
Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

Research Article

Using gravitational search algorithm enhanced by fuzzy for resource
allocation in cloud computing environments

Rahim Gholami Shooli1 · Mohammad Masoud Javidi1 

Received: 6 October 2019 / Accepted: 8 January 2020 / Published online: 11 January 2020
© Springer Nature Switzerland AG 2020

Abstract
The aim of this paper is to allocate resources to tasks and scheduling tasks on existing virtual machines (VMs) in cloud
environments, so that the time to finish the last work and average of all tasks execution time are minimized, and loads
are distributed balanced on virtual machines. Since task scheduling in the cloud environment is a continuous pro-
cess, so scheduling improvements, although slight, play an important role in cloud efficiency. On the other hand the
resource allocation problem in cloud computing and user tasks scheduling on existing virtual machines is a NP-hard
problem, and traditional algorithms requires exponential time to examine search space of this problem in sequence and
finding the best answer, therefore we used Gravitational Search Algorithm (GSA) that has a high efficiency in solving
nonlinear problems, for solving this problem. To do this, we create masses by combining sequences of tasks assigned
to all machines. Each mass position is a solution of the problem. Then we find the best possible assignment using the
gravitational search algorithm. We used fuzzy logic to determine the number of masses that affect one another during
the implementation of the GSA. To calculate the cost, we use a combination of Make_ span (Time to finish the last task)
and Mean_ Flow_Time (Average of all tasks execution time) and Load_ imbalance. The results show that the proposed
method achieves more optimal response than genetic algorithm and GSA without fuzzy for resource allocation. It means
that proposed algorithm allocated resources to tasks with less make span and mean_ flow time and more load balancing
than other two algorithms.

Keywords  Cloud computing · Gravitational search algorithm (GSA) · Resource allocation · Tasks scheduling · Fuzzy logic

1  Introduction

Cloud computing is a computational model based on
Internet that provides a fresh model for the supply, con-
sumption and delivery of computing services (including
infrastructure, software, platform, and other computing
resources) by utilizing the network. In cloud computing,
resources such as disk, network, RAM, and processor, or
services such as a database, according to customer needs,
are provided online.

Clouds are divided into several categories based on the
type of service they provide: Infrastructures as a Service

(IaaS), Platforms as a Service (PaaS) and Software as a
Service (SaaS). Iaas is a combination of the hardware and
services needed to run the cloud. Paas is a computing plat-
form and a set of applications to an enterprise by a cloud
provider. SaaS is a software distribution that is hosted by
the service provider and used by users online [1].

One of the most important issues in cloud computing
is how to allocate resources (such as CPU, Memory) to
user requests. Virtualization is generally used to allocate
resources in the cloud environment. A tasks scheduler is
used to map each task to virtual machines (VMs) to mini-
mize a given cost function. Cost can be power/energy

 *  Mohammad Masoud Javidi, javidi@uk.ac.ir; Rahim Gholami Shooli, gholami.r@math.uk.ac.ir | 1Department of Computer Science, Shahid
Bahonar University of Kerman, Kerman, Box No. 76169133, Iran.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2014-y&domain=pdf
http://orcid.org/0000-0002-7955-8220

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

consumption [2] or make-span, that is, the time when
finishes the latest task, or flow-time, that is, the sum of
initialization times of all the tasks [3].

The problem of resource allocation in cloud com-
puting and user tasks scheduling on existing virtual
machines is a NP-hard problem [4]. So the search space
for this problem is so large that if an algorithm wants
to examine this space in sequence and find the best
answer, it requires exponential time. Therefore, intelli-
gent and heuristic methods and algorithms are used to
solve this problem.

Main issue in cloud computing is resource deficiency.
Therefore, maximizing the utilization of resources at
same time minimizing the make span is an important
object [5]. One way to increase utilization of resource
and consequently increase cloud throughput is to avoid
overloading on resources and balancing load on them.
On the other hand, the service level agreement (SLA) for
cloud environment uses the average response time to
reflect the Quality of Service (QoS) and cloud users want
this time to be minimal. Therefore, in a good scheduling
method, minimizing make span (time to finish the last
task) and minimizing average of all tasks execution time
and maximizing load balancing should be considered.

