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Abstract
Five groups of methane isotherm adsorption tests were carried out at 61 °C under a pressure range of 0–25 MPa, including 
four groups of pure clay minerals (illite, montmorillonite, chlorite, kaolinite, for brief they are expressed as Ill, Mont, Chl, 
and Kaol respectively) and a group of mixed minerals by four pure clay minerals in equal mass ratio. The experimental 
results showed the order of methane adsorption of pure clay minerals: Kaol > Ill > Mont > Chl. And the composition of 
clay minerals was obtained by XRD experiments. The result showed that the four samples were of high purity, both of 
which were greater than 90%. In addition, the results of low-pressure nitrogen adsorption experiments showed the order 
of specific surface area: Kaol > Ill > Mont > Chl, which is consistent with the order of methane adsorption. The methane 
adsorption is positively correlated to the specific surface area. The adsorption data was fitted to the Langmuir–Freundlich 
model to establish the method to calculate the adsorption of mixed minerals. The result showed that the parameters of 
the adsorption model of mixed clay minerals can be obtained by summing the parameters of the adsorption model of 
the pure minerals contained in the mixture according to their constituent mass ratio and the feasibility of this result was 
also verified by literature data. Overall, once the mass ratio in mixed clay minerals gets known, its theoretical adsorption 
can be calculated.
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List of symbols
mabs  Absolute adsorption (g)
mexcess  Excess adsorption (g)
Va  Adsorption phase volume  (cm3)
ρg  Free gas density (g cm−3)
ρa  Adsorption phase density (g cm−3)
V  Adsorption volume per unit  (cm3 g−1)
P  Gas equilibrium pressure (MPa)
b  A constant related to temperature and adsorp-

tion heat
VL  Langmuir volume, reflecting the maximum 

adsorption capacity of shale  (cm3 g−1)
m  A constant related to heterogeneity of 

adsorbent
Ki  Parameter value, K, of i type of pure clay 

minerals

yi  The mass ratio of the i component in the mixed 
minerals

n  The number of the types of pure clay minerals in 
the mixed minerals

1 Introduction

The adsorption is one of the most important forms of 
methane in shale, and the content of adsorption gas is as 
high as 20–85% of the total gas [1–3]. The gas is mainly 
adsorbed on the surface of organic particles and clay 
minerals [1, 4, 5]. Studies on the adsorption of methane 
by organic matter in shale have been elaborated in many 
scholars’ articles. This paper focuses on adsorption of 
methane on four pure clay minerals (Ill, Mont, Chl, and 
Kaol) and their mixture. The shale is rich in inorganic clay 
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minerals [6] and plays an important role in the adsorp-
tion of methane on shale [7]. Clay minerals contribute dif-
ferently to the adsorption capacity, and their adsorption 
depends on the type of clay [8–12]. The composition and 
content of clay minerals (mainly Ill, Mont, Chl, and Kaol) in 
different shale reservoirs are quite different, affecting the 
adsorption capacity of shale gas. It is the main purpose of 
this paper to study how to calculate the gas adsorption 
of mixed clay minerals through that of pure clay mineral 
and the adsorption difference among pure clay minerals.

Clay minerals are second only to organic adsorbents 
with a strong adsorption capacity. Clay minerals are rich in 
pores, providing adsorption site. The contribution of clay 
minerals to shale pores is obvious, and the plane poros-
ity of clay can even reach 16% [8]. The pores of clay min-
eral are major contributors to space of shale gas reservoir 
and gas adsorption, especially in the low-maturation and 
maturation stages of reservoirs with low level of organic 
matter [13–15]. The adsorption capacity of clay minerals 
can be comparable to that of shale matrix due to abun-
dant internal surface area [5, 12, 16–21]. In addition, it was 
observed by Yang et al. [22] that the average contribution 
of clay minerals to methane adsorption capacity is about 
28.6%. Rexer et al. [23] estimated that clay minerals con-
tribute about 45–60% to methane adsorption capacity, 
indicating that clay minerals play important roles in the 
methane adsorption.

The pore structure of clay minerals varies according 
to the evolution degree of the reservoir. Through the 
compaction during diagenesis, micropores with differ-
ent shapes and sizes can be formed in clay minerals. The 
more micropores and nanopores the clay minerals have, 
the larger the specific surface area, because more surface 
area is associated with smaller pores, which can provide 
more surface adsorption sites for methane [8]. As the pore 
size of the clay increases, the adsorption rate of methane 
decreases [6]. It was concluded by Ross and Bustin [18] 
that clay minerals with higher pore volume and larger 
specific surface area have greater adsorption capacity. 
The pores with different size of different clay minerals are 
arrayed to each other, resulting in different gas adsorption 
effect [8].

The structural characteristics and physicochemical 
properties of clay minerals partially control the adsorp-
tion capacity and gas enrichment ability [8]. Different 
types of clay minerals have different adsorption capacities 
for methane, which may be related to the microstructure 
of clay minerals. The specific surface area is the main fac-
tor affecting the methane adsorption capacity of differ-
ent types of clay minerals [9]. Some scholars have con-
cluded that Mont has the greatest adsorption capacity for 
methane [8, 12, 24, 25], mainly due to its apparent and 
internal surface area. The stratification and flocculation of 

clay minerals increase the specific surface area and pore 
volume of the shale, providing more adsorption sites. For 
example, Mont and Ill–Mont have relatively high spe-
cific surface area because they not only have an external 
surface area, but also have more internal surface area 
provided by the interlayer structure [3]. Ji et al. [26, 27] 
studied the methane adsorption capacity of clay minerals: 
Mont > Kaol > Ill, which is consistent with the order of spe-
cific surface area (Mont: 76.413 m2 g−1, Kaol: 15.281 m2 g−1, 
Ill: 11.738 m2 g−1). The methane adsorption of  Ca2+-Mont, 
Kaol and Ill was studied by Liu, D. et al. at 60 °C and up to 
18.0 MPa, all showing high adsorption capacity. The Lang-
muir adsorption volume  (VL) follows the order: Mont (6.01 
 cm3 g−1) > Kaol (3.88  cm3 g−1) > Ill (2.22 cm3 g−1) [7]. Mont 
plays an important role in the adsorption and storage of 
methane in shale [7, 28, 29]. Ross and Bustin [30] studied 
the adsorption capacity of clay minerals in Jurassic and 
Devonian–Mississippian shale in Canada, and obtained 
the order: Ill has higher methane adsorption than Mont 
and Kaol with the strongest methane adsorption capac-
ity. Lu et al. [31] measured the adsorption capacity of 
several shale samples from Devonian and pure Ill, and 
the maximum methane adsorption of pure Ill at 37.8 °C 
and ≤ 8.0 MPa was higher than that of shale samples from 
Michigan, West Virginia and Kentucky. They concluded 
that Ill has significant methane adsorption in addition to 
kerogen in shale, so Ill is important for shale with low total 
organic carbon (TOC). Ill plays an important role in gas 
adsorption behavior [32]. Cheng and Huang’s [33] evalu-
ation of the methane adsorption capacity of Mont and 
Kaol at low pressure (≤ 0.3 MPa) showed that the methane 
absorption of Kaol was higher than that of  Na+-saturated 
Mont. Different orders of adsorption capacity of clay min-
erals have been obtained by the above scholars, mainly 
due to the difference in experimental instruments and 
sources of experimental samples. In addition, in some lit-
erature [30, 31, 34], methane adsorption was performed 
at low pressure even at the highest of which the methane 
adsorption on clay minerals did not reach saturation, and 
the adsorption still showed an increasing trend. The final 
results indicated an overestimation of methane adsorp-
tion. Therefore, high pressure based on actual reservoir 
pressure should be used to accurately assess the methane 
adsorption capacity of clay minerals [7]. Sample sources, 
test temperatures, and experimental conditions et al. can 
explain that different researchers obtain different adsorp-
tion capacity of clay minerals.

The adsorption of shale gas in the reservoir is not only 
on the surface of clay minerals, but also on the surface 
of organic matter, kerogen, cracks and matrix pores et al. 
Some scholars studied the adsorption of clay minerals 
from the perspective of whole shale reservoir and the 
interference other than clay minerals was not excluded 
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[35]. In this study, we tried to eliminate these interferences, 
adopting pure clay minerals, in order to get purer effects 
of clay minerals on methane adsorption.

At present, many studies on the adsorption law of shale 
gas of clay minerals were mainly aimed at the single-gas 
adsorption of pure clay minerals or mixed-gas adsorption. 
Therefore, there is research in need for the adsorption of 
mixed clay minerals. However, according to the actual situ-
ation, the clay minerals contained in the shale reservoir 
are mixed. Therefore, based on the studies of methane 
adsorption of pure clay minerals, the methane adsorption 
of mixed clay minerals was studied, and a novel method 
to calculate the gas adsorption of mixed clay minerals was 
established, which will be more practical.

2  Samples and methodology

Experimental samples (Kaol, Mont, Chl, and Ill) were 
derived from American rock formations, as shown in 
Table 1, and were pure clay minerals, the purity and com-
position of which can be quantitatively analyzed by XRD 
[8, 36, 37].

The XRD experiment used a powder X-ray diffractom-
eter, X Pert PRO, to test the mineral composition of the 
sample. The instrument uses the new super-energy detec-
tor, X Celerator, which is 100 times faster than conven-
tional detectors. The experimental temperature was set 
to 25–30 °C, and the collected clay mineral sample was 
ground into a powder before the experiment, with the 
required number of meshes within 320 mesh, to meet the 
requirements of XRD.

The low-pressure nitrogen adsorption experiment was 
carried out by using Conta’s NOVA2000e analyzer of spe-
cific surface area and porosity. The sample was pretreated 
before the experiment. The sample was screened with the 
required sample size of 60–80 mesh and then placed in 
an oven at a constant temperature of 110 °C for drying. 
And after about 8 h, it was taken out to remove impurity 
gases in vacuum for 12 h. After the sample preparation 
work was done, the experiment was carried out at a water-
bathing temperature of 273 K and a degassing tempera-
ture of 250 °C. With liquid nitrogen having a purity more 
than 99.999% as an adsorption media, the isothermal 

adsorption–desorption experiments were performed at 
different relative pressures (P/P0) from 0.001 to 0.986. The 
Brunauer, Emett Teller’s BET multi-layer adsorption formula 
[38] could be used to perform a linear analysis at a relative 
pressure from 0.00 to 0.36 to obtain specific surface area 
which varied depending on the experimental condition 
and samples because the  N2 adsorption was affected by 
the structure of clay minerals et al. [39, 40].

The methane isotherm adsorption experiment was car-
ried out by ISOSORP-HP, the isotherm adsorption measur-
ing instrument from Germany. There were five groups of 
samples, including four groups of pure clay and one group 
of clay mineral mixed according to the equal mass ratio of 
1:1:1:1. The gas adsorption was measured with gravimetric 
method. The core part of the instrument is a high-preci-
sion magnetically suspended balance with an accuracy of 
10 μg. The samples needed to be pretreated before the 
experiment: the samples were placed in an oven at 60 °C 
for more than 24 h and then degassed at 100 °C for 4 h in 
vacuum to fully remove the moisture in the sample and 
the impurity gas in the instrument. The experiment was 
performed at 61 °C, the pressure no more than 30 MPa, 
and the methane concentration of 99.99%. During the 
process of pressurization, one data point was taken every 
1–4 MPa until the adsorption reached the saturated state.

Finally, the Origin software was used to fit the meth-
ane adsorption data to the Langmuir–Freundlich, which 
was selected as a typical example of single-component 
adsorption models with high fitting accuracy [41, 42]. And 
based on this, the adsorption model of mixed minerals 
was obtained.

3  Results

3.1  Purity analysis of clay minerals

According to the XRD results of four clay mineral samples, 
as shown in Table 2, Kaol, Mont and Ill samples all contain 
a small amount of quartz and other clay minerals, but the 
purity is high, all greater than 91%; The Chl sample con-
tains only a very small amount of quartz, and the purity is 
extremely high above 97%. In all, the purchased samples 
are of good purity.

Table 1   Source of samples Type Model number Description

Clay Srce_Clay_KGa-1b Kaol (low defect—Warren County Georgia USA) KGa-1b
Clay Srce_Clay_SWy-3 Na-rich Mont, Crook County, Wyoming, USA
Clay Sp_Clay_CCa-2 Ripidolite (Chl—Flagstaff Hill EI Dorado County California USA) CCa-2
Clay Sp_Clay_IMt-2 Ill (Silver Hill Montana USA (Cambrian Shale) Char. by Hower et al. 

AmerMin. 51 pp 825–854 1966) IMt-2
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3.2  Parameters of pore structure

According to Table 3, the order of the specific surface area 
of clay minerals is: Kaol > Ill > Mont > Chl, and the pore vol-
ume also conforms to this order. Thus, there is a certain 
positive correlation between them. The conclusion is dif-
ferent from some results in the literature, such as Liang 
et al. [9] and Li-Ming et al. [43], which is mainly caused by 
the difference in properties of clay minerals and experi-
ment condition et al. For example, different properties 
can result in different microstructure because even the 
same type of minerals can come from different reservoirs 
with many samples, such as Mont, which can be divided 

into  Ca2+-Mont and  Na+-Mont etc. [33, 39, 40]. The sam-
ples used by authors and scholars in the literature are all 
from different reservoirs, and we have obtained different 
results. Thus, the order and relation are almost related to 
the mineral sample itself. The conclusion here is mainly for 
the samples in this experiment, and it is of certain refer-
ence significance to other related research. 

3.3  Methane isothermal adsorption

Only the excess adsorption isotherm can be obtained by 
any conventional gas adsorption measurement (gravimet-
ric method, manometry, etc.) [16]. The observed Gibbs 
excess adsorption is different from the absolute adsorp-
tion (actual adsorption) [44–48]. However, the adsorption 
models used in this paper all describe the absolute adsorp-
tion, which is not available for the excess adsorption [49]. 
The excess adsorption isotherm of clay minerals is shown 
in Fig. 1a.

The key parameters for conversion between the excess 
and absolute adsorption are Va (adsorption phase volume) 
or ρa (adsorption phase density). However, any method 
cannot directly measure Va and ρa. The conversion formula 
is as follows [16, 49, 50]:

Table 2  XRD experimental 
results of clay mineral samples 
(× 10–2)

Samples Quartz Clay Relative content of clay minerals

Ill Mont Kaol Chl

Kaol 2.03 97.97 0.00 0.00 94.40 5.60
Mont 4.52 95.48 3.80 96.20 0.00 0.00
Chl 2.25 97.75 0.00 0.00 0.00 100.00
Ill 4.32 95.68 94.20 0.00 5.80 0.00

Table 3  Pore structure parameters

Samples Specific surface area/(m2 g−1) Pore 
volume/
(cc g−1)

Kaol 11.927 0.07338
Mont 6.029 0.02658
Chl 5.318 0.02488
Ill 11.382 0.03300

Fig. 1  Adsorption isotherm of pure clay minerals
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or:

The absolute adsorption isotherm was obtained 
through the software of equipment, as shown in Fig. 1b. 
According to the six types of adsorption isothermal sum-
marized by IUPAC [51], the absolute adsorption isotherm 
of four clay minerals belongs to type I [6]. The absolute 
methane adsorption monotonically increases faster 
under low pressure than high pressure. Finally, when the 
pressure is large enough, the absolute adsorption will 
no longer increase as the pressure rises. The maximum 
absolute adsorption of four clay minerals were: Kaol 
5.04 cm3 g−1 > Ill 2.78 cm3 g−1 > Mont 1.72 cm3 g−1 > Chl 
1.69 cm3 g−1. The result is different from other scholars’ 
results, such as Ji et al. [26, 27], Liu et al. [7], Ross and Bustin 
[30], which are also mainly related to the difference in the 
properties of the samples and experiment condition et al.

According to Fig. 2, the specific surface area of the clay 
mineral is positively correlated to the maximum absolute 
adsorption. Therefore, the larger the specific surface area 
of the clay mineral, the larger the methane adsorption. 
The surface of mineral pores can provide adsorption sites 
for methane. The specific surface area of clay minerals 
determines the number of adsorption sites. The more 
adsorption sites there are, the stronger the adsorption 
capacity is. This shows that the specific surface area of 

(1)mabs = mexcess + Va × �g

(2)mabs =
mexcess

1 −
�g

�a

.

clay minerals determines the adsorption capacity to some 
extent [16–21, 26, 27]. At present, some studies suggested 
that the mesopores of clay minerals provide the main stor-
age space for gas [52], while some studies believed that 
minerals affect the adsorption capacity of shale through 
the volume of micropores and mesopores, and that pores 
with a diameter below 20 nm are the main gas adsorption 
place [22, 24]. However, the specific effect of pore size on 
methane adsorption should be further discussed in future 
studies, to further understand the effect of pore structure 
parameters on methane adsorption of clay minerals.

4  Adsorption calculation model of mixed 
minerals

4.1  Establishment of model

Only the methane adsorption measurement was per-
formed in this paper. Thus, the single-component adsorp-
tion model, Langmuir–Freundlich [53], was used to fit the 
adsorption data as follows:

Langmuir–Freundlich:

The data was respectively fitted to Langmuir–Freun-
dlich by Origin in Fig. 3, with the fitting parameters of the 
model shown in Table 4. It can be seen that the fitting cor-
relation coefficients  R2 of four clay minerals are greater 
than 0.99 with pretty good effect.

For the establishment of adsorption calculation model 
of the mixed minerals, the theoretical parameters of the 
mixed minerals adsorption model were obtained by sum-
ming the adsorption model parameters of the pure clay 

(3)V =
VL(bP)

m

1 + (bP)m
.
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minerals contained in the mixture according to their con-
stituent mass ratio, as shown in the following formula:

The Langmuir–Freundlich was used in this research. 
According to (4), the parameters of the mixed miner-
als were obtained by summing the parameters of Lang-
muir–Freundlich of the pure clay minerals respectively 
according to the mass ratio (1:1:1:1):

According to (5)–(7), it can be obtained combined with 
the data in Table 4:

In summary, the Langmuir–Freundlich adsorption 
model of mixed clay minerals can be obtained as follows:

The theoretical values are compared with the actual 
data as shown in Fig. 4. The error is 4.23% with the high 
degree of fitting. Therefore, this method is feasible in this 
experiment.

4.2  Verification of model

The methane adsorption data of Chl, Ill, and Chl–Ill at 60 °C 
by Xiong Jian [54] was used to verify the calculation model 
also by using Langmuir–Freundlich [53]. The fitting image 
in Fig. 5 and fitting parameters in Table 5 are as follows 
with  R2 values of two clay minerals greater than 0.99.

(4)K =

n
∑

i=1

Kiyi .

(5)VL = VL1 × y
1
+ VL2 × y

2
+ VL3 × y

3
+ VL4 × y

4

(6)b = b
1
× y

1
+ b

2
× y

2
+ b

3
× y

3
+ b

4
× y

4

(7)m = m
1
× y

1
+m

2
× y

2
+m

3
× y

3
+m

4
× y

4
.

VL = 3.1834

b = 0.3405

m = 1.2932.

(8)V =
3.1834 × (0.3405 × P)1.2932

1 + (0.3405 × P)1.2932
.

The Langmuir–Freundlich was used for verification. In 
the literature, the clay minerals were also mixed in equal 
mass ratio (1:1), and it can be obtained referring to (4):

Table 4  Fitting parameters of Langmuir–Freundlich

Model Parameters Kaol Mont Chl Ill

Langmuir–
Freundlich

VL/(cm3 g−1) 5.7839 1.8948 1.9014 3.1535

b 0.3332 0.4547 0.3574 0.2168
m 1.1133 1.2204 1.2865 1.5526
R2 0.9963 0.9978 0.9931 0.9945

Fig. 4  comparison between theoretical values and actual data
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Table 5  Fitting parameters of Langmuir–Freundlich

Model Parameters Chl Ill

Langmuir–Freun-
dlich

VL/(cm3 g−1) 0.0954 0.1281

b 0.3431 0.2910
m 1.4658 1.3957
R2 0.9966 0.9913
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According to (9)–(11), it can be obtained combined with 
the data in Table 5:

In summary, the Langmuir–Freundlich of mixed clay 
minerals can be obtained as follows:

The theoretical values were compared with the actual 
data as shown in Fig. 6. The error is 7% with the high 
degree of fitting. Therefore, it has been verified that the 
adsorption model parameters of the mixed clay minerals 
can be obtained by summing the parameters of the pure 
minerals contained in the mixture according to the con-
stituent mass ratio.

