DB validity is capable 
of efficiently determine the number of clusters with best 
partitioning over a large number of data points with high 
level of intra-cluster cohesion (data points belonging to 
the same cluster should be very close or similar) and of 
inter-cluster separation (dissimilarity between clusters 
should be well separated) [1, 3]. In this regard, the validity 
index is calculated as a function f (C ,D) , which returns a 
real number that expresses the quality of the clustering 
solutions. The DB validity index of a clustering C is calcu-
lated as follows:

(3)fDB(C ,D) =
1

K

K∑
i=1

Di

Fig. 6  Visualization of IWO application to clustering related studies
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where si is the average distance of all data points in a given 
cluster ci from its centroid gi and �ij represents the inter-
cluster distance between two centroids gi and gj . The func-
tion D

(
xi , gi

)
 is the distance measure between data point 

X
i
=
{
x1, x2,… xn

}
 and its centroid gi , while p ∈ {1, 2} is 

an integer variable that is independently selected. For 
example, when p = 1 , si is the average Euclidean distance 
between data points in a cluster and when p = 2 , si is 
defined as the standard deviation of the distance of the 
data points in a cluster from their centroid. The smaller 
the value of the DB validity index obtained, the better the 
clustering method is able to separate the dataset [4].

The compact-separated (CS) validity index follows a 
similar conceptual rationale as described for DB validity 
index. However, it integrates and transforms the DB and 
Dunn validity indices with the main aim of tackling clusters 
of varied densities and features [57].

(4)Di = max

{
si + sj

�ij
|1 ≤ i, j ≤ k, i ≠ j

}

(5)si =

[
1

||ci||
∑
xi∈ci

D
(
xi , gi

)p
] 1

p

(6)�ij = D
(
gi , gj

)
, i ≠ j

Here K  is the number of clusters in C , while Ni denotes 
the number of data objects belonging to the cluster Ci . As 
with the DB index, small values of CS correspond to good 
clustering results. However, the CS index is only imple-
mented in this paper with a view to comparing the pro-
posed algorithms with existing literature results, and this 
appears in the later part of the study discussed in Sect. 4 
below.

3.2  Similarity measure

In order to accurately evaluate and analyze the group-
ing patterns of similar objects in datasets, there is a need 
to use an appropriate distance measure, which is able to 
identify clusters irrespective of the volume of data items 
under consideration. The Euclidian distance metrics has 
gained wide acceptance and therefore, it is often used as 
a similarity measure for computing the similarity between 
two data points x⃗i and x⃗j , each with n attributes or features. 
The aforementioned distance metric is calculated using 
the following expression:

(7)fCS(C ,D) =

∑K

i=1

�
1

Ni

∑
xj∈Ci

max
xl∈Ci

D
�
xl , xj

��

∑K

i=1

�
max
j∈K ,j≠i

D
�
gl , gj

�� .

Fig. 7  Clustering example with intra-and-inter- clustering illustrations
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However, in this study, a special case of the modified 
Minowski metric, here referred to as the cosine distance 
or vector dot product, is used as the similarity measure. It 
is given by [56] as

The vector dot product determines the angular differ-
ence of the two data points expressed as vector points ⟨
x⃗i , x⃗j

⟩
 , instead of their magnitudes. The objective func-

tions of clustering problems are usually non-linear and 
non-convex so some clustering algorithms may fall into 
a local optimum, for which the k-means algorithm is an 
example. The K-means algorithm minimizes the squared 
error function, which in this case is considered as the clus-
tering algorithm objective function. It is given as follows.

where gk is the kth cluster center. However, since the study 
is focused on using a set of metaheuristic algorithms to 
solve the proposed automatic data clustering problem, the 
fitness of an individual is computed using the DB validity 
index given in Eq. (3) above. Accordingly, with respect to 
the current study, the DB-based fitness function, which 
is evaluated for the ith individual in the population, is 
defined as follows:

where � is an arbitrarily small positive value and � denote 
any of the aforementioned validity indices, namely, DB and 
CS indices.

4  Study motivation of representative 
algorithms

This study was motivated by the design and performance 
stability of the selected representative algorithms, which 
is supported by both theoretical and practical discussions 
in the literature providing unambiguous clarity of proofs 
as to why these algorithms work well. Although there is a 
considerable amount of literature covering the selected 
representative algorithms, most of the studies are, how-
ever, concerned with the various application areas of the 
respective algorithms. Only a handful of publications 

(8)D
(
x⃗i , x⃗j

)
=

√√√√ d∑
n=1

(
xin − xjn

)2
=
‖‖‖x⃗i − x⃗j

‖‖‖.

(9)
�
x⃗i , x⃗j

�
=

∑d

n=1
xi,n ⋅ xj,n

��x⃗i�����x⃗j
���

.

(10)f (X ,G) =

n∑
i=1

min
{‖‖xi − gk

‖‖2|k = 1, 2,… , K
}

(11)f
(
xi
)
=

1

� + �

deal with the theoretical or qualitative analyses of these 
algorithms. In general, there is a significant gap between 
theory and practice as far as the validity of the claims of 
superior performances for the individual algorithms is con-
cerned. While, it is equally important to note that these 
algorithms have successful practical applications and 
proven track records in the literature, nevertheless their 
theoretical analysis lags far behind, as earlier mentioned. 
Therefore, the main motivation for selecting the repre-
sentative algorithms is based on the availability of theo-
retical analysis, which support the design, performance 
and suitability of the candidate algorithms for any specific 
application areas.

The theoretical proofs of the selected algorithms, 
based on mathematical analysis, was investigated by Yang 
[58]. The convergence and stability concerning particles 
genetic algorithms was studied by Suzuki [59]. The PSO 
stability and convergence were analyzed by Clerc and 
Kennedy [60]. From algebraic and analytical perspec-
tives, Clerc and Kennedy analyzed a particle’s trajectory 
under the PSO as it moves in discrete and continuous time. 
Similarly, the convergence analysis of IWO using Markov 
chain was discussed by Zhang et al. [61]. Yang and He [62] 
provided an extensive theoretical support for why the FA 
works well. Yang and He explained in their study that the 
FA is a good combination of accelerated particle swarm 
optimization (APSO), simulated annealing (SA), harmony 
search (HS) and DE enhanced in a nonlinear system. There-
fore, it has been theoretically proved that those individual 
algorithms actually work well and, furthermore, the rea-
sons for their working in practice have been qualitatively 
justified; there are also several empirical analyses that 
show the algorithms to be very stable, so Yang and He [62] 
concluded that the FA algorithm should work equally well 
in practice. Nevertheless, several theoretical and applica-
tion suitability analyses have also been carried out on the 
FA by Yang [63]. For the DE algorithm, Ghosh et al. [64] 
conducted a comprehensive study on the convergence of 
canonical DE algorithm over a class of continuous func-
tions with a unique global optimum. The aim of their study 
was to substantiate the applicability of the DE algorithm to 
a class of continuous and real-valued objective functions 
that possesses a unique global optimum, with the prob-
ability of having multiple local optima. Therefore, because 
no theoretical analysis has been carried out on many of the 
existing algorithms to substantiates their performances 
and capabilities, it is considered worthy to focus on the 
current representative algorithms that works well in prac-
tice and for which there is reasonable theoretical support 
as to why they algorithms work.

Summarized descriptions of the algorithmic concepts 
for each of the five representative metaheuristic algo-
rithms is presented in “Appendix 1”, while their strengths 
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and limitations were already itemized in Table 2 of this 
paper. The discussion covers background information, 
design concepts, and motivations of each algorithm 
implementation approach. However, interested readers 
are referred to the primary literature sources of informa-
tion on each algorithm, see (GA [65], PSO [66], DE [67], FA 
[68], and IWO [69]).

It should equally be highlighted here that another moti-
vation for the selection criterion for the five chosen algo-
rithms was their all having already been studied deeply 
and applied to the solution of various clustering problems. 
Therefore, the current study is on track with the task of 
investigating and presenting a detailed comparative eval-
uation study on the five algorithms, for which the current 
effort is to further validate their initial claimed superior 
performances from the perspective of clustering analysis.

4.1  Solution representation and encoding

In this paper, the five representative algorithms namely, 
GA, DE, PSO, FA and IWO are applied to solve the auto-
matic data clustering problem. Adopting similar cluster-
ing and solution representation mechanisms presented 
in [13, 20], a common search space matrix is adopted for 
all the algorithms. More so, this is due to the fact that the 
algorithms belong to the same class of population-based 
metaheuristic. The population matrix is initialized as data-
set X =

{
x1, x2,… , xn

}
 for i = 1, 2,… , n individuals follow-

ing the expression in Eq. (1) above. The population matrix 
in this case comprises of strings which are composed of 
real numbers that encode the centers of the cluster parti-
tions. The individual in the population encodes the num-
ber of clusters ki . The grouping of individuals in the popu-
lation into similar class is estimated based on the lower 
bound denoted by kmin and upper bounds denoted by kmax 
of the number of groups in the population. The number 
of clusters for each individual is evaluated as shown in 
Eq. (12).

where the function rand() is a vector of uniformly distrib-
uted random numbers between 0 and 1. For example, in 
a d-dimensional space, the length of d-dimensional data-
set is d × kmax , while an individual or a particle consist of 
a vector of real numbers of dimension kmax + kmax × d . 
The length of ith individual is given as d × ki . Note that 
the first kmax values are positive floating points numbers 
in [0,1], and these values are similarly used to determine 
the suitability of the corresponding clusters for data points 
classification. Afterwards, the remaining kmax values are 
set aside for kmax clusters centers, each d dimensional 
space [13]. Note that the initial population are generated 

(12)ki = rand(0, 1) ×
(
kmin +

(
kmax − kmin

))

randomly. For example, in the case of the PSO, a random 
number between [0, 1] is generated for each particle posi-
tion in the first part. While for the initial centroid, a data 
point is picked randomly for each cluster centroid. In the 
subsequent section, the details of the hybrid algorithms 
implementation methodology are discussed. In Fig. 8, an 
example illustration is used to explain the solution repre-
sentation and individual particle encoding scheme for the 
proposed representative algorithms. Consider a particle 
in a 3-dimensional vector space, which may be denoted 
as follow: 〈3.3 2.4 6.21 7.82 8.32 5.24 6.43 6.91 10.42 11.2 
2.38 6.91〉. Therefore, this particle will account for a total of 
four cluster centers ( g1, g2, g3, g4 ) that have been encoded 
for the aforementioned 3-dimensional dataset as shown 
in the figure below.

4.2  Hybrid algorithms for clustering problems

The reason for proposing the three hybrid automatic clus-
tering algorithms namely, PSODE, FADE, and IWODE is to 
improve the quality of clustering solution of the standard 
PSO, FA, IWO, and DE algorithms. Though studies revealed 
that each of the four aforementioned global optimiza-
tion techniques have their individual setbacks of being 
susceptible to premature convergence, which can lead 
to potential solutions being trapped in local optima. This 
drawback is even more pronounced in these algorithms 
when using them to solve problems with nonlinear and 
non-continuous search spaces, as it is case with the clus-
tering problems. Therefore, to overcome this disadvan-
tage, many researchers have resulted to implementing 
several hybrid metaheuristic algorithms for the purpose of 
improving the performance and problem-solving capabili-
ties of the participating standard or classical optimization 
algorithms [70, 71].

The main idea of hybridizing PSO, FA and IWO with DE 
is to integrate the DE operators (mutation, crossover and 
selection) into the three participating algorithms, and thus 
increasing the diversity of the population and the ability 
to have the participating algorithms escape being trapped 
in the local minima. However, to avoid any potential cost 
associated with most hybrid algorithm implementations, 
such as increase in computational cost and weakening of 
the fast convergence ability of the individual algorithms, 
the DE operators is incorporated into the PSO, FA and IWO 
only at a specified interval of iterations. In this interval of 
iterations, the PSO, FA and IWO swarms serves as the pop-
ulation for the DE algorithm, and the DE is executed for a 
number of generations.