Task scheduling and resource allocation in the cloud
environment are continuous processes, so scheduling
improvements, although slight, play an important role
in cloud efficiency. Since the task scheduling prob-
lem is a nonlinear problem and Rashedi et al. [6] have
shown that the Gravitational Search Algorithm (GSA)
has a high efficiency in solving nonlinear problems, and
results obtained by GSA in most cases provide superior
results and in all cases are comparable with other algo-
rithms such as Particle Swarm Optimization (PSO) and
Genetic algorithm (GA), so in this study we used GSA
for task scheduling to achieve mentioned purposes. To
increase the accuracy of the algorithm, we used fuzzy
logic in our proposed method to determine the num-
ber of masses that affect one another during the imple-
mentation of the GSA. The results show that proposed
method, in comparison with the Genetic Algorithm (GA)
and GSA without fuzzy enhancement, receives roughly
more optimal responses for resource allocation and it
allocated resources to tasks with less make span and
mean_ flowtime and more load balancing than other
two algorithms.

In next section, a brief summary of tasks scheduling in
Cloud environments is presented. In Sect. 3, we explain
necessity to improve scheduling methods and describe
problem statement. Section 4 gives an overview of GSA.
In Sect. 5, how using enhanced GSA by fuzzy for resource
allocation is mentioned, and in Sect. 6 achieved results are
given.

2 � Related works

Scheduling is one of the key issues of optimization and
has an important role in increasing the reliability of the
system. The main purpose of the scheduling is to allocate
resources to the tasks and to find the proper sequence
of the tasks to execute with appropriate time [7]. Since
the application of cloud computing is increasing andas
mentioned finding an optimal solution for the tasks
scheduling is a NP-hard problem, in recent years, tasks
scheduling techniques for cloud environment received
great attention from the researchers.

In [8] a scheduler has been proposed using the par-
ticle swarm optimization (PSO) algorithm to schedule
tasks and allocate resources to tasks, which uses this
scheduler less time consuming than the Best Resource
Selection (BRS) algorithm.

Lakra and Yadav [9], proposed a multi-purpose tasks
scheduling algorithm for tasks mapping to VMS to
increase the efficiency of the data center and reduce
costs without violating the SLA (Service Level Agree-
ment). This method is simulated using Cloud Sim simu-
lator and results show throughput improvement.

Li et al. [10] presented a method for scheduling tasks
in cloud environments based on ant colony optimization
(ACO) algorithm. The main goal of this proposed algo-
rithm is to balance the entire system load while minimiz-
ing the time it takes to end the last task.

Priya et al [11] proposed a fuzzy multidimensional
resource scheduling model to increase the resource
scheduling efficiency in the cloud by introduce a
resource scheduling and load balancing algorithm.

In [12], Mansouri et al. proposed a hybrid method
using fuzzy system and particle swarm optimization
(PSO) algorithm to increase load balancing and cloud
throughput. In their study, they used fuzzy system for
calculating fitness with some input factors such as tasks
length, speed of CPU, size of RAM, and execution time. In
their paper, the combination of crossover and mutations
operators with POS algorithm is used to improve optimi-
zation performance. The experimental results show that
the proposed algorithm has a better performance com-
paring to other methods in some terms such as imbal-
ance degree and make span.

Jena and Mohanty [13] using Genetic algorithm to
task scheduling in multi-cloud computing. The aim of
their paper is to map the tasks to VMs in order to have
maximum customer consent and minimum time that
needs to finish the last task. They first using Genetic
algorithm to map tasks to the virtual machines and
then schedule tasks by using shortest job algorithm. The

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

results show that the proposed algorithm efficiency is
more than existing algorithms.

Muthulakshmi and Somasundaram [14] integrate the
simulated annealing (SA) and artificial bee colony (ABC)
algorithm to scheduling the tasks according to their size
and priority of the request and distance between client
nodes to a server in the cloud environment. They use
Cloud Sim tool too simulation the results. The results show
that the proposed algorithm is more efficient in terms of
reduced make span.

3 � Problem statement

As mentioned in the introduction section, tasks schedul-
ing is one of the most important issues in cloud comput-
ing. For cloud providers, a good scheduling should reduce
costs and avoid overloading on resources to increase sys-
tem efficiency. From the cloud user’s view, make span and
the average of all tasks execution time should be mini-
mized. Therefore, to satisfy the interest of both groups,
the proposed algorithm should consider minimizing make
span and average of all tasks execution time and maximiz-
ing utilization of resource by balancing load on them.

Task scheduling and resource allocation in the cloud
environment are continuous processes, so scheduling
improvements, although slight, play an important role
in cloud efficiency. Since task scheduling is a nonlinear
problem and GSA has a high efficiency in solving nonlin-
ear problems, therefore in this paper we used GSA for task
scheduling to satisfy optimization constraints.

In our proposed method, physical resources are shared
among several tasks using virtualization. Virtual resource
requests are described by a set of parameters, including
CPU, Memory and other resources requirements. The cloud
provider satisfies a request by mapping virtual resