
Vol.:(0123456789)

SN Applied Sciences (2020) 2:277 | https://doi.org/10.1007/s42452-020-2067-y

Research Article

Thermodynamics and kinetics of the removal of methylene blue 
from aqueous solution by raw kaolin

Achraf Harrou1 · Elkhadir Gharibi1 · Hicham Nasri2 · Meriam El Ouahabi3 

Received: 14 November 2019 / Accepted: 17 January 2020 / Published online: 27 January 2020 
© Springer Nature Switzerland AG 2020

Abstract
Remediation of contaminated water with organic dyes originated from variety of industrial processes deserves increased 
attention. Raw clay is an effective low-cost and eco-environmentally friendly adsorbent for the removal of methylene 
blue (MB) from solution. This study aims to determine kinetics and thermodynamics of MB adsorption onto raw kaolin 
clays (halloysite and kaolinite/illite) from northeast of Morocco. The apportion capacity of the two kaolin clays to adsorb 
the MB dye by varying temperature and pH conditions was studied. The thermodynamic parameters show that the sorp-
tion of MB is spontaneous and endothermic for halloysite-rich clay, whereas adsorption onto kaolinite/illite is inhibited 
by electrostatic exothermic effects and the sorption is thermodynamically unfavorable. The kinetic study showed that 
the adsorption capacity of MB on halloysite is greater than on kaolinite. The intraparticle diffusion process controls the 
adsorption reaction, and the kinetic is more important for halloysite.
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1 Introduction

Recently, numerous approaches have been studied for 
the development of low-cost and effective adsorbents, 
including clay minerals, zeolites, siliceous material, biosor-
bents and agricultural wastes and industrial by-products 
[1–7]. Adsorbents with high surface area are requested, 
such as mesoporous [8, 9] and microporous materials 
[10, 11], carbon nanotubes [12] and titania nanotubes 
[13]. In particular, polydopamine (PDA) microspheres, 
poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) 
nanospheres, synthesized by oxidative polymerization or 
by an in situ template method, were successfully used as a 
high-efficiency adsorbent for the removal of a cationic dye 
(methylene blue) from aqueous solution [14–16].

Clay minerals are effective adsorbents, due to their high 
specific surface area and high cation exchange capacity 

and their shaper price [17]. Raw kaolin as a low-cost adsor-
bent was studied for removal of methylene blue from 
aqueous solutions [e.g., 18, 19].

Kaolin is the most abundant mineral in sediments, and 
its origin is residual or hydrothermal [20, 21]. Kaolin has 
different properties depending on several factors includ-
ing the geological conditions under which the kaolin was 
formed, the mineralogical composition and the physical 
and chemical properties. Kaolinite and halloysite are the 
main mineral phases of the kaolin group  (Al2Si2O10(OH)4), 
which consists of dioctahedral 1:1 layers.

Kaolinite is mainly present as plates and lamellar aggre-
gates, with a very low cation exchange capacity (from 1 
to 2 meq/100 g) because of the low isomorphous sub-
stitution in both the tetrahedral and octahedral sheets 
[22]. Its specific surface area is very small (between 8 and 
12 m2 g−1).
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Halloysite nanotube (HNTs) is typically hydrated and 
contains two  H2O molecules per unit cell, and the thick-
ness of the 1:1 layer plus the interlayer is equal to ∼ 10 Å. 
Hydrated halloysite is unstable and readily and irreversibly 
transforms into a dehydrated state at ∼ 7 Å [23]. Halloysite 
has a substantially different morphology than kaolinite, 
where microtubular structure is the most frequent form.

Halloysite is mainly derived from long-term weathering 
of amorphous silicate, which remained in small amount 
as relicts associated with raw halloysite [24, 25]. Similar 
to the carbon nanotube, halloysite is of particular impor-
tance due to its tubular morphology of 500–1000 nm in 
length and 10–100 nm in inner diameter [26]. Halloysite 
has a larger cation exchange capacity than kaolinite which 
stands at 5 meq/100 g [21]. The HNTs find several appli-
cations such as ceramic, support for catalysts and other 
functional materials [27, 28]. Recently, raw halloysite was 
successfully tested as adsorbents for removal of dyes, 
heavy metals and pollutants from aqueous solutions [e.g., 
29–31].