Specifically, the DE is chosen because it is a high profile 
global optimization algorithm that has consistently been 
used to solve diverse complex optimization problems, one 
of which is the data clustering problem. However, some 
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of the advantages of DE algorithm that were considered 
for the hybridization task aside the fact that it is simple to 
implement are as follow: DE is good at intensification and 
diversification of search space, it has the capacity to deal 
with cost functions that are non-differentiable, multimodal 
and nonlinear, it can handle cost functions with high com-
putational complexity, it requires only few parameters 
and it has the ability to converge to the global minimum 
[51, 72]. More so, the objectives of the modified PSO, FA 
and IWO are to provide better initial centroids for the DE 
algorithm, so that the hybridized algorithms are able to 
achieve high compactness of cluster classification and 
separability of classes of data points into clusters.

The hybrid algorithm implementation methods com-
prise of two stages, the first stage engages either of the 
modified PSO, FA and IWO algorithm by randomly generat-
ing initial swarm, where the number of fireflies, particles or 
weeds are equal to the number of clusters and the swarm 
population are uniformly distributed across the dimension 
of the dataset, which in this case is the clustering problem 
search space. After the swarm initialization, the next task 
is the evaluation of the best swarm according to the fit-
ness function determined by the DB validity index. Note 
that the best swarm position for example represents the 
data point that achieves the minimum distance to the 
swarm from its previous searches. Iteratively the fitness 

function of the best swarm position is calculated and the 
best cost updated subsequently. The second stage of the 
hybrid algorithm involves activating the three DE opera-
tors for all swarm, which in this case are the particles, fire-
flies and plants. For the predefined interval of iterations, 
the DE algorithm is executed; and the worst previous best 
position vectors are replaced with the best trial vectors 
obtained after executing three DE operators. Figure 9 
depicts a summary flowcharts of the three proposed 
hybrid algorithms.

For the proposed hybrid methods, the mutation opera-
tor is applied to the previous best position swarm vectors 
Pi (for PSO) and Xi (for FA and IWO) using the following 
revised version of Eq. 16 (see “Appendix 1”):

Hybrid PSO-DE updating formula The proposed hybrid 
PSO-DE algorithm updating formula is given in Eq. (13).

The global and the previous best positions Pg and Pi 
values are updated according to the new fitness values 
computed using the DB index. More so, if the best position 
of all new particles is better than the current global best 
position, then Pg is replaced by the new solution. Similarly, 
the same updating approach is applied to the local best 

(13)Vi,g+1 = Pi,g + F
(
Pr1,g + Pr2,g) − F(Pr3,g + Pr4,g

)

Fig. 8  Individual particle encoding scheme for the proposed metaheuristic automatic clustering methods
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of other particles in the population if the computed new 
fitness function value is better than the previous.

Hybrid FA-DE updating formula The proposed hybrid 
FA-DE algorithm updating equation is as represented in 
Eq. (14).

where Xi , Xr1 and Xr2 are randomly selected fireflies from 
population. The Xi,�+1 is the new firefly which is created 
from the mutation operator at � + 1 iteration.

(14)Xi,�+1 = Xi,� + F
(
Xr1,� − Xr2,�

)

Hybrid IWO-DE updating formula In Eq. (15), the pro-
posed hybrid FA-DE algorithm updating equation is rep-
resented as follows.

where the parent vector Xbest is the best individual of the 
current iteration. Note that Eq. (15) is only activated after the 
execution of Eqs. (26) and (27) presented in “Appendix 1”.

(15)Xi,�+1 = Xi,� + F
(
Xbest,� − Xi,�

)
+
(
Xr1,� + Xr2,�

)

Fig. 9  Summary flowchart of 
hybrid algorithms
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The algorithm is terminated after the 200 set iteration 
criterion is reached, after which the best possible global 
clustering cost outcome is displayed. The detailed proce-
dure of the proposed hybrid algorithms is illustrated in 
Fig. 10.

5  Experimental study

The experimental study carried out in this section evalu-
ate the various performances of the five metaheuristic 
algorithms in terms of their respective success rates and 

Fig. 10  Flowchart of hybrid 
PSODE, FADE, and IWODE 
algorithms
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computation time complexity. All the algorithms are exe-
cuted in MATLAB 2018 and all the experiments are per-
formed using an Itel Dual Core i7-7600U CPU @ 2.80 GHz 
and 15.8 GB RAM. The effectiveness of the algorithms is 
measured based on the following criteria:

1. Average best fitness value, which determines the qual-
ity of clustering solution for the representative algo-
rithms.

2. Performance speed based on computational cost and 
convergence

3. Statistical significance difference over 20 replications

In this paper it is assumed that performance of the rep-
resentative algorithms depends on the initial population 
size generation, considering the facts that the employed 
algorithms are population based algorithms. To allow for 
the replication of this experiment and its results, each 
algorithm is executed for 200 iterations and for 20 replica-
tions for all the forty-one dataset. The parameter settings 
for GA, DE, PSO, FA and IWO are depicted in Table 3 and the 
forty-one dataset used for the experiments are described 
and presented in Table 4 below.

5.1  Datasets

The datasets considered in this study is summarized in 
Table 4, consisting of three set of A-dataset, three birch 
datasets, one low-dimensional DIM dataset, seven high-
dimensional DIM datasets, three image datasets, four gen-
erated S-datasets, nine UCI datasets, eight shape sets, two 
Mopsi locations datasets and one miscellaneous dataset. 
The A sets are two-dimensional synthetically generated 
datasets with increasing number of clusters, the Birch sets 
are two-dimensional synthetically generated datasets 

with predefined clusters of k = 100 and varying structure 
types, the high-dimensional DIM datasets have clusters 
that are well separated from one another with k = 16 
predefined clusters, the low-dimensional DIM set is syn-
thetically generated dataset of varying dimensional space 
with k = 9 Gaussian clusters of varying N number of data 
points or vectors. The points in the first set (bridge) of the 
Image sets is a 4 × 4 non-overlapping vectors or data points 
extracted from a gray-scale image, the second set is the 
house (Housec5 and Housec8) dataset, which set consists 
of color values of the RGB image. The sets S1-S4 are two-
dimensional synthetically generated datasets with varying 
complexity in terms of spatial data distributions with k = 15 
predefined clusters.

In summary, the forty-one (41) dataset used to test 
the five representative algorithms and three hybrid algo-
rithms have sizes ranging from 150 to 100,000 items or 
data points, number of features or dimension ranging 
from 2 to 1024, and number of classifications or clusters 
ranging from 2 to 256. It is important to note here that 
although the ground truth classification is provided (the 
ground truth refers to the classifications given in the data-
set), it is not in any way utilized by the eight algorithms 
used for automatic clustering analysis. In other words, the 
eight algorithm does not use the classification or number 
of cluster information provided original with the dataset.

5.2  Experiment 1: Five representative algorithms 
on twenty datasets

The first set of experiments conducted covers the five rep-
resentative algorithms, namely GA, DE, PSO, FA, and IWO. 
Table 5 summarizes the results obtained by each of the 
aforementioned algorithms for the problem at hand, over 
20 datasets. The values reported in the table cover the best 

Table 3  Parameter configurations for the five basic metaheuristic algorithms namely, GA, DE, PSO, FA, and IWO

Pop_size, population size;  Pc, crossover probability;  Pm, mutation probability;  W1, inertia weight;  W2, inertia weight damping ratio; �
1
 , per-

sonal learning coefficient; �
2
 , global learning coefficient;  Kmin and  Kmax denote respectively the maximum and minimum number of clusters 

that can be encoded in a single trial solution vector for GA, DE, PSO, FA and IWO; CR, crossover rate; F, scaling factor; mr, mutation rate; �
0
 , 

attractiveness; � , light absorption coefficient; e , variance reduction exponent; �
1
 , initial value of standard deviation; �

2
 , final value of stand-

ard deviation; s, maximum number of seeds. Note that PSODE, FADE, and IWODE use the same parameter representation scheme as their 
respective standard algorithms

GA DE PSO FA IWO

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Pop_size 25 Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150
Pc,  Pm 0.8, 0.3 CRmin,  CRmax 0.2, 1.0 W1,  W2 1.0, 0.99 �

0
2 s 5

mr 0.02 F 0.8 �
1
 , �

2
1.5, 2.0 � 1 �

1
, �

2
0.5, 0.001

Kmin 2 Kmin 2 Kmin 2 Kmin 2 e 2
Kmax 16 Kmax 256 Kmax 256 Kmax 256 Kmax 256
MaxGen. 200 MaxIt 200 MaxIt 200 MaxGen. 200 MaxGen. 200
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and worst solutions obtained, the averages over 20 simula-
tions with standard deviations to indicate the range of val-
ues to which the representative algorithms converge. The 
results are presented to four decimal places. The first con-
sideration is the resulting DB validity index obtained by the 
respective algorithms. As shown in Table 5, of the overall 
average values reported for the five algorithm reported, the 
FA algorithm had the smallest overall average DB validity 

index for the twenty selected datasets. Although, there are 
few cases where the PSO algorithm has a good clustering 
result, for example with the S1 dataset as shown by the 
validity index, these are not significantly better than those 
for the FA algorithm. The convergence curves for each algo-
rithm are illustrated in Fig. 11, in which a smooth and rap-
idly declining curve indicates a superior performance. From 
the convergence curves, covering eight selected datasets 

Table 4  Characteristics of the 
41 clustering datasets of which 
11 are artificial and 30 are real 
world (real life)

Datasets References Type of dataset Number of 
data points (N)

Dimension 
of data (D)

Number of 
clusters (k)

A1 [40, 42, 107] Synthetically generated 3000 2 20
A2 [40, 42, 107] Synthetically generated 5250 2 35
A3 [40, 42, 107] Synthetically generated 7500 2 50
Aggregation [46, 107] Shape sets 788 2 7
Birch1 [40, 43, 107] Synthetically generated 100,000 2 100
Birch2 [40, 43, 107] Synthetically generated 100,000 2 100
Birch3 [40, 43, 107] Synthetically generated 100,000 2 100
Breast [101, 107] UCI dataset 699 9 2
Bridge [103, 107] Gray-scale image blocks 4096 16 256
Compound [18, 107] Shape sets 399 2 6
D31 [95, 107] Shape sets 3100 2 31
Dim002 [40, 44, 107] Synthetically generated 1351–10,126 2–15 9
Dim016 [40, 45, 107] High-dimensional 1024 16 16
Dim032 [40, 45, 107] High-dimensional 1024 32 16
Dim064 [40, 45, 107] High-dimensional 1024 64 16
Dim128 [40, 45, 107] High-dimensional 1024 128 16
Dim256 [40, 45, 107] High-dimensional 1024 256 16
Dim512 [40, 45, 107] High-dimensional 1024 512 16
Dim1024 [40, 45, 107] High-dimensional 1024 1024 16
Flame [37, 107] Shape sets 240 2 2
Glass [101, 107] UCI dataset 214 9 7
Housec5 [103, 107] RGB image 34,112 3 256
Housec8 [103, 107] RGB image 34,112 3 256
Iris [101, 107] UCI dataset 150 4 3
Jain [16, 107] Shape sets 373 2 2
Leaves [101, 107] UCI dataset 1600 64 100
Letter [101, 107] UCI dataset 20,000 16 26
Joensuu [106, 107] Mopsi locations 6014 2 4
Finland [106, 107] Mopsi locations 13,467 2 4
Pathbased [10, 107] Shape sets 300 2 3
R15 [21, 107] Shape sets 600 2 15
S1 [40, 41, 107] Synthetically generated 5000 2 15
S2 [40, 41, 107] Synthetically generated 5000 2 15
S3 [40, 41, 107] Synthetically generated 5000 2 15
S4 [40, 41, 107] Synthetically generated 5000 2 15
Spiral [47, 107] Shape sets 312 2 3
T4.8k [20, 107] Miscellaneous 8000 2 3
Thyroid [101, 107] UCI dataset 215 5 2
Wdbc [101, 107] UCI dataset 569 32 2
Wine [101, 107] UCI dataset 178 13 3
Yeast [101, 107] UCI dataset 1484 8 10
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Fig. 11  Convergence curves of each algorithm on eight test datasets (based on objective function values)



Vol.:(0123456789)

SN Applied Sciences (2020) 2:273 | https://doi.org/10.1007/s42452-020-2073-0 Research Article

(A1, A2, A3, Aggregation, Compound, Dim002, Jain and 
Pathbased), the FA algorithm clearly has the best perfor-
mance: in all the graphs shown, the algorithm was able 
to produce smooth and rapidly declining curves. Further-
more, analysis of the standard deviation values obtained 
by the five representative algorithms in Table 5 shows that 
again the FA algorithm obtained consistently lower stand-
ard deviation (SD) values than the other algorithms, across 
all the twenty datasets. More so, the FA also obtained the 
best results, as shown in the “Best” column in Table 5 for 15 
of the 20 databases, which shows that that, judging by the 
DB validity index values, the FA has the best fitness func-
tion computation with the least values. This indicates that 
the algorithm is superior to any of the other algorithms 
considered. The performance hierarchy in terms of which of 
the representative algorithms produced the smallest values 
for the computed DB validity index is as follows: FA being 
the best, is followed by the DE, then GA and IWO, with PSO 
being the worst performing of the five algorithms.

In Table 6, the results of the execution times obtained by 
each algorithm for 200 generations is shown. The average 
computation cost for each algorithm on the twenty data-
sets ranges from 18.4831 s for IWO to 53.5796 s for FA, with 
DE, PSO and GA falling in sequence between these values. 
The average execution cost therefore shows that although 
the FA was able to obtained high quality solution, it did so 

at the expense of computational time. Despite IWO having 
the best computational times, in terms of solution quality, 
it is inferior to the FA. The DE algorithm seems to have per-
formed well, as the algorithm was able strike a good balance 
between better solutions and computational cost. From 
the experiment reported in Tables 5 and 6, it was observed 
that for the GA algorithm, as the problem dimension and 
features increased, it actually struggled to compute the fit-
ness function, here the DB validity index. Therefore, in the 
remaining set of experiments the GA algorithm will be dis-
carded, while hybridization attempts with the DE algorithm 
will be considered, while seeking a good balance between 
solution quality and execution time for the remaining set 
of representative algorithms. The option of the hybrid 
approach is to see if it is possible to improve the perfor-
mance of the algorithms in terms of both solution quality 
and computational cost, specifically for the FA algorithm.

It is important to note that the high computational cost 
recorded for some of the algorithms can be attributed to 
the implementation of the exploration mechanism, which 
also happens to be one of the special features possessed 
by them, as was highlighted in Table 2. Even though the 
exploration mechanism provides the algorithms with 
unique performance capability and advantages, it does 
this at the expense of incurring additional computation 
cost, as can be seen in the case of the FA.

5.3  Experiment 2: Representative and hybrid 
algorithms on forty datasets

The second experiment demonstrates extensive perfor-
mance evaluation of the remaining four representative 
algorithms, that is without the GA, on forty clustering data-
sets. Table 7 shows the computational results obtained 
by the DE, PSO, FA and IWO on the forty datasets, while 
Table 8 shows the results obtained by the for hybrid algo-
rithms. The hybrid algorithms used DE with the other three 
algorithms, giving PSODE, FADE and IWODE. In Table 9, 
the computational costs or execution times for all the 
algorithms are presented. In Table 7, the DB validity index 
results obtained for the respective algorithms show that 
the FA still performed better than other algorithms, which 
is a clear indication that the FA is an effective population-
based algorithm for solving automatic data clustering 
problems. Consistently, FA has maintained a more stable 
lead in its solution quality performance across all the test 
datasets, which also shows the superior stability of the 
algorithm in comparison with DE, PSO, and IWO. In other 
words, FA can be said to maintain a high level of stability, 
as shown in the convergence graphs in Fig. 5 and the DB 
validity index results in Table 7 for the forty dataset show 
FA having an overall average of 0.6749, against 0.8117 
for DE, 0.9021 for IWO and 1.5818 for PSO. The results 

Table 6  Computational time cost for five representative 
metaheuristics on twenty datasets

GA DE PSO FA IWO

A1 25.1799 19.9490 21.9353 23.1691 14.4312
A2 30.0072 20.6826 21.3371 27.7366 15.4780
A3 33.5669 22.1976 21.7788 33.0137 16.3230
Aggregation 20.9999 44.4496 26.0378 21.0443 14.3309
Birch1 119.1541 110.3298 79.6950 242.8657 43.1278
Birch2 64.4762 47.1180 58.7877 171.2215 32.4669
Birch3 84.2933 64.1067 96.7476 229.0219 36.1856
Compound 20.4090 19.0033 19.6271 18.8446 17.6630
Dim002 18.3266 18.5908 19.4369 19.3585 13.9877
Flame 20.3483 17.7655 23.2215 19.4257 13.3214
Jain 28.5519 16.5459 18.6040 18.9921 13.6465
Joensuu 18.0393 18.9126 24.0024 28.9638 14.0140
Finland 31.5844 20.8059 25.7042 36.6961 15.0975
Pathbased 38.6054 17.5430 28.0911 19.0709 14.1964
S1 28.6861 26.6109 28.7531 29.0218 16.4213
S2 28.6019 19.8328 20.7292 30.5368 15.6235
S3 29.6679 19.6668 21.4548 26.0717 15.4535
S4 27.7202 21.0218 39.6490 28.3019 15.6406
Spiral 35.3300 17.6803 30.7869 19.2370 17.4290
T4.8k 40.3651 21.2385 43.0841 28.9985 14.8247
Overall aver-

age
37.1957 29.2026 33.4732 53.5796 18.4831
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presented in Table 8 show the computational values for 
the DB fitness function (or validity index) obtained by the 
hybrid algorithms. In comparing the results across the 
tables, the superiority of the standard FA over the hybrid 
FADE can be seen. For example, whereas the standard FA 
obtained an overall average of 0.6749, the corresponding 
results for hybrid FADE algorithm was 0.7240. This slight 
deterioration in the fitness function was however offset 
by improved computational time. As shown in Table 9, a 
substantial improvement for the hybrid FADE as compared 
to that of the single FA. Specifically, in the execution time 
on the forty datasets a result of 43.22 s were recorded 
for the FA while 32.17 s was recorded for the FADE. The 
results of hybrid PSODE and IWODE appear to be supe-
rior than their respective single algorithms. For example, 
while the hybrid PSODE obtained a lower overall average 
DB validity index across the forty datasets (0.8805) than 
did the PSO (1.5818), thereby making the hybrid PSODE 
a better clustering algorithm than the standard PSO algo-
rithm. A similar improvement trend was also observed the 
overall DB validity index for the hybrid IWODE across the 
forty datasets (0.8954) which was better than that for the 
standard IWO (0.9021), thereby making IWODE a better 
algorithm than the standard IWO algorithm. Contrasting 
patterns were observed for computation cost for PSODE 
and IWODE, as shown in Table 9. On the one hand, it was 
observed that the execution time for PSODE was 25.49 s 
was slightly better than the 28.82 s for PSO. IWODE, on the 
other hand, obtained considerably higher execution time 
of 27.65 as against 16.68 s for the IWO. We can say that 
in an overall comparison between the hybrid algorithms 
and their single counterparts, although FADE performed 
less well, computational time was improved; the hybrid 
algorithms, PSODE and IWODE experienced performance 
improvement over their individual algorithms in terms of 
solution qualities with variable effects on computation 
time costs.  

The corresponding convergence curves of the algo-
rithms as observed in the second experiment for some 
selected ground truth datasets are presented in Fig. 12. 
Clearly, it can be seen from these figures that the FA algo-
rithm has still maintained a lead with better convergence, 
having been able to produce consistently smooth and 
rapidly declining curve, which is an indication of its supe-
rior performance in all the ten datasets. In Fig. 13, similar 
convergence curves are presented for the hybrid algo-
rithms. The hybrid FADE appears to be better because it 
has all the signs of better performance as described above 
with respect to convergence curves. However, the figures 
also show that other hybrid algorithms have good perfor-
mance as well or have additional improvements as com-
pared to their individual standard algorithm, which is the 
case for PSO and IWO algorithms.Ta
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5.4  Experiment 3: Parameter fine‑tuning

The third experiment involved evaluating the impact 
of certain predefined control parameters, which might 

affect the performance of the individual algorithm, either 
negatively or positively. Fine-tuning is widely used in 
metaheuristic optimization techniques to evaluate the 
effects of certain control parameters on the performances 

Table 8  Computational results for three hybrid algorithms on forty-one datasets

All text in bold represents the best results obtained by the individual representative algorithms

Dataset PSODE FADE IWODE

Best Worst Avg. SD Best Worst Avg. SD Best Worst Avg. SD

A1 0.5901 0.6194 0.5949 0.0086 0.5901 0.6932 0.6271 0.0347 0.5958 0.8102 0.6525 0.0621
A2 0.6777 0.7305 0.6912 0.0161 0.6776 0.7475 0.6976 0.0215 0.6820 0.8337 0.7296 0.0391
A3 0.6706 0.7443 0.7106 0.0176 0.6672 0.7765 0.7085 0.0332 0.7124 0.8433 0.7527 0.0319
Aggregation 0.5359 0.6614 0.5958 0.0391 0.5351 0.7088 0.5948 0.0424 0.5450 0.7423 0.6015 0.0510
Birch1 0.6882 0.8215 0.7256 0.0276 0.6872 0.7707 0.7232 0.0257 0.7367 0.8200 0.7692 0.0279
Birch2 0.5070 0.5076 0.5070 0.0002 0.5070 0.6009 0.5155 0.0235 0.5078 0.5382 0.5176 0.0084
Birch3 0.6780 0.7367 0.7074 0.0151 0.6605 0.7385 0.7012 0.0191 0.7221 0.8290 0.7570 0.0247
Breast 0.6519 1.0049 0.7256 0.1115 0.6519 1.1464 0.9378 0.2051 0.6686 1.1162 0.7965 0.1177
Bridge 0.6120 0.8742 0.7141 0.1007 0.6110 0.8365 0.6405 0.0709 1.0007 1.2585 1.1397 0.0666
Compound 0.4932 0.5271 0.4983 0.0092 0.4932 0.6594 0.5273 0.0576 0.4932 0.6330 0.5004 0.0312
D31 0.7174 0.8562 0.8021 0.0407 0.7144 0.8520 0.7788 0.0376 0.6839 0.8803 0.7972 0.0514
Dim002 0.5246 0.6900 0.5975 0.0445 0.4883 0.7081 0.6280 0.0607 0.5671 0.7248 0.6705 0.0432
Dim016 0.6515 1.1677 1.0183 0.1285 0.9760 1.1531 1.0413 0.0512 1.3327 1.5160 1.4336 0.0456
Dim032 1.0182 1.2774 1.1142 0.0915 0.8146 1.2258 1.0727 0.0894 1.4861 1.6508 1.5731 0.0574
Dim064 0.7713 1.4420 1.1918 0.1769 0.9074 1.3781 1.1003 0.0925 1.6148 1.7762 1.7015 0.0415
Dim128 1.1501 1.5584 1.3363 0.1425 0.9939 1.4660 1.1980 0.1173 1.7029 1.9032 1.7773 0.0477
Dim256 1.1083 1.6523 1.5051 0.1740 1.1395 1.5445 1.2938 0.1308 1.7924 1.9085 1.8603 0.0309
Dim512 1.4725 1.7304 1.6827 0.0633 1.1352 1.7415 1.3529 0.1463 1.8623 1.9995 1.9311 0.0424
Dim1024 1.7457 1.7813 1.7644 0.0112 1.2608 1.6450 1.4759 0.1200 1.9124 2.0095 1.9654 0.0261
Flame 0.6297 10.4053 4.4069 4.6725 0.5971 0.7642 0.6795 0.0477 0.6051 0.7737 0.6749 0.0391
Glass 0.3336 0.6727 0.5966 0.0672 0.3336 0.7931 0.5971 0.0996 0.3339 0.8085 0.5562 0.1384
Housec5 0.4987 11.9045 2.2408 4.0861 0.4987 0.6263 0.5647 0.0287 0.6509 0.7292 0.6865 0.0229
Housec8 0.4559 0.5534 0.5022 0.0315 0.4559 0.6011 0.4707 0.0383 0.5488 0.7183 0.6344 0.0408
Iris 0.5700 0.6443 0.5811 0.0210 0.5700 0.6811 0.5850 0.0350 0.6739 1.0258 0.8384 0.0916
Jain 0.6040 0.6530 0.6399 0.0150 0.6341 0.6514 0.6451 0.0062 0.6371 0.6622 0.6500 0.0058
Leaves 0.6100 1.0202 0.7580 0.1514 0.6317 1.1548 0.7483 0.1539 1.4255 1.5770 1.5116 0.0396
Letter 0.8240 1.0239 0.9121 0.0628 0.7921 1.0605 0.8665 0.0663 1.1094 1.3649 1.2057 0.0571
Joensuu 0.4931 0.5316 0.5094 0.0098 0.4876 0.6313 0.5100 0.0327 0.4877 0.4991 0.4972 0.0041
Finland 0.4393 0.4598 0.4465 0.0060 0.4393 0.6094 0.4686 0.0547 0.4490 0.5948 0.4864 0.0371
Pathbased 0.6260 0.6824 0.6526 0.0166 0.6299 0.6826 0.6561 0.0178 0.6299 0.6899 0.6567 0.0156
R15 0.4891 0.7566 0.6423 0.0722 0.5010 0.8105 0.6399 0.0984 0.4955 0.8312 0.5996 0.0894
S1 0.5663 0.7202 0.6739 0.0351 0.6288 0.7139 0.6756 0.0270 0.6990 0.8028 0.7501 0.0280
S2 0.6161 0.7225 0.6844 0.0280 0.6574 0.7543 0.6939 0.0345 0.7224 0.7948 0.7556 0.0190
S3 0.6701 0.7411 0.7106 0.0199 0.6691 0.7258 0.7072 0.0181 0.7243 0.8277 0.7559 0.0317
S4 0.6980 0.7626 0.7299 0.0162 0.7103 0.7771 0.7356 0.0226 0.7431 0.8733 0.7896 0.0303
Spiral 0.7285 0.7786 0.7441 0.0136 0.7237 0.7779 0.7373 0.0156 0.7278 0.7758 0.7458 0.0143
T4.8k 0.0227 0.0227 0.0227 0.0000 0.0227 0.4170 0.0424 0.0882 0.0279 0.2337 0.0928 0.0515
Thyroid 0.4797 0.5353 0.5024 0.0196 0.4814 0.5905 0.4955 0.0241 0.8037 1.2485 0.9893 0.1077
Wdbc 0.0508 0.0508 0.0508 0.0000 0.0508 0.0508 0.0508 0.0000 0.0513 0.1304 0.0814 0.0263
Wine 0.8020 0.9794 0.8891 0.0601 0.7520 1.1008 0.8648 0.0973 1.1298 1.3099 1.2312 0.0525
Yeast 0.5586 0.7864 0.7193 0.0677 0.4379 0.8119 0.6375 0.1344 0.4386 0.8043 0.5949 0.1144
Average 0.6593 1.3364 0.8805 0.2608 0.6394 0.8580 0.7241 0.0615 0.8228 0.9968 0.8954 0.0464
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of the representative algorithms. Therefore, for the cluster-
ing analysis problem discussed in this paper, parameter 
fine-tuning is restricted to determining only the effect 
of population size of the respective algorithms on qual-
ity of solution improvements. The performances of the 

representative algorithms with fine-tuning of population 
sizes of 50, 100, and 150 is shown in Tables 10, 11 and 12, 
respectively. For the four algorithms, noticeable perfor-
mance improvements in the solution quality was observed 
for DE, PSO and IWO, while there was no any significant 

Table 9  Computational time 
cost for all the algorithms

Algorithms Standard Implementation Hybrid Implementation

DE PSO FA IWO PSODE FADE IWODE

A1 19.9490 21.9353 23.1691 14.4312 40.7302 19.0999 21.2270
A2 20.6826 21.3371 27.7366 15.4780 47.1239 22.0312 22.4148
A3 22.1976 21.7788 33.0137 16.3230 33.1377 24.0918 24.5065
Aggregation 44.4496 26.0378 21.0443 14.3309 10.3857 15.9027 17.9663
Birch1 110.3298 79.6950 242.8657 43.1278 144.1875 191.3201 114.4691
Birch2 47.1180 58.7877 171.2215 32.4669 78.5766 119.5048 49.3644
Birch3 64.1067 96.7476 229.0219 36.1856 125.5172 176.6250 64.3187
Breast 18.5755 19.8743 20.7709 13.4494 10.0605 15.7322 14.1894
Bridge 24.5326 22.2760 33.1045 14.1580 14.6671 23.3594 19.5509
Compound 19.0033 19.6271 18.8446 17.6630 9.3736 15.2473 21.7213
D31 19.1009 23.5727 27.6833 14.7797 19.3097 20.2853 21.2679
Dim002 18.5908 19.4369 19.3585 13.9877 18.9924 15.8502 19.6408
Dim016 17.7505 19.0110 19.1723 13.2421 8.9427 15.7862 17.3102
Dim032 17.0615 24.6876 19.3937 17.2166 9.0909 15.4261 18.3960
Dim064 17.3968 19.1155 20.3916 13.2648 9.2795 15.4340 34.7302
Dim128 17.0821 19.4855 29.7310 13.2505 9.5850 18.9326 21.0818
Dim256 17.6940 19.4731 37.8332 17.5826 10.2746 22.3294 21.6856
Dim512 18.3598 20.1388 48.6561 13.3380 12.2050 27.3212 21.9441
Dim1024 35.4490 21.3741 71.7511 13.1987 16.1302 37.6609 22.4156
Flame 17.7655 23.2215 19.4257 13.3214 10.1488 15.2684 21.4066
Glass 17.5845 17.7427 17.9051 17.0496 9.4288 14.7100 33.5422
Housec5 17.9596 23.9175 23.8241 14.8858 11.3120 17.0716 26.6307
Housec8 27.2971 31.5027 71.8233 17.6232 34.2852 54.4047 40.5323
Iris 16.5722 18.5352 16.8701 13.5175 9.6620 14.9608 24.5881
Jain 16.5459 18.6040 18.9921 13.6465 10.4927 15.2563 17.7379
Leaves 19.0131 49.5173 28.5303 16.1148 14.3337 22.9569 43.9606
Letter 27.8214 48.6456 113.7824 19.2361 40.6652 78.3855 58.7786
Joensuu 18.9126 24.0024 28.9638 14.0140 12.4565 22.2184 28.5891
Finland 20.8059 25.7042 36.6961 15.0975 17.5404 28.9074 20.9981
Pathbased 17.5430 28.0911 19.0709 14.1964 10.5311 15.2590 19.2079
R15 16.6841 20.2720 20.9732 13.6924 10.9669 15.4085 19.7826
S1 26.6109 28.7531 29.0218 16.4213 22.9561 23.1972 22.3291
S2 19.8328 20.7292 30.5368 15.6235 25.1369 23.3005 20.4949
S3 19.6668 21.4548 26.0717 15.4535 24.6599 21.4080 20.4787
S4 21.0218 39.6490 28.3019 15.6406 23.8855 24.5190 22.4664
Spiral 17.6803 30.7869 19.2370 17.4290 24.5136 15.3566 28.7818
T4.8k 21.2385 43.0841 28.9985 14.8247 25.1864 20.6794 23.6252
Thyroid 17.7458 22.4455 17.1986 17.4268 18.1776 14.8244 17.5192
Wdbc 32.6544 22.8051 21.5963 13.5909 21.7783 17.5456 17.3334
Wine 18.1459 23.4927 18.9496 13.4588 20.4608 15.3653 17.1978
Yeast 18.3390 24.1620 20.3478 14.1749 19.0508 16.0801 19.3065
Average 24.80174 28.81732 43.2166 16.68082 25.49266 32.1713 27.64606
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Fig. 12  Convergence curves 
of each single algorithm on 
selected ground truth dataset 
(based on objective function 
values)

a Breast dataset     b Bridge dataset 

c Flame dataset    d Glass dataset 

0

0.5

1

1.5

2

2.5

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO
FA IWO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0

0.5

1

1.5

2

2.5

3

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

e Iris dataset    f Leaves dataset 

g Letter dataset     h Thyroid dataset 

i Wine dataset      j Yeast dataset 

0

0.5

1

1.5

2

2.5

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0

0.5

1

1.5

2

2.5

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0

5

10

15

20

25

30

35

40

45

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE
PSO
FA

0

0.5

1

1.5

2

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO

0

0.5

1

1.5

2

2.5

3

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

Be
st

 C
os

t

Itera
ons

DE PSO

FA IWO



Vol.:(0123456789)

SN Applied Sciences (2020) 2:273 | https://doi.org/10.1007/s42452-020-2073-0 Research Article

Fig. 13  Convergence curves of 
each hybrid algorithm on ten 
test selected datasets (based 
on objective function values)
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improvement for the FA algorithm. In most cases, the 
improvements are apparent for the three aforementioned 
algorithms on the ten datasets considered. However, the 
lack of substantial improvement for the FA algorithm sim-
ply means that the algorithm is not tied to any control 
parameter such as population size. Similarly, consider-
able improvement in the solution quality for the hybrid 
algorithms namely PSODE and IWODE was significant 
and increased as the population size increased. However, 
the improvements of these two hybrid algorithms were 
at the expense of computational time, which increased 
significantly as shown in the three tables below. There was 
no significant improvement in terms of clustering solu-
tion quality for the hybrid FADE, which justifies the above 
claim that the FA is not restricted by any control param-
eter, unlike in the case of PSODE and IWODE algorithms, 
in which clustering solution qualities were greatly affected 
by the fine-tuning process.

The computational costs for implementation of all four 
representative algorithms are presented alongside the rel-
evant clustering solutions obtained, in Tables 10, 11, and 
12. One of the major drawbacks of parameter fine-tuning 
is that the running time grows considerably for each algo-
rithm. Considering the implementation time for the FA 
algorithm for instance, even though it produced the best 
clustering solution in terms of cohesion and compactness, 
its execution times grew exponentially with correspond-
ing increase in population size. Similar computation cost 
characteristics were also displayed by the hybrid PSODE, 
FADE and IWODE algorithms. It was noticeable that the 
three hybrid algorithms recorded considerable increase 
in computation time, although with remarkable improve-
ment in clustering solution quality. Nevertheless, this is as 
expected, in view of the hybrid implementation process 
having introduced additional subroutine processing over-
heads, based on the combined algorithmic computational 
complexity.

In “Appendix 2”, Figs. 21, 22 and 23 provide two dimen-
sional visual impressions of the performance of the differ-
ent clustering methods after 200 iterations over selected 
datasets. Generally, the quality of clustering solutions 
obtained by the representative algorithms are test based 
on their capability to successfully separate the classes of 
data points into clusters. Ideally, mixed clusters are an indi-
cation of poor clustering solutions, while distinct clusters 
show good clustering solution. In the figures illustrated 
in the appendix, each color represents a different class of 
cluster. “Appendix 2” shows the clustering quality obtained 
by the DE algorithm, for which it can be clearly seen that 
the DE was able to properly separate the dataset into a 
set of unique classes as shown in the represented dataset. 
However, there are some instances of overlaps, such as 
the clustering of leaves and bridge ground truth dataset. Ta

bl
e 

12
  

N
um

er
ic

al
 s

ol
ut

io
ns

 o
bt

ai
ne

d 
fo

r a
ll 

al
go

rit
hm

s 
us

in
g 

po
pu

la
tio

n 
si

ze
 o

f 1
50

D
at

as
et

s
N

D
E

PS
O

FA
IW

O
PS

O
D

E
FA

D
E

IW
O

D
E

So
lu

tio
n

Ti
m

e
So

lu
tio

n
Ti

m
e

So
lu

tio
n

Ti
m

e
So

lu
tio

n
Ti

m
e

So
lu

tio
n

Ti
m

e
So

lu
tio

n
Ti

m
e

So
lu

tio
n

Ti
m

e

Br
id

ge
40

96
0.

82
74

20
.5

37
1

0.
80

46
20

.1
12

6
0.

61
09

86
9.

97
44

1.
04

52
21

.0
30

3
0.

80
31

56
.2

27
4

0.
61

09
64

4.
78

66
1.

04
53

38
.3

65
1

Jo
en

su
u

60
14

0.
51

01
19

.4
73

8
0.

55
20

20
.8

01
8

0.
48

76
86

0.
52

69
0.

49
68

22
.1

53
1

0.
51

56
50

.5
10

9
0.

48
76

71
8.

80
54

0.
49

91
32

.0
92

5
T4

.8
k

80
00

0.
02

27
17

.5
29

4
0.

02
27

17
.6

83
4

0.
02

27
85

7.
19

00
0.

05
39

26
.7

56
7

0.
02

27
53

.2
10

1
0.

02
27

63
3.

66
39

0.
03

57
59

.1
14

6
Fi

nl
an

d
13

,4
67

0.
44

76
27

.0
37

7
0.

55
85

41
.6

83
1

0.
43

93
10

93
.5

73
9

0.
47

43
29

.9
40

5
0.

43
94

69
.3

49
2

0.
43

93
79

2.
02

54
0.

48
69

74
.7

81
8

Le
tt

er
20

,0
00

0.
96

45
75

.4
54

7
0.

92
54

15
.3

82
3

0.
79

16
39

20
.7

56
4

1.
13

39
70

.5
68

2
0.

82
36

20
0.

91
18

0.
80

71
26

98
.0

22
3

1.
19

60
23

3.
70

11
H

ou
se

c5
34

,1
12

0.
54

21
14

.6
61

1
0.

66
89

66
.0

76
7

0.
49

87
56

5.
53

80
0.

64
25

15
.8

77
0

0.
59

03
32

.3
94

7
0.

49
87

34
8.

87
64

0.
62

12
46

.1
40

0
H

ou
se

c8
34

,1
12

0.
49

97
49

.3
76

5
0.

63
76

15
.3

82
3

0.
45

59
22

03
.7

21
9

0.
56

92
50

.3
67

6
0.

50
57

16
4.

04
60

0.
45

59
27

68
.9

35
3

0.
58

28
13

4.
06

97
Bi

rc
h1

10
0,

00
0

0.
73

32
17

6.
86

16
0.

71
96

17
8.

90
59

0.
68

74
80

57
.0

98
8

0.
74

02
16

7.
61

80
0.

71
86

53
1.

04
87

0.
70

81
55

12
.1

88
0

0.
76

60
28

8.
58

96
Bi

rc
h2

10
0,

00
0

0.
50

73
12

1.
53

81
0.

58
01

14
6.

98
22

0.
50

70
60

50
.3

56
2

0.
51

27
13

3.
19

48
0.

50
70

39
0.

27
35

0.
50

70
34

90
.2

26
0

0.
52

09
21

1.
01

29
Bi

rc
h3

10
0,

00
0

0.
72

24
16

8.
03

92
0.

67
62

20
0.

48
05

0.
69

11
74

44
.1

53
1

0.
73

16
15

1.
61

45
0.

71
53

59
2.

14
92

0.
67

87
47

12
.1

92
9

0.
72

42
38

0.
01

65
Av

er
ag

e
0.

57
77

69
.0

50
9

0.
61

46
72

.3
49

1
0.

51
92

31
92

.2
89

0
0.

64
00

68
.9

12
1

0.
56

41
21

4.
01

21
0.

52
16

22
31

.9
72

2
0.

64
78

14
9.

78
84



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:273 | https://doi.org/10.1007/s42452-020-2073-0

Figures 22 and 23 (“Appendix 2”) provide a comparison of 
the clustering quality between PSO and FA using a popula-
tion size of 150. It can be seen that even though both algo-
rithms were able to distinctively separate the clusters into 
unique classes, the FA produced better clusters with high 
cohesion and compactness. Also note that overlapping 
colored clusters indicate data points that are common 
between clusters, which is a sign of only partial or incom-
plete separation, indicating poor clustering solutions.

To determine the performance stability of the individ-
ual algorithms, further qualitative representations of the 
performance of the four algorithms clustering methods 
over A set, birch set and ground truth dataset (with high 
dimensionality classifications) were plotted, as shown in 
Fig. 24 in the “Appendix 2”. Although each algorithm main-
tained performance stability with respect to the quality of 
clustering results obtained, cohesion and compactness of 
the clusters classifications were compromised for all the 
algorithms with several overlaps appearing in each case. 
Note that other algorithms produced good clustering solu-
tions, however they are not represented here because of 
space and page limit. In summary, it was observed that 
all the representative algorithms were able to find non-
convex clusters and clusters with unusual shapes including 
those clusters with different densities. Specifically, among 
the single objective algorithms, the FA and DE have the 

capability of handling overlapped clusters among the 
different dataset considered in this paper, which notably, 
does includes those datasets with high dimensions and 
large number of classification and features. Then among 
the hybrid algorithms, the FADE and PSODE are more 
capable of dealing with overlapped clusters, while the 

Table 13  Numerical solutions obtained for all the single algorithms using high dimensionality classification datasets

All text in bold represents the best results obtained by the individual representative algorithms

Algo-
rithm

Dataset

A1 A2 A3 Birch 1 Birch 2 Birch 3 Bridge D31 Housec5 Housec8 Leaves Letter

DE
Best 0.5928 0.9047 1.1036 1.4144 63.7233 1.5022 41.3745 0.9701 157.6535 178.1353 34.2424 1.0093
Worst 0.8387 1.0695 1.2696 1.5782 189.8872 1.7344 44.8408 1.1600 190.9515 198.4978 37.1282 1.3927
Average 0.6695 0.9994 1.1801 1.4987 146.8673 1.5991 43.7495 1.0822 178.5097 185.9484 35.6751 1.1607
SD 0.0738 0.0470 0.0477 0.0506 38.5605 0.0652 0.8229 0.0534 8.1516 5.2336 0.8075 0.1028
PSO
Best 0.6748 0.7263 0.8033 0.9467 118.6541 0.8553 56.8444 0.6563 104.3547 109.4072 47.8092 1.1782
Worst 0.6305 0.6549 0.6857 0.8745 59.0091 0.7210 53.7803 0.5178 89.0581 91.0613 45.4037 1.0967
Average 0.7416 0.8212 1.2212 1.0334 212.5939 1.0164 59.1720 0.7534 119.9863 127.3803 49.4539 1.2839
SD 0.0344 0.0486 0.1071 0.0507 44.6044 0.0785 1.6025 0.0553 8.4766 10.5152 0.9506 0.0579
FA
Best 0.5901 0.6342 0.6511 0.8062 0.5731 0.6778 21.3250 0.5975 63.1054 65.9173 1.5188 0.7557
Worst 0.6889 0.7154 0.7495 0.8450 0.9123 0.7823 28.1639 0.7965 91.5772 108.9068 26.1365 0.8937
Average 0.6210 0.6772 0.6967 0.8219 0.7052 0.7301 25.8353 0.6967 78.5035 83.3241 19.6928 0.8285
SD 0.0321 0.0204 0.0237 0.0122 0.1211 0.0262 1.8231 0.0561 7.8922 10.8563 4.8325 0.0312
IWO
Best 0.5980 0.7908 0.8855 1.0223 1.1191 1.0064 34.7325 0.7331 88.6939 103.0494 27.3061 1.6253
Worst 0.8670 0.9614 1.0349 1.1894 48.1364 1.1405 40.8760 0.9127 134.5058 137.1766 36.5574 22.3264
Average 0.6858 0.8742 0.9458 1.0873 3.8025 1.0844 37.7892 0.8254 113.2733 117.9512 31.4023 2.7513
SD 0.0804 0.0375 0.0470 0.0404 10.4376 0.0359 1.9805 0.0478 11.4787 8.8246 2.2636 4.6078

Table 14  Computational time cost for all the single algorithms

Dataset Algorithm

DE PSO FA IWO

A1 22.2515 26.4103 75.1581 20.5279
A2 27.7950 33.0206 228.8125 27.4031
A3 32.3685 39.7205 203.9804 34.3687
Birch 1 412.9934 643.5050 2384.2171 410.3153
Birch 2 455.2650 696.9305 1514.3727 380.6237
Birch 3 606.0008 745.8625 2351.4935 515.6563
Bridge 87.7046 169.1921 1240.4218 164.5622
D31 22.5631 35.3123 93.9079 36.6941
Housec5 46.6681 154.0473 279.3254 75.0907
Housec8 477.9579 690.6298 2868.3422 404.5708
Leaves 54.8537 147.5045 372.6992 65.2023
Letter 41.8935 50.3511 258.0772 153.8091
Avg. 190.6929 286.0405 989.2340 190.7354
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FADE also has a lower computation time compared to its 
single-based FA algorithm because of the influence on the 
DE on the computation of objective function. Moreover, 
the FA does not require any parameter tuning to find opti-
mal clustering solutions.

Tables 13 and 14 show the numerical clustering solu-
tions obtained by the representative algorithm on high 
dimensionality classification datasets and computational 
cost incurred by the respective algorithms. The results 
show that the FA algorithm obtains the least DB validity 
index and so outperforms DE, PSO and IWO algorithms. 
The best, worst, average and standard deviation values of 
the final inter-cluster distance over 20 independent runs 
for each algorithm is reported. A total of twelve datasets 
with high classification features were used to evaluate the 
effectiveness of the algorithms. It is interesting to note that 
substantial performance differences occur for this set of 
more challenging clustering datasets with a large number 
of data points and clusters. According to the average inter-
cluster distance results reported for the individual algo-
rithm in Table 13, the FA obtained the minimum average 
inter-cluster distance value of 17.7611 over all the twelve 
datasets, followed by the IWO with average inter-cluster 
distance value of 26.0394. However, PSO and DE obtained 
the highest average values of 47.9548 and 49.9116, respec-
tively, thereby making them the least effective methods 
for clustering high density datasets with large numbers of 
clusters. Furthermore, FA produced the best results with 
the least standard deviation, confirming it to have the best 
convergence and, most importantly, the best choice for 
the aforementioned class of complex dataset. The results 
reported in Table 14 show the computation cost for the 
four algorithms. The results indicate that the FA, despite 
obtaining the least DB validity index values, did that at 
the expense of time; it can be seen to have the highest 
computational cost compared to IWO and DE, which had 
the least execution time for the twelve datasets. 

5.5  Experiment 4: Comparison with literature 
results

In the fourth experiment, an extensive study was carried 
out, where the representative algorithms were compared 
with other state-of-the-art clustering algorithms, namely, 
automatic clustering DE (ACDE) algorithm [13], dynamic 
clustering PSO (DCPSO) [39], genetic clustering with an 
unknown number of clusters K (GCUK) [43], and classical DE 
clustering algorithm [67]. The comparisons of the represent-
ative algorithms with literature results is based on only the 
quality of solution, which is determined in this case by the 
DB and CS validity indices. Comparisons based on compu-
tational time are left out because some of the experimental 
requirements, such as computer system specifications and 

programming environment used, for both proposed and 
existing studies vary significantly. For example, while the 
proposed study was coded in MATLAB 2018 and executed 
using 8 GM RAM @ 2.80 GHz, the literature study was coded 
in a Visual C++ platform on 2 GB RAM @ 2.2 GHz. However, 
the computational time required to find the solution for DB 
and CS measures are presented for the represented algo-
rithms. Nevertheless, to enhance fairness in comparing 
speed of execution for all the proposed algorithms, a similar 
implementation strategy was adopted for all by using the 
same population size of 40 and maintaining the same inner 
loop coding structure to ensure a uniform amount of work 
done for all the algorithms. Each algorithm execution was 
replicated for 40 independent runs. The results have been 
reported in each case in terms of average solution values 
and standard deviations over the 40 runs.

The results reported in Table 15 show that the proposed 
algorithms were able to obtain the lowest values for the DB 
and CS validity indices, except for the iris and breast cancer 
datasets where the ACDE obtained the least values, being 
better than for the proposed algorithms. However, for the 
breast cancer dataset, some discrepancies exist in the fea-
tures of the dataset version used for the two studies. For 
example, while N = 699 for the current study, N = 683 for 
the existing study and this would have affected the quality 
of the final results reported for the two studies as shown in 
Fig. 15. Overall, the proposed study showed superior per-
formance of the representative algorithms, as compared to 
the competitor algorithm results across the four datasets 
based on the DB and CS validity indices measures. A sum-
mary of the clustering performance comparison between 
the proposed and the existing competitor algorithms on 
iris, wine, breast and glass dataset over 40 runs using DB 
and CS validity indices as fitness functions is illustrated in 
Figs. 14 and 15. More so, the linear trend lines clearly show 
the individual algorithm steadiness in terms of increasing 
and decreasing performance pattern with respect to aver-
age fitness function results based on DB and CS indices.  

Figures 14 and 15 clearly revealed that the perfor-
mance of the proposed algorithms, including the hybrid 
PSODE and FADE, maintained consistent improvements 
even as the dimensionality of the dataset increased. For 
example, in the case of the wine dataset, according to the 
DB and CS validity indices, all the representative algo-
rithms performed exceptionally well when compared to 
the competing algorithms. More so, it can be seen that 
the best averages of the DB and CS indices are all below 
0.70 with dimensionality greater than ten for the wine 
dataset. Overall, the performance of the representative 
algorithms can be said to be superior than that of the 
existing algorithms, considering that each of the algo-
rithms obtained fitness functions averages that are far 
below 0.90, except for the IWO and IWODE. However, the 
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performance of the competitor based clustering algo-
rithms seem to deteriorates as the dimensionality of the 
datasets increases. For example, for the wine and glass 
datasets, the best means of the DB and CS indices are 
above 1.00 in most instances.

The computational time consumed by the proposed 
algorithms to find the solutions reported in Table  15 
above is illustrated in Figs. 16 and 17 for the representa-
tive and hybrid algorithms, respectively. In each figure, it 
is clearly revealed that despite the FA having performed 
fairly well, the algorithm is highly disadvantaged by high 
cost of computation time as compared to other algo-
rithms. Overall, it is obvious that among the four repre-
sentative algorithms presented in the forementioned 
comparison, the DE and PSO appeared to have performed 
better across the board in terms of the methods with the 
least computation cost, according to both DB and CS 
evaluation metrics. Furthermore, the IWO also showed 
better performance with respect to execution speed. 
In the case of the hybrid algorithms, the FADE still per-
formed poorly, while the PSODE outperformed the other 
two hybrid algorithms. A general observation was that the 
CS validity measure was more computationally expensive 
than the DB validity measure. More so, with the breast 
cancer dataset, it consumed more time for all the algo-
rithms to find the good quality solutions and this could 
be attributed to dataset being of high density with 699 
individual data points and 9-dimensions. In summary, the 
overall computation speed performance evaluation of the 
representative and hybrid algorithms seems to be attrac-
tive and they can therefore be recommended for solving 
clustering problems with high densities and dimension-
alities. The linear trend lines clearly reveal the individual 
algorithms’ steadiness in terms of increasing and decreas-
ing performance pattern with respect to the average com-
putation cost consumed by those automatic clustering 
algorithms based on DB and CS indices evaluations.

5.6  Experiment 5: Statistical analysis

In this experiment, the various clustering solution results 
obtained by the represented algorithms are further vali-
dated by using a nonparametric statistical analysis tech-
nique. The statistical analysis test carried out involve 
the use of Friedman’s nonparametric test to draw a sta-
tistically meaningful conclusion to all the above perfor-
mance claims on the different automatic data clustering 
algorithms proposed in this paper. Table 16 reports the 
computed Friedman’s mean rank for both the four single 
and three hybrid algorithms tested across the forty-one 
datasets for twenty (20) replications. The mean rank results 
show that the FA is the best performing algorithm with 
a minimum rank of 1 and a maximum rank of 1.98. The 

Table 15  Comparison between representative algorithms and lit-
erature results with the DB and CS validity indices-based fitness 
functions

Datasets Algorithm DB Index CS Index

Cost SD Cost SD

Iris ACDE 0.465 0.022 0.664 0.097
DCPSO 0.690 0.008 0.736 0.671
GCUK 0.738 0.065 0.728 2.003
Classical DE 0.582 0.067 0.763 0.039
DE 0.570 0.000 0.531 0.000
PSO 0.570 0.000 0.659 0.094
FA 0.570 0.000 0.532 0.003
IWO 0.805 0.124 0.862 0.119
PSODE 0.570 0.000 0.531 0.000
FADE 0.570 0.000 0.531 0.000
IWODE 0.920 0.070 0.862 0.119

Wine ACDE 3.043 0.021 0.925 0.032
DCPSO 4.343 0.232 1.872 0.037
GCUK 5.342 0.343 1.584 0.328
Classical DE 3.392 0.092 1.796 0.802
DE 0.808 0.003 0.680 0.051
PSO 0.813 0.015 0.883 0.000
FA 0.802 0.001 0.790 0.095
IWO 1.262 0.020 1.128 0.197
PSODE 0.801 0.001 0.679 0.048
FADE 0.801 0.001 0.693 0.038
IWODE 1.237 0.046 1.128 0.197

Breast ACDE 0.520 0.006 0.453 0.034
DCPSO 0.575 0.007 0.485 0.009
GCUK 0.633 0.002 0.609 0.016
Classical DE 0.520 0.007 0.898 0.381
DE 0.652 0.000 0.600 0.000
PSO 0.652 0.000 0.918 0.191
FA 0.652 0.000 0.601 0.002
IWO 0.652 0.000 0.966 0.205
PSODE 0.652 0.000 0.600 0.001
FADE 0.652 0.000 0.600 0.001
IWODE 0.652 0.000 0.966 0.205

Glass ACDE 1.009 0.083 0.332 0.487
DCPSO 1.515 0.073 0.764 0.073
GCUK 1.837 0.034 1.474 0.236
Classical DE 1.667 0.004 0.778 0.643
DE 0.458 0.073 0.061 0.000
PSO 0.649 0.089 0.062 0.003
FA 0.336 0.017 0.061 0.000
IWO 0.609 0.000 0.061 0.000
PSODE 0.384 0.084 0.061 0.000
FADE 0.334 0.045 0.061 0.000
IWODE 0.554 0.123 0.061 0.000
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DE also recorded a good performance when compared to 
PSO and IWO algorithms. For the hybrid algorithms, FADE 
appears to have outperformed PSODE and IWODE, but 
PSODE closely follows the performance FADE hybrid algo-
rithm. Similarly, for the comparison of the representative 
algorithms on high dimension and classification datasets, 
the FA still emerged as the overall best performing algo-
rithm with the best mean rank for each of the datasets as 
shown in Table 18 below.

To further verify specifically how each of the algo-
rithm significantly differs, a post hoc test with Wilcoxon 
signed-rank tests was carried out on the Friedman test 
results for the representative algorithms clustering 

results. The results of the post hoc test are a set of p val-
ues that determine the statistical significant differences 
among the representative algorithms. After the initial p 
values were obtained for the Friedman’s mean rank test, 
a new value of significance level � , which was initially set 
at 0.05, was computed using Bonferroni adjustment. We 
obtained 0.05/6 = 0.0083 for the comparison between the 
single representative algorithms and 0.05/3 = 0.0167 for 
the hybrid algorithms. This means that if the p value is 
larger than 0.0083, we do not have a statistically signifi-
cant result. From Tables 16, 17, 18 and 19, the Friedman 
statistic with post hoc test clearly demonstrates that FA 
and its hybrid variant achieved significant performance 
improvements over other algorithms. The p-values in both 
Tables 17 and 19 clearly show that there are statistically 

Fig. 14  Clustering perfor-
mance for all algorithms on 
iris and wine dataset over 40 
runs using DB and CS validity 
indices as fitness functions
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Fig. 15  Clustering perfor-
mance for all algorithms on 
breast and glass dataset over 
40 runs using DB and CS valid-
ity indices as fitness functions
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significant differences in the performance of the repre-
sentative algorithms.

5.7  Experiment 6: Comparison with new generation 
metaheuristics

In this section we compare the clustering performance 
of eight different new generation algorithms based on 
number of function evaluation instead of number of itera-
tions. By new generation algorithms, we mean those algo-
rithms that were developed from the year 2000 upwards. 
The selected algorithms considered for these set of 
metaheuristics include, artificial bee colony (ABC), bees 
algorithm (BA), biogeography-based optimization (BBO), 

FA, harmony search (HS), IWO, symbiotic organisms search 
(SOS), and teaching–learning-based optimization (TLBO). 
The choice of these algorithms is based on their popular-
ity, which is reflected on the number of related studies 
and citation impact extracted from Google Scholar. These 
data are reported in Figs. 18 and 19 Also from a different 
perspective, we aim to further compare the performance 
efficiency of the FA, which from the previous experimen-
tation has proven to be a very effective algorithm for the 
automatic clustering problem with other new algorithms. 
However, considering the length of the current paper and 
page limit restriction, we refer interested readers to the 
following references for all the original algorithm design 
discussions, which were adopted and used to conduct the 

Fig. 16  Computational time 
for representative algorithm 
based on DB and CS validity 
indices
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Fig. 17  Computational time 
for representative hybrid 
algorithm based on DB and CS 
validity indices
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clustering simulations that are reported in Table 20 below. 
Therefore, see ABC [73], HS [74], BBO [75], TLBO [76], BA 
[77], and SOS [78] for the original algorithm design and 
computation model explanations. The parameter configu-
ration for the eight algorithms still remains the same as 
was used in the original algorithm design papers, except 
for the population size of 40 and 50,000 maximum num-
ber of function evaluation that were used for the current 

study simulation. The number of function evaluation in 
each algorithm is computed by taking into consideration 
the initial population size ( Pop_size ) and number of gen-
eration ( t ). For example, in the case of the FA, the number 
of function evaluation is obtained using the following 
expression: NFE =

Pop_size×(Popsize−1)
2

 , where NFE denotes 
the number of function evaluation. The maximum number 

Table 16  Friedman mean rank DE PSO FA IWO PSODE FADE IWODE

A1 1.95 3.53 1.63 2.9 1.28 2.18 2.55
A2 2.65 2.65 1.25 3.45 1.55 1.75 2.7
A3 2.85 2.55 1.2 3.4 1.7 1.65 2.65
Aggregation 3.6 3 1.3 2.1 1.95 1.8 2.25
Birch1 2.65 3 1.05 3.3 1.75 1.45 2.8
Birch2 2.05 3.75 1.15 3.05 1.48 1.68 2.85
Birch3 3.15 2.25 1.2 3.4 1.55 1.45 3
Breast 2.6 3.95 1.55 1.9 1.45 2.45 2.1
Bridge 2.15 3 1 3.85 1.9 1.1 3
Compound 2.9 3.9 1.53 1.68 2.25 2.05 1.7
D31 3.95 1.93 1.98 2.15 2.25 1.5 2.25
Dim002 3.3 1.8 1.65 3.25 1.4 1.9 2.7
Dim016 3 1.7 1.3 4 1.55 1.45 3
Dim032 2.95 2 1.05 4 1.6 1.4 3
Dim064 2.8 2.2 1 4 1.85 1.15 3
Dim128 2.6 2.4 1 4 1.8 1.2 3
Dim256 2.5 2.5 1 4 1.9 1.1 3
Dim512 2.4 2.6 1 4 1.95 1.05 3
Dim1024 2.1 2.9 1 4 2 1 3
Flame 3.3 3.3 1.45 1.95 2.55 1.7 1.75
Glass 3.4 3 1.1 2.5 1.9 1.95 2.15
Housec5 1.95 3.65 1.15 3.25 1.75 1.4 2.85
Housec8 2.2 3.4 1 3.4 1.85 1.15 3
Iris 2 3.1 1.05 3.85 1.55 1.45 3
Jain 3.15 2.55 1.53 2.78 1.88 1.75 2.38
Leaves 2.55 2.45 1 4 1.45 1.55 3
Letter 2.25 2.65 1.1 4 1.8 1.2 3
Joensuu 2.9 3.95 1.25 1.9 2.55 1.75 1.7
Finland 2.2 3.75 1.05 3 1.75 1.5 2.75
Pathbased 3.15 2.98 1.73 2.15 1.8 1.95 2.25
R15 3.75 2.3 1.75 2.2 2.2 2 1.8
S1 3.15 1.25 1.8 3.8 1.55 1.5 2.95
S2 2.9 1.7 1.55 3.85 1.4 1.75 2.85
S3 2.6 2.5 1.2 3.7 1.7 1.35 2.95
S4 2.8 2.35 1.35 3.5 1.4 1.65 2.95
Spiral 3.25 2.95 1.4 2.4 2.1 1.55 2.35
T4.8k 2.4 3 1.2 3.4 1.5 1.55 2.95
Thyroid 2.6 2.2 1.25 3.95 1.63 1.38 3
Wdbc 2.45 2.85 1.25 3.45 1.53 1.48 3
Wine 2.4 2.65 1 3.95 1.6 1.4 3
Yeast 3.35 3.4 1.55 1.7 2.4 1.9 1.7
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of function evaluation (MNFE) is obtained as follows: 
MNFE =

Pop_size×(Popsize−1)
2

× t.
For a fairer comparison of all the representative 

metaheuristic algorithms, the number of function evalu-
ation was used to obtain optimal clustering results. This 
contrasts with the previous evaluation process reported in 
Sect. 5 (Experiment 1–4) in which the number of iterations 

was used as an estimate of the amount of work done by 
each individual algorithm. However, most of the existing 
clustering algorithms have been implemented and eval-
uated based on number of iterations used by the algo-
rithms. Further, performance evaluation that is based on 
the candidate algorithm’s number of function evaluation 
has frequently been preferred for performance analysis 

Table 17  p values produced by the friedman rank-sum test for equal mediums

DE-PSO DE-FA DE-IWO PSO-FA PSO-IWO FA-IWO PSODE-FADE PSODE-IWODE FADE-IWODE

A1 0 0.575 0 0.003 0.014 0.008 0.003 0 0.218
A2 0.526 0 0.003 0.001 0.014 0 0.478 0.001 0.002
A3 0.433 0 0.1 0 0.015 0 0.575 0 0.002
Aggregation 0.067 0 0 0.001 0.012 0.023 0.737 0.881 0.411
Birch1 0.37 0 0.015 0 0.204 0 0.433 0 0
Birch2 0 0.002 0 0 0 0.002 0.225 0 0.057
Birch3 0.023 0 0.351 0.004 0.001 0 0.279 0 0
Breast 0 0.279 0.005 0 0 0.823 0.003 0.079 0.028
Bridge 0.002 0 0 0 0 0 0.002 0 0
Compound 0 0.002 0.008 0 0 0.465 0.3 0.084 0.123
D31 0 0 0 0.171 0.218 0.502 0.093 0.709 0.145
Dim002 0.001 0 0.852 0.852 0.002 0 0.062 0 0.025
Dim016 0 0 0 0.048 0 0 0.852 0 0
Dim032 0 0 0 0 0 0 0.191 0 0
Dim064 0.001 0 0 0 0 0 0.025 0 0
Dim128 0.279 0 0 0 0 0 0.009 0 0
Dim256 0.526 0 0 0 0 0 0.002 0 0
Dim512 0.313 0 0 0 0 0 0 0 0
Dim1024 0.005 0 0 0 0 0 0 0 0
Flame 0.627 0 0.001 0 0.002 0.093 0.005 0.007 0.654
Glass 0.94 0 0.003 2 0.086 0 0.867 0.794 0.575
Housec5 0 0.001 0 0 0.021 0 0.218 0.073 0
Housec8 0 0 0 0 0.502 0 0.006 0 0
Iris 0 0.002 0 0 0 0 0.937 0 0
Jain 0.575 0 0.455 0.191 0.823 0.001 0.376 0.026 0.022
Leaves 0.279 0 0 0 0 0 0.97 0 0
Letter 0.086 0 0 0 0 0 0.008 0 0
Joensuu 0 0.01 0 0 0 0.067 0.198 0 0.494
Finland 0 0.002 0 0 0.003 0 0.575 0 0.218
Pathbased 0.296 0 0.002 0.002 0.008 0.023 0.687 0.445 0.872
R15 0.001 0 0 0.526 0.823 0.263 0.794 0.093 0.126
S1 0 0 0.004 0.012 0 0 0.911 0 0
S2 0.001 0 0 0.575 0 0 0.351 0 0
S3 0.97 0 0.001 0.017 0.001 0 0.232 0 0
S4 0.048 0 0.017 0.025 0.004 0 0.332 0 0
Spiral 0.794 0.001 0.019 0.004 0.025 0.014 0.093 0.627 0.04
T4.8k 0.01 0 0 0.002 0.01 0 0.655 0 0.002
Thyroid 0.794 0 0 0.004 0 0 0.171 0 0
Wdbc 0.025 0 0 0.003 0.025 0 0.317 0 0
Wine 0.191 0 0 0 0 0 0.351 0 0
Yeast 0.881 0 0 0.001 0.001 0.737 0.073 0.001 0.313
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over the traditional iterative method [51] because some 
ambiguity is associated with the later. For example, vari-
ous algorithms associate different meanings and compu-
tational effort with iteration. More so, measures of merit 
that are based on the number of iterations have been dis-
couraged because they present a biased and unfair com-
parison, which is most likely associated with the discrep-
ancies in the number of functions evaluation consumed 

by the individual compared algorithm [51]. Therefore, in 
the current study, we investigate the quality of clustering 
capability of eight metaheuristic algorithms by employing 
the required number of function evaluations for acquiring 
near-optimal clustering solutions for the ten test problems 
presented in Table 20.

In the previous experiment and results analysis reported 
in Tables 5, 7 and 13, it was revealed that the FA algorithm 

Table 18  Friedman mean rank for high dimensional datasets

Algorithms Dataset

A1 A2 A3 Birch 1 Birch 2 Birch 3 Bridge D31 Housec5 Housec8 Leaves Letter

DE 2.65 4.00 4.00 4.00 3.65 4.00 3.00 4.00 4.00 4.00 2.95 2.50
PSO 3.00 1.75 2.00 2.05 3.35 1.90 4.00 1.35 2.25 2.30 4.00 2.50
FA 1.60 1.25 1.05 1.00 1.00 1.10 1.00 1.65 1.05 1.10 1.00 1.00
IWO 2.75 3.00 2.95 2.95 2.00 3.00 2.00 3.00 2.70 2.60 2.05 4.00

Table 19  p-values produced 
by the Friedman rank-sum test 
for equal mediums on high 
dimensional datasets

Dataset PSO-DE FA-DE IWO-DE FA-PSO IWO-PSO IWO-FA

A1 0.478 0.007 0.709 0.002 0.601 0.006
A2 0.000 0.000 0.000 0.003 0.000 0.000
A3 0.000 0.000 0.000 0.000 0.001 0.000
Birch 1 0.000 0.000 0.000 0.000 0.000 0.000
Birch 2 0.048 0.000 0.000 0.000 0.000 0.000
Birch 3 0.000 0.000 0.000 0.000 0.000 0.000
Bridge 0.000 0.000 0.000 0.000 0.000 0.000
D31 0.000 0.000 0.000 0.048 0.000 0.000
Housec5 0.000 0.000 0.000 0.000 0.028 0.000
Housec8 0.000 0.000 0.000 0.000 0.025 0.000
Leaves 0.000 0.000 0.000 0.000 0.000 0.000
Letter 0.575 0.000 0.000 0.000 0.000 0.000

Fig. 18  Number of related 
published studies on the repre-
sentative metaheuristics
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had outperformed the other algorithms. The FA also hap-
pens to be classified as a new generation metaheuristic 
algorithm, Therefore, to further validate its superior per-
formance an additional experiment was conducted to 
compares eight new generation metaheuristics, including 
the FA. Ten datasets were selected from the existing forty-
one test problems described in Table 4 above and used for 
the final set of experiments. To ascertain the global per-
formance of any algorithm, five descriptive statistics, that 
is, average, median, standard deviation, best, and worst 
result values, can be used to analyze easily which of the 
algorithms is doing better or is more superior among the 
group. The numerical results of the experiment are pre-
sented in Table 20 and the results are discussed afterwards.

Table 20 orders the algorithms according to their final 
average, best and worst quality clustering results, with 
their respective computed median and standard deviation 
values recorded respectively. The computational results 
shown in the table reveal that the FA obtained global 
best clustering solutions in nine out of ten datasets for the 
DB validity index and six best clustering solutions in ten 
datasets for the CS validity index. Overall, the FA has the 
least average values for the two fitness values (DB and CS). 
Therefore, the FA algorithm still maintains its lead by out-
performing its competitors. Overall, the simulation results 
show that even though the eight metaheuristic algorithms 
can be used to solve automatic clustering problems, the 
FA algorithm appears to be the best and most robust 
algorithm in terms of quality of clustering solution and 
computational time. For example, in Fig. 20, FA showed 
reasonable lower and balanced computational time for 
both DB and CS indices as compared to other algorithms. 
However, the HS algorithm consumed the least compu-
tational time among other algorithms, while BA and SOS 

algorithms had the worst computational cost, specifically 
for the CS validity index.

6  Conclusion and future direction

This paper has provided a systematic state-of-the-art 
review of nature inspired metaheuristic algorithms for 
automatic clustering. The paper also presented a compara-
tive performance evaluation study of five metaheuristic 
algorithms and subsequently demonstrated the capabil-
ity of the representative algorithms to solve automatic 
clustering problems. The respective population-based 
algorithms, namely GA, DE, PSO, FA, and IWO, were suc-
cessfully implemented and used to automatically partition 
a given dataset without any prior information about the 
number of naturally occurring groups in the dataset. The 
results of the computational experiment using forty-one 
datasets show clearly that the FA algorithm outperformed 
its competitors, namely GA, DE, PSO, and IWO, in terms of 
quality of clustering solution obtained by the respective 
algorithms in most of the datasets. However, it was notice-
able that the execution time recorded for the FA method 
was higher than for the other algorithms and therefore it 
performance was at the expense of computational cost. 
Hybridization methods was also considered to address the 
problem of high computational time incurred by the FA 
and by improving the FA convergence speed.

Three hybrid algorithms was implemented by combin-
ing DE with PSO, FA and IWO. Afterwards the new hybrid 
variants are employed to solve the same set of automatic 
data clustering problems akin to their single algorithm 
implementation. The numerical results of the chosen 
hybrid methods revealed that the hybrid FA yielded a 

Fig. 19  Number of citation 
impact of representative 
metaheuristics
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better performance result in terms of computation cost, 
with an improved convergence speed, while the hybrid 
PSODE and IWODE outperformed their single algorithms 
variants by yielding better quality of clustering solutions. 
Furthermore, statistical analysis test was conducted to vali-
date the numerical results obtained by the representative 
algorithms and the results showed that there were sta-
tistically significance differences in the performances of 
the algorithms, with FA outperforming the other methods. 
Notably, it was observed that the FA improved its conver-
gence speed with the hybridization technique.

For a fairer comparison, the number of function evalua-
tion was adopted and used as a performance metric over 
the traditional iterative method of evaluation. Different 
descriptive statistical methods were used to analysis the 
results of the experiment based on the number function 
evaluation test. Overall the performance of eight well-
known new generation metaheuristic algorithms were 
compared. The results of the experimental investigation 
revealed that most of the tested algorithms performed 
fairly well, however, the FA still showed superior perfor-
mance over all the other methods. It was also obvious that, 
except for the BA and SOS algorithms, the remaining six 
algorithms possessed good qualities of rapid convergence 
and high stability of results.

Overall, the summarized comparison results revealed 
that all the representative clustering algorithms con-
sidered in this study can effectively determine the most 
appropriate number of clusters and subsequently provide 
good clustering partitions. While it has been frequently 
emphasized in this paper that the FA and its hybrid clus-
tering methods yielded clustering solutions of superior 
quality to those form other algorithms, it is, nevertheless, 
equally important to note that DE, PSO, FA and IWO algo-
rithms achieved good clustering performances across the 
forty-one datasets, which comprised both low and higher 
dimensional datasets. In addition, the representative algo-
rithms are robust for automatic data clustering problems 
and easy to implement. However, the first experiment that 
included the use of GA reported in Table 5, revealed that 
the GA is not a very stable algorithm for the task of auto-
matic clustering.