4.3  Analysis of sensitivity

By comparing the theoretical adsorption of the mixed 
minerals calculated through the above method at the 
highest experimental pressure, the effect of each pure 
mineral on the adsorption of mixed minerals was studied 

(9)VL = VL1 × y
1
+ VL2 × y

2

(10)b = b
1
× y

1
+ b

2
× y

2

(11)m = m
1
× y

1
+m

2
× y

2
.

VL = 0.1118

b = 0.3171

m = 1.4308.

(12)V =
0.1118 × (0.3171 × P)1.4308

1 + (0.3171 × P)1.4308
.

through separately increasing the mass ratio of each pure 
clay mineral in the mixed minerals respectively. (The con-
tent of each pure mineral was gradually increased from 
the original 1–5 shares in the mixed minerals, and dur-
ing the increase, the other three minerals still respectively 
account for one share in the mixed minerals.) From Fig. 7, 
the change of the mass ratio of Ill has almost no effect on 
the adsorption of mixed minerals which varies obviously 
with the increase of the mass ratio of Kaol, Mont and Chl. 
According to the theoretical calculation, it can be seen that 
in this study, the adsorption of mixed minerals is less sensi-
tive to the content of Ill than Kaol, Mont and Chl.

5  Discussions

Many adsorption studies were conducted for multi-com-
ponent gas mixtures. The gas adsorption in porous media 
is not only affected by the pore structure but also the inter-
action between molecules. Due to the different type of 
gas, the interaction force between molecules is different 
as well as between molecules and pore walls, and com-
petitive adsorption occurs. The configuration and density 
distribution of adsorbate molecules in the pores are also 
impacted, appearing in different states.

Hall et al. [55] used the volumetric method to test 
the adsorption isotherms of pure components includ-
ing methane, nitrogen, carbon dioxide and their binary 
mixtures in water-bearing coal. When the adsorption of 
any component in the mixed gas was calculated, it was 
determined based on the mass ratio and adsorption of 
the corresponding pure component. However, the final 
results showed that the measured adsorption of the 

Fig. 6  Comparison between theoretical values and actual data Fig. 7  Analysis of sensitivity
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mixed gas cannot be calculated by simply summing the 
adsorption of pure components according to their ratio, 
otherwise it will cause a big error. The influence of inter-
molecular force, and the interaction between molecules 
and pore walls are vectors and cannot be predicted by 
simple addition. Thus, there will exist big error between 
the theoretical adsorption calculated by this method and 
actual value of the multi-component gas. In this paper, 
the single-component gas, methane, was used to study 
the adsorption law of mixed mineral. Finally, the meth-
ane adsorption of mixed minerals can be calculated by 
summing the adsorption of pure minerals according to 
the mass ration with small error, which was also verified 
by the data in the literature. The difference in methane 
adsorption capacity of different minerals is caused by 
differences in pore structure characteristics. The adsorp-
tion of minerals is mainly controlled by its pore structure 
which affects adsorption through factors such as pore 
volume, shape and specific surface area. These can be 
seen as scalars, so the results obtained in this paper are 
credible.

6  Conclusions

In order to establish a novel method to calculate the gas 
adsorption of mixed clay minerals and study the adsorp-
tion difference among pure clay minerals, a series of 
experiments were performed. XRD and low-pressure 
nitrogen adsorption showed the physical properties of 
clay minerals: the purity of samples is all more than 90%; 
the order of specific surface area is: Kaol > Ill > Mont > Chl, 
as well as pore volume. The methane isothermal adsorp-
tion showed the order of adsorption: Kaol > Ill > Mont > Chl, 
which is positively correlated to specific surface area. The 
adsorption model of mixed minerals was established by 
Langmuir–Freundlich. The result showed that the model 
parameters of the mixed clay minerals can be obtained by 
summing the parameters of the pure minerals contained 
in the mixture according to their constituent mass ratio, 
which was also verified by literature data. It was found 
that the effect of Ill on the adsorption of mixed minerals 
is smaller than that of Kaol, Mont and Chl. In Summary, 
as long as the mass ratio in mixed clay minerals gets 
known, the theoretical adsorption of mixed minerals can 
be calculated.
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