It is known that raw kaolin is mostly heterogeneous and 
contains other clay phases (e.g., illite, smectite), which can 
influence the absorption behavior of cationic dyes. This 
study aims to evaluate the suitability of raw kaolin clays 
as low-cost adsorbents for cationic dye from aqueous 
solution under operational conditions, such as dye con-
centration, pH and the adsorbent dosage. A comparison 
between kinetics and mechanism of removal of methylene 
blue by adsorption on raw halloysite and kaolinite is a fur-
ther the aim of this study.

2  Materials and methods

2.1  Raw materials

The HNTs used in this study were obtained from the Hed 
Beni Chiker deposit located in the northeast of Morocco 
in the Nador area. Halloysite belongs to the Neogene 
basin, located at the base of the Messinian series, between 
marl with a reef limestone and volcanic sandstone from 
the Gourougou volcano. Halloysite has a volcanic origin 
through the hydrothermal circulation of fluid rich in sulfur.

Kaolinite-rich clay was obtained from the Glib Naam 
deposit located in the Jerada area in the northeast of 
Morocco (N: 34°23′30.9″, W: 2°00′44.1″). This kaolin is 
derived from the chemical alteration favored by a humid 
climate and active tectonics facilitating the drainage of 
water and the hydrothermal alteration of the Beni-Snass-
ene granodiorite [32].

Halloysite-rich clay was treated by hydrochloric acid 
solution (0.05 N) to eliminate organic matter and car-
bonate. Afterward, the supernatant was centrifuged to 

remove the liquid phase and wash by distilling water. The 
clay obtained is dried in the oven for 24 h. The treated hal-
loysite was grinded (200 µm) to be used for characteriza-
tion tests and adsorption properties [33]. Kaolinite was 
grained (200 µm) without any chemical pretreatment.

2.2  Analysis and characterization

2.2.1  Physicochemical properties of clays

Powder XRD patterns were measured for kaolinite-rich clay 
and halloysite samples with a Shimadzu XRD 6100 diffrac-
tometer, equipped with a Cu X-ray tube, operating at 40 kV 
and 30 mA, in the 4°–80° 2θ range, step size 0.02 and 1-min 
counts per step.

Differential thermal analysis (DTA) and thermogravimet-
ric analysis (TG) methods were performed on both raw clay 
samples using a SHIMADZU instrument (DTG-60 H). The 
experiment was performed on 5–10 mg of sample using 
a temperature range from 35 to 1000 °C with a heating 
rate of 10 °C/min.

Infrared spectroscopy (IR) was performed on both the 
clay samples. Thin pellets were prepared with a mixture 
of 95% of KBr and 5% of the clay sample. The FTIR spec-
tra were carried out using a SHIMADZU Fourier transform 
FTIR-8400 spectrophotometer in a wavelength range of 
400–4000 cm−1.

Cation exchange capacity (CEC) and specific surface 
area (SSA) were estimated using the copper ethylene 
diamine ((EDA)2CuCl2) method [34, 35]. The CEC was cal-
culated from the quantity of (EDA)2

2+ adsorbed by the clay: 
the amount initially added to the clay suspension minus 
the amount remaining in the supernatant solution after 
adsorption and centrifugation.

Scanning electron microscope (SEM) observations were 
performed on both raw halloysite and kaolinite clays by 
using a Quanta-200 scanning electron microscope (CNRST, 
Rabat, Morocco). In situ chemical composition was deter-
mined by energy-dispersive X-ray spectroscopy (EDX). The 
images were obtained with a secondary electron detector 
at a voltage of 10 kV on gold-sputtered powdered samples.

2.2.2  Adsorption kinetics

Adsorption of methylene blue was carried out in raw kao-
linite-rich clay and halloysite. The effect of contact time 
on the amount of the adsorbed dye was investigated by 
various concentrations  ([MBini] = 5, 10, 20 and 30 mg/l) 
and at different temperatures (30, 40, 50 and 60 °C). A 
25 mg of HNTs and kaolinite were mixed with 25 ml of 
MB solution with known initial concentration at different 
pH 3, 5, 7, 9 and 11. At the end of the adsorption period, 
the solution was centrifuged for 5 min. Thereafter, the MB 
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concentration in the supernatant solution was analyzed 
using a UV spectrophotometer (Macy UV-1100) at a maxi-
mum absorbance of 662 nm.

The amount of MB adsorbed (mg/g) (Q), onto clay, was 
calculated from the mass balance equation as follows:

where C0 and C are the initial and equilibrium liquid-phase 
concentrations of MB (mg/l), respectively, V is the volume 
of MB solution and m is the mass of the clay used (g) [36, 
37].

2.2.3  Thermodynamic study

The thermodynamics parameters that must be considered 
to determine the process are changes in the standard 
enthalpy (ΔH°), standard entropy (ΔS°) and free standard 
energy (ΔG°) due to the transfer of the unit from dissolved 
body from the solution at the solid–liquid interface [38, 
39]. The values of ΔH° and ΔS° were calculated using the 
following van’t Hoff equation:

where R is the gas constant (R = 8.314 J.mol−1.K−1), T is 
absolute temperature of solution (K), Kd distribution coef-
ficient, Qe is the amount adsorbed at equilibrium (mg g−1) 
and Ce is the equilibrium concentration (mg L−1). The val-
ues of ΔH° and ΔS° were calculated from the slope and 
interception of the plot of ln Kd function. ΔG° can be cal-
culated using the following equation:

These thermodynamic estimates can offer insight into 
the type and mechanism of an adsorption process.

3  Results and discussion

3.1  Physicochemical composition of raw halloysite 
and kaolinite

The mineralogical composition (XRD) and microstruc-
ture (SEM) of raw halloysite and kaolinite rich samples 
are illustrated in Fig. 1. The raw HNTs sample is a 7 Å 
halloysite associated with small quantities of tridymite 
 (SiO2), cristobalite  (SiO2), gibbsite (Al(OH)3) and alunite 
 (KAl3(SO4)2(OH)6). Raw halloysite contains impurities as 
quartz, muscovite, feldspar, smectite and kaolinite, as 
is the case for Thailand and China halloysites [40–42]. 
SEM image shows tubular structure of halloysite (Fig. 1). 

Q(mg∕g) =
(

C0 − C
)

⋅ V◦∕m

Kd = Qe∕Ce = e(ΔS
◦∕R−ΔΔ◦∕RT ) ln Kd = ΔS◦∕R − ΔH◦∕RT

ΔG◦ = ΔH◦ − TΔS◦ = −RT ln Kd

Specific surface area of this halloysite is 70.90 m2/g, and 
its cation exchange capacity is 18 meq/100 g.

Raw kaolinite sample contains accessory phases as 
illite, plagioclase, pyroxene (augite) and quartz. SEM 
images show that kaolinite and illite particles are mostly 
altered (Fig. 1). SSA of kaolinite-rich clay is 6.19 m2/g and 
its CEC value is 7.6 meq/100 g.

Unlike raw kaolinite-rich clay, raw HNTs underwent a 
dehydration process of the interlayer water due to the 
occurrence of the endothermic peak at about 310 °C 
(Fig. 2). In addition, a loss on mass of 2.8% occurs at 
about 100 °C, which is attributed to the loss of the sur-
face adsorbed water [25]. These results indicated that 
halloysite adsorbs water molecules both on surface and 
lumen space of the nanotubes. The occurrence of a sec-
ond mass loss implies a further increase in the adsorbed 
water amount for halloysite. However, raw kaolinite did 
not display any endothermic peak below 500  °C for 
(Fig. 2). The mass loss at 550 °C for both clays is attrib-
uted to dehydroxylation of kaolinite and halloysite on 
metakaolin and metahalloysite, respectively. The later 
loses more weight (− 9.3%) than kaolinite (− 5.6%). The 
abundant interwall spaces of HNTs accommodated more 
water molecules than kaolinite.

IR spectra of halloysite shows several bands around 
3694; 3622; 3554; 3527; 1094; 1033; 1012; 941: 913; 692; 
650; 562; 540; 471; and 432 cm −1 (Fig. 3). The observed 
bands at 1033 cm−1 and 3695 cm −1 are attributed to 
the Si–O-Si vibration and Al–OH vibration of halloysite, 
respectively [43]. The occurrence of the 3527 cm−1 and 
3454 cm−1 bands in raw halloysite sample (Fig. 3) indi-
cates the presence of whole water contained in the 
hydrated interlayers of halloysite [43].

For kaolinite-rich clay sample, the band at 3622 cm−1 
is related to an inner hydroxyl stretch with its vector 
orientation near to the (001) plane. This inner hydroxyl 
group results from bonding between a proton and an 
oxygen that is also coordinated to  Al3+ in an octahedral 
site.

Kaolinite and halloysite samples show 3350–3650 cm−1 
broad absorption bands observed are caused by the O–H 
stretching vibration of the Si–OH bands and HO–H vibra-
tion of the  H2O adsorbed on silica surface (Fig. 3). In addi-
tion, both clays show the occurrence of 937 cm−1 band due 
to plane bending vibrations of the surface hydroxyl groups 
[44]. Compared to kaolinite, the water hydroxyl deforma-
tion of halloysite is sharper and stronger since more inter-
layer bonded water was adsorbed on the surface of hal-
loysite. The 3454 cm−1 band in halloysite was sharper and 
stronger than kaolinite (Fig. 3) indicating that the water 
hydroxyl deformation of halloysite is more important and 
since more interlayer bonded water was adsorbed on the 
surface of halloysite.
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3.2  Adsorption rates

Adsorption rates were investigated using the values of 
adsorbed dye at different initial MB concentrations, pHs 
and temperatures in terms of time of reaction.

The effect of initial dye concentration and contact time 
on the removal rate of MB by HNTs and kaolinite is shown 
in Fig. 4. The adsorption rate increases with increasing ini-
tial dye concentration for HNTs and kaolinite. The results 
show that the adsorption is rapid during the first 5 min 
and reached saturation at about 20 min for both clays. The 
equilibrium was attained at 30 min. The amount of the 
adsorbed MB onto HNTs was greater than onto kaolinite 
for different initial MB concentrations. Halloysite absorp-
tion rate is similar to sepiolite values [45].

pH is one of the most important factors which con-
trols the adsorption extent of dyes on clay surfaces. The 

adsorption behavior of the dyes on HNTs and kaolinite was 
studied over a wide pH range of 3–11 (Fig. 4). The kinetic 
of adsorption on halloysite is greater than on kaolinite.

The adsorption of these charged dyes onto the adsor-
bent surface is primarily influenced by the surface charge 
on the adsorbent which in turn is influenced by the solu-
tion pH. The addition of  H+ cations to low pH values causes 
neutralization of the negative charge on clay surface, 
which disadvantages the adsorption of positively charged 
MB molecules.

For halloysite-rich clay, when the pH increases, the 
adsorption rate, very important at low pH, increases until 
a pH 9 and then stabilizes. At pH of 6–7, HNTs have a nega-
tive charge, where the surface charge becomes positive at 
pH of 8.5 5 [46]. The positive charge on the surface of HNTs 
blocks the adsorption of the cationic dye, which allows its 
stabilization at pH greater than 9.

Fig. 1  Mineralogical composition and XRD patterns of raw hal-
loysite (a-1) and raw kaolinite samples (b-2). a-2, b-2 show SEM 
images and chemical composition (EDX) of raw halloysite and raw 

kaolinite-rich clay, respectively. Hal halloysite, Aln alunite, Gbs gibb-
site, Trd tridymite, Hl halite, Sa sanidine (K-feldspar), Fl fluorite, I 
illite, Kaol kaolinite, Px pyroxene (augite), Ab albite, Q quartz
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For kaolinite, at pH ranging from 3 to 5, the adsorption 
rate increases but diminishes thereafter and increases 
again from pH 9. The observed increase between pH 3 and 

pH 5 is due to the absence of coagulation of kaolinite and 
illite particles, which is very important at pH 5.8. However, 
when pH is increased above 5.8, the coagulation rates are 
greatly reduced [47]. The adsorption process is an intrapar-
ticular diffusion as will be demonstrated later.

pH from 5 to 9, (pH < pHPZC edge) the oppositely charged 
T face and O face and edge regions are emerged, thus 
resulting in a decrease in MB adsorption. Alkaline condi-
tions cause a sudden decrease in pH and then hydrolyze 
of kaolinite and illite, forming an amorphous gel. The pro-
ton production produced after this short reaction time 
comes from gel dissolution [48]. The pH drop is probably 
a complex surface reaction formed by the hydration of the 
structural hydroxyls at the surface or the dangling oxy-
gens at the solid borders [49]. For the pH above 5.5, two 
successive deprotonations occur in kaolinite surface at pH 
~ 5.5 and ~ 9 [48]. So, the adsorption of MB increases when 
the pH exceeds 9 and decreases when the pH values are 
greater than 5.5.

3.3  Thermodynamic analyses

MB adsorption onto HNTs and onto kaolinite at differ-
ent temperatures is shown in Table 1. The initial pH was 
selected as 5.64, and the initial concentration of MB was 
20 mg/L. The MB adsorption capacity presents a significant 
increasing trend with the rise in temperature (20–60 °C) for 
kaolinite. Nevertheless, the ΔG◦ values of the adsorption 
of MB dye onto HNTs are negative from − 2598.3 kj mol−1 
at 20 °C to − 2951.28 kj mol−1 at 60 °C, thus confirming that 
halloysite adsorption is spontaneous.

Fig. 2  Thermogravimetric analysis and differential thermal analysis 
of adsorption of MB onto halloysite (a) and kaolinite (b)

Fig. 3  Infrared spectra of hal-
loysite and kaolinite samples
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It has been demonstrated that the driving force of 
adsorption is greater and the adsorption capacity is higher 

when ΔG◦ value is less than 0 [50]. On the other hand, the 
ΔG◦ (20,604.63 kj mol−1) of the adsorption of MB onto kao-
linite is positive at 20 °C, confirming that this adsorption is 
inhibited by the patch-wise charge heterogeneity. Results 
obtained on kaolinite-illite-rich clay by Omer et al. [51] 
showed that the enthalpy of adsorption of MB is slightly 
positive and the adsorption of MB was not favored at high 
temperatures.

The average values of ΔH◦ of HNTs and kaolinite are 
8.8246 kj mol−1 and − 70.2020kj mol−1, respectively. Stud-
ies have reported that the ΔH◦ of physisorption is smaller 
than 40 kj mol−1 [52], involving that MB adsorption onto 
the two clays is a physisorption process. At pH 5.68, 
adsorption of MB on halloysite is an endothermic process. 
According to thermodynamic values for kaolinite-rich clay, 
the sorption seems to have prevented the dissolution of 

Fig. 4  The effect of concentration (a, b) and pH (c) on the removal of methylene blue onto halloysite and kaolinite-rich clay. d Thermody-
namic results of the adsorbed MB onto both clays

Table 1  Thermodynamic parameters for MB adsorbed by halloysite 
and kaolinite

Halloysite Kaolinite

ΔH◦

(

kj mol
−1
)

8.82 − 70.20

ΔS◦
(

kj mol
−1

K−1
)

− 11.37 − 24.91

T (°C) ΔG
(

kj mol
−1
)

ΔG
(

kj mol
−1
)

20 − 2598.3 20,604.63
30 − 2686.5 21,306.65
40 − 2774.79 22,008.67
50 − 2863.04 22710.69
60 − 2951.28 23412.71
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the amorphous gel and the production of protons on the 
surface, which repels by exothermic electrostatic effect of 
the MB cations.

As reported in Table 1, the negative ΔS◦ for halloysite 
indicates that the degrees of freedom decrease at the 
adsorbate–adsorbent interface during the adsorption pro-
cess. For kaolinite, the rise in temperature causes a slight 
increase in the proton surface charge between pH 4 and 
9 [53], which increases the electrostatic repulsion of the 
cationic dye.

3.4  Adsorption kinetics

3.4.1  The pseudo‑first‑order kinetic model

The pseudo-first-order kinetic model has been widely used 
to predict dye adsorption kinetics. Lagergren suggested a 
pseudo-first-order model [54]:

where qt is the adsorbed amount at time t (mg/g) and k1 is 
the equilibrium rate constant of pseudo-first-order adsorp-
tion  (min−1). The values Ln

(

Qe − Qt

)

 were calculated from 

Ln
(

Qe − Qt

)

= LnQe − k1 ∗ t

the kinetic data. It was observed (Fig. 5) that the correla-
tion coefficients (Table 2) were lower for all concentrations 
of the added MB. Therefore, the pseudo-first-order model 
is not applicable to predict the kinetics of the MB adsorp-
tion onto HNTs and kaolinite.

3.4.2  The pseudo‑second‑order kinetic model

The pseudo-second-order kinetic model was used to 
explore the adsorption mechanism. This model takes into 
account the adsorbed quantities that will enable us to 
determine the reactor volume. The mathematical expres-
sion of this model is as follows [55]:

where K2 is the pseudo-second-order rate constant of 
adsorption (g mg−1 min−1), Qt is the adsorption capacity 
at the moment t and Qe is the adsorption capacity at equi-
librium. By integrating the previous equation, t/Qt can be 
expressed as the following:

dQ∕dt = K2
(

Qe − Qt

)

t∕Qt = 1∕
(

K2 ∗ Q2
e

)

+ t∕Qe

Fig. 5  Pseudo-first-order kinetic model for adsorption of methylene blue on halloysite and kaolinite-rich clay

Table 2  The result of 
application of pseudo-first-
order kinetic model for 
adsorption of MB by halloysite 
and kaolinite

[MB]ini (mg/L) Halloysite Kaolinite

K1  (cm−1) Qe(th) Qe(exp) R2 K1  (cm−1) Qe (th) Qe (exp) R2

5 0.002 3.01 4.98 0.26 0.004 0.68 4.76 0.41
10 0.011 2.67 9.71 0.45 0.006 2.79 9.57 0.63
20 0.015 10.11 19.53 0.78 0.003 8.09 19.24 0.38
30 0.005 18.54 29.13 0.65 0.001 13.21 26.47 0.40
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The curves of t/Qt versus t are given in Fig. 6. The cal-
culated Qe and K2 correspond to linear regression corre-
lation, and the R2 values are represented in Table 3. The 
linear plots of t/Qt versus t are in good agreement with 
experimental Qe values. The correlation coefficients (R2) 
for the second-order kinetics model are greater than 

0.99, indicating the applicability of this kinetics equation 
and the second-order nature of the adsorption process 
of methylene blue onto raw HLNs and kaolinite/illite. It 
is found that for both adsorptions the rate constant K2 
decreases with the increase in the concentration of MB 
initially introduced.

Fig. 6  Pseudo-second-order kinetic model (a, b) and intraparticle diffusion kinetic model (d, c) for adsorption of methylene blue on hal-
loysite and kaolinite-rich clay

Table 3  The result of 
application of pseudo-second-
order kinetic model for 
adsorption of MB by halloysite 
and kaolinite

Halloysite Kaolinite

[MB]ini (mg/L) Qe (th) K2 R2 Qe (exp) Qe (th) K2 R2 Qe (exp)

5 4.98 1.05 0.99 4.98 4.76 8.82 0.99 4.76
10 9.73 0.32 0.99 9.71 9.64 0.14 0.99 9.57
20 19.68 0.05 0.99 19.53 19.38 0.04 0.99 19.24
30 29.76 0.01 0.99 29.13 26.59 0.04 0.99 26.47
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3.4.3  Error functions

The error functions such as hybrid fractional error function 
(HYBRID), Marquardt’s percent standard deviation (MPSD), 
the average relative error (ARE), sum of the errors squared 
(ERRSQ) and sum of the absolute errors (EABS); standard 
deviation of relative errors (SRE); and nonlinear chi-square 
test (X2) were determined for different concentrations for 
MB to minimize the error distribution between the experi-
mental equilibrium data and the pseudo-kinetics models 
[56] (Table 4).

Based on Fig. 6, the MPSD function is found to be a bet-
ter option to minimize the error distribution between the 
experimental and predicted pseudo-kinetics models.

3.4.4  Intraparticle diffusion

The adsorbed elements are most likely transported 
from the solution to the solid phase by an intraparticu-
lar diffusion process, which is often the limiting step in 
various adsorption processes. The intraparticle diffusion 
model describes adsorption processes, where the rate of 

adsorption depends on the speed at which adsorbate dif-
fuses toward adsorbent, according to the following equa-
tion [57]:

where Qt is the amount of MB adsorbed onto the raw clays 
at the moment t, C is the intercept and kid is the intraparti-
cle diffusion rate constant (mol/g min1/2).

Multilinear plots of intraparticle diffusion process of MB 
adsorption onto the HNTs nanotubes and kaolinite indi-
cate the occurrence of two steps (Fig. 6). The two steps cor-
respond to the diffusion of MB molecules from solution to 
the external surfaces of clay and intraparticle diffusion of 
MB molecules through the clay pores. The values of inter-
cept (Table 5) provide information about the boundary 
layer thickness, i.e., the larger the intercept, the greater 
is the boundary layer effect. The obtained values suggest 
that the intraparticle diffusion is not the rate-limiting step 
and other mechanisms may play an important role.  Ki1 val-
ues are larger than  Ki2, indicating that diffusion process is 
rapid while intraparticle diffusion is a gradual. In addition, 

Qt = kid

√

t + C

Table 4  The error functions of 
application of both pseudo-
first-order and pseudo-second-
order kinetic models onto 
the adsorption of MB onto 
halloysite and kaolinite

Raw clays [MB]0 (mg/l) ERRSQ X2 EABS ARE SRE HYBRID MPSD

Pseudo-first-order kinetic model
Kaolinite 5 1.348E−05 2.879E−06 0.005 0.019 0.022 7.199E−05 0.039

10 0.438 0.046 1.046 1.838 2.030 1.155 3.488
20 0.788 0.050 1.521 1.549 1.659 1.254 2.831
30 0.682 0.027 1.434 0.973 1.008 0.692 1.677

Halloysite 5 1.981E−06 5.952E−07 0.002 0.012 0.013 1.488E−05 0.021
10 3.534E−05 3.953E−06 0.011 0.021 0.025 9.882E−05 0.033
20 0.001 6.369E−05 0.045 0.050 0.064 0.001 0.105
30 0.347 0.016 0.927 0.710 0.840 0.403 1.370

Pseudo-second-order kinetic model
Kaolinite 5 0.011 0.002 0.244 0.862 0.950 0.059 1.119

10 3.646 0.507 2.797 6.044 6.866 12.692 13.329
20 3.614 0.228 3.446 3.450 4.052 5.721 6.040
30 4.345 0.186 3.889 2.673 3.145 4.651 4.469

Halloysite 5 0.490 0.148 1.294 6.072 6.693 3.714 10.67
10 0.215 0.024 0.857 1.609 1.795 0.618 2.668
20 3.592 0.249 3.334 3.666 4.377 6.229 6.586
30 1.022 0.047 2.012 1.526 1.744 1.181 2.338

Table 5  Intraparticle diffusion 
kinetic model of adsorption 
of MB onto halloysite and 
kaolinite

[MB]ini (mg/L) Halloysite Kaolinite

Kid1 Intercept R2 Kid2 Intercept R2 Kid1 Intercept R2 Kid2 Intercept R2

5 0.04 4.55 0.83 0.00 4.88 NA 0.30 2.53 0.88 0 4.22 NA
10 0.71 5.84 0.99 0.01 9.42 0.79 0.22 8.03 0.96 0 9.33 NA
20 1.01 12.84 0.99 0.02 18.92 NA 0.85 12.39 0.85 0 16.74 NA
30 0.88 21.08 0.87 0.05 25.87 0.98 0.41 20.45 0.78 0 22.78 NA
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all of the R2 values are around 0.90 pointing out the good 
applicability of Weber’s intraparticle diffusion model for 
MB adsorption onto the HNTs and kaolinite.

4  Conclusion

High adsorptive capacity of raw kaolinite-rich clay for MB 
was highlighted through this study. Raw halloysite dis-
plays higher MB absorption capacities than raw kaolinite/
illite. The equilibrium adsorption capacity of methylene 
blue increased with temperature and the increase in initial 
concentration of MB. pH plays a key role in this process. 
Adsorption is dominantly by a tow-step intraparticle dif-
fusion process, and the adsorption kinetics could be well 
adjusted by a pseudo-second-order kinetic equation.

Our results indicate that a raw kaolinite/illite and hal-
loysite samples can be successfully utilized for the adsorp-
tion of methylene blue dye from aqueous solutions. Raw 
halloysite has higher adsorption capacity of MB than 
kaolinite. The thermodynamic parameters show that the 
sorption of MB is spontaneous (ΔG < 0) and endothermic 
(ΔH > 0) for halloysite, while the sorption of kaolinite is 
thermodynamically unfavorable (ΔG > 0) and the adsorp-
tion of MB is inhibited by electrostatic exothermic effects 
(ΔH < 0). The intraparticle diffusion process controls the 
adsorption reaction, and the kinetic is more important for 
halloysite.
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