In future research, the representative algorithms can 
also be hybridized with other efficient local search tech-
niques and probably utilized for many different areas 
of applications. It would also be interesting to consider 
implementing the current clustering methods using a dif-
ferent clustering validity indexes, besides the DB and CS 
validity indices that were used for the current study perfor-
mance analysis. Another interesting future research focus 
would be to critically analyze the computational time com-
plexities of all the algorithms considered in this paper, in 
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terms of their individual capabilities to solve automatic 
clustering problem.
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Appendix 1: Representative algorithmic 
design concepts

Genetic algorithm

Genetic algorithms belong to a class of evolutionary 
algorithms that are based on an abstraction of Darwin’s 
theory of biological evolution; they were first developed 
by John Holland [65]. The main characteristics of the GA 
are three genetic operators, namely crossover, mutation, 
and selection [79]. Each solution in a population is typi-
cally encoded in a binary or real string called a chromo-
some. The crossover of two strings will produce different 
offspring by exchanging the genes of the chromosomes. 
Mutation is performed by flipping some digits in a string 
which produces new offspring (or solutions). After crosso-
ver and mutation, new solutions are generated, and their 

quality is evaluated based on a fitness function. The fitness 
function is typically connected to the objective function 
of the problem to be solved. Based on the fitness of each 
solution, new solutions are selected and moved to the 
next generation. The algorithm continues generating new 
solutions through the crossover, mutation, and selection 
operators until a specified threshold is reached. The idea 
of selection is to choose the best chromosome from each 
generation and pass their genes to the next generation, 
while the idea of crossover is to combine the best chromo-
somes in the population and move their genes to the next 
generation. The idea of mutation is to alter some genes 
in each chromosome to ensure diversity in each genera-
tion. In general, on the one hand, crossover occurs most 
frequently with a probability range of between 0.6 and 
0.95, while, on the other hand, the mutation rate is often 
lower, ranging from 0.001 to 0.05. GA’s quality of conver-
gence is usually aided by its ability to use the crossover 
to exploit and enhance the important characteristics in 
the population, which allows for better exploitation of 
the solution search space. Furthermore, the GA uses the 
mutation operator to enhance diversity in the search space 
through exploration by allowing the population to explore 
the search space better [58]. GA pseudocode is shown in 
Algorithm listing 1.

Fig. 20  CPU time consumed by 
algorithms
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Differential evolution

Differential evolution was developed by Storn and Price in 
[56, 67], respectively. It is a derivative-free algorithm with 
a self-organizing tendency. Similar to pattern search and 
GA, DE is a population-based evolutionary algorithm that 
utilize three operators: selection, crossover and mutation. 
In fact, DE can be considered as an improved version of 
GA with explicit updating information, which gives it the 
capacity to perform theoretical analysis [58]. In DE, encod-
ing and decoding of information is not required because 
it uses real numbers. Furthermore, in DE, unlike GA, each 
evolution is performed over each component of a chro-
mosome, and virtually everything is performed in vectors. 
In mutation, a difference vector of two selected vectors 
(chosen randomly) is used to perturb an existing vector. 
This perturbation is more efficient because it is performed 
over each population vector. Besides, in crossover, chro-
mosomes are exchanged component-wise. Apart from the 
mutation and crossover operators, DE has explicit updat-
ing equations. DE uses the following properties to gen-
erate new solutions at different iterations: target vector, 
trail vector and mutant vector. The target vector carries 
the solution to the optimization problem, whereas the 
trail vector is the resultant vector that is produced after 
the crossover operation has been performed between the 
target vector and the mutant vector. DE relies on mutation 

to obtain better solutions. Moreover, it uses the selection 
operator to drive the search towards regions that have 
improved solutions [3]. During the iteration � + 1 , for each 
vector Xi,� =

(
xi1,�, xi2,�,… , xin,�

)
 , i ∈ (1, 2,… , Pop_size) , a 

mutation vector is computed for every target vectors in 
the population using Eq. (16) [67]:

where r1, r2, r3 ∈ (1, 2,… , Pop_size) are randomly chosen 
integers, the variable F denotes a scaling vector, between 
0 and 1, Xr1, Xr3, Xr2 are solution vectors chosen randomly. 
They satisfy the following conditions:

where i  refers to the index of the solution in the present 
iteration.

In addition, during crossover, a trail vector is generated 
by merging the parent vector with a mutated vector [56], 
according to Eq. (18).

where CR refers to a constant value for crossover, randj is a 
uniform random number in the interval [0,1], and j refers 
to each number randomly generated in the resulting array. 
The pseudocode of the modified DE clustering algorithm 
is shown in Algorithm listing 2.

(16)Vi,�+1 = Xr1,� + F
(
Xr2,� − Xr3,�

)

(17)Xr1, Xr3, Xr2|r1 ≠ r2 ≠ r3 ≠ i

(18)ui,𝜑+1 =

{
�i,𝜑+1 if randj ≤ CR

xi,𝜑 if randj > CR
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Particle swarm optimization

Particle swarm optimization was developed by Kennedy 
and Eberhert [66]. It is inspired by the flocking behaviour 
of social organisms that move in groups, such as birds, ant 
colonies and school of fish. The algorithm mimics the inter-
action between members of a colony to share information 
and so it is a typical example of a swarm intelligence algo-
rithm. The PSO can be combined with other algorithms 
for solving optimization problems of feature selection 
or parameter optimization, and so on. It uses particles 
(also known as, agents) to search for best solutions. The 
trajectory of particles is adjusted by a deterministic and 
stochastic component. Each particle in the population has 
the tendency to move randomly, and they are controlled 
by their best solution and their group best solution. A par-
ticle consists of a position vector Pi =

(
pi1, pi2,… , pin

)
 , and 

a velocity vector Vi =
(
vi1, vi2,… , vin

)
 . At every iteration, 

the position of each particle is changed according to Eqs. 
(19) and (20) [80, 81].

(19)

Vt+1
id

= Vt
id
+ �

1
∗ rand(0, 1) ∗

(
Pt
id
− Xt

id

)

+ �
2
∗ rand(0, 1) ∗

(
Pt
gd

− Xt
id

)

where Xt
id

 and Vt
id

 refers to the position and velocity of each 
particle in the solution search space. The parameter d 
refers to the dimension of the problem, i  represent the 
index of each particle and t represents the number of itera-
tions. In addition, �1 and �2 are learning factors that guide 
the speed of each particle when moving towards the 
global optimum. The parameter Pi represents the current 
best position of the ith particle and Pg represents the cur-
rent best position identified by the neighbours of Pi . The 
function rand(0, 1) refers to randomly generated numbers, 
and Pt

id
 represents the current best position of the ith par-

ticle at t  iteration, and Pt
gd

 represents the global best par-
ticle of the entire population. Interested readers are 
referred to [82] for the basic PSO algorithm, while the 
pseudocode for the modified PSO clustering algorithm is 
shown in Algorithm listing 3.

(20)Xt+1
id

= Xt
id
+ Vt+1

id
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Firefly algorithm

The firefly algorithm is a population-based swarm intel-
ligence optimization algorithm that mimics the flashing 
light behaviour of fireflies. The FA was developed by Yang 
[68]. There are diverse species of fireflies and most of them 
generate quick flashes of light (flashlights) at consistent 
intervals. These flashlights are produced to lure other fire-
flies and to send cautionary warnings to potential targets. 
FA is typically used to handle difficult NP-hard problems 
[32, 83]. The light intensity of a flashlight decreases for 
increase in distance, as shown in Eq. (23). This is because 
light is released into the atmosphere, and is dissipated 
with the square of the distance.

Flashlight is typically expressed in such a way that it is 
proportional to the fitness function to be optimized. FA 
was designed based on following rules [83]:

1. All the species of firefly belong to the same sex.
2. The attractiveness value of a firefly is related to its light 

intensity, implying that fireflies with low flashlight will 
be attracted to fireflies with high flashlight.

3. The flashlight intensity of a firefly is controlled by the 
landscape of the fitness function to be optimized.

Light intensity and attractiveness are two important 
issues that should be carefully considered when using FA. 
The light intensity produced at a point, changes based 
on the distance and the brightness of light released into 

(21)I ∝ 1
/
r2

the atmosphere, as shown in Eq. (23). Generally, the light 
intensity I  produced at a specific point y is directly pro-
portional to the fitness value produced by the objective 
function, as expressed in Eq. (22).

where I0 represents the initial light intensity when r = 0 , � 
refers to the light absorption coefficient, and r represents 
distance. As revealed in Eq. (23), by merging the result 
of the inverse square law and absorption, the singular-
ity at r = 0 is evaded in the expression 1∕r2 , as discussed 
in [83]. Moreover, the singularity is also circumvented by 
approximating it in Gaussian form, as shown in Eq. (24). 
Besides, the attractiveness of a firefly ( � ) is related to the 
light intensity of the firefly, as shown in Eq. (24).

where �0 represent the attractiveness when r = 0.
The Euclidian distance between two fireflies xi and xj is 

computed using Eq. (25).

where d represent the dimension of the problem. The 
movement of a firefly from position i  to position j is given 
in Eq. (26):

(22)I(y) ∝ F(y)

(23)I(r) = I0e
−�r2

(24)�(r) = �0e
−�r2

(25)rij =
‖‖‖xi − xj

‖‖‖ =

√√√√ d∑
k=1

(
xi,k − xj,k

)2
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where � ∈ [0, 1] , � ∈ [0,∞) , ϵi is a random number from 
a Gaussian distribution and ϵi can be substituted with 
rand − 0.5 , where rand ∈ [0, 1] . The term (αϵi) in Eq. (26) 
reveals the movement pattern of a firefly from one posi-
tion to another, regarding their attractiveness. The pseu-
docode for the modified firefly clustering algorithm is 
shown in Algorithm listing 4.

Invasive weed optimization

Weeds are plants that grows in unwanted territories. 
Although, the growth of colonizing weeds poses a threat 
to cultivated plants, weeds are quite robust and adaptive 
to change in the environment. Their colonizing behaviour, 
robustness and adaptive capacity inspired the design of 
the invasive weed optimisation (IWO) algorithm [69]. The 
algorithm is divided into four stages: initialization, repro-
duction, spatial dispersal, and competitive exclusion. It 
starts by initializing a population, which is achieved by 
generating a specific number of seeds and randomly dis-
tributing them to a search area (initialization). Further-
more, the dispersed seeds grow to become flowering 
plants which then reproduce by producing seeds, depend-
ing on their fitness value (reproduction). Furthermore, the 
reproductive seeds are then dispersed over the search 
area, and they in turn grow to become new plants (spa-
tial dispersal). The process continues until the specified 
number of plants is reached. At this point, the competi-
tive plants (plants with low fitness) are kept and the others 
are excluded from the population (competitive exclusion). 

(26)xi = xi + �0e
−�r2

ij
(
xj − xi

)
+ ��i

The exclusion process is carried out using the mechanism 
outlined below.

• All the weeds in the population can reproduce seeds 
according to their fitness value.

• Furthermore, the reproduced seeds are randomly 
spread to different locations in the solution space. The 
dispersed seeds then grow to become new plants.

• The fitness of each new plant is compared to the fitness 
of their respective parents. Plants with high fitness are 

retained in the population and allowed to reproduce, 
while plants with low fitness are removed. The formula-
tion for weeds producing seeds is given in Eq. (27).

where f  is the current weed’s fitness, the variables fmax 
and fmin , respectively, represent the maximum and the 
minimum fitness of the current population, while wmax 
and wmin , respectively, represent the maximum and the 
least value of a weed.

The exclusion mechanism allows plants of low fitness 
value to reproduce if they contain better information 
than plants of higher fitness value. The pseudocode for 
the modified IWO clustering algorithm is given below in 
Algorithm listing 5.

Note that randomness and adaptation in IWO is pro-
vided by the spatial dispersion techniques employed by 
weeds for their dynamic reproduction. More so, the gen-
erated seeds are being randomly distributed over the d 
dimensional search space by normally distributed ran-
dom numbers with mean equal to zero, but with varying 

(27)weedn =
f − fmin

fmax − fmin

(
wmax − wmin

)
+ wmin
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variance. The process is computed by the IWO algorithm 
using Eq. (28).

where itermax is the maximum number of iterations, �iter is 
the standard deviation at the present time step and n is the 
nonlinear modulation index [69].

(28)�iter =

(
itermax − iter

)n
(
itermax

)n
(
�max − �min

)
+ �min

Appendix 2: Clustering result of algorithms 
on selected dataset

See Figs. 21, 22, 23 and 24.
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Fig. 21  Two-dimensional clustering plots obtained using DE algorithm
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Fig. 21  (continued)
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Birch1 Birch2 Birch3

Fig. 22  Two-dimensional clustering plots obtained using PSO algorithm for 150 population size

Birch1 Birch2 Birch3

Fig. 23  Two-dimensional plot for Birch-sets obtained using FA algorithm for 150 population size
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Fig. 24  Two-dimensional plots obtained by FA algorithm using high density data set with high classification features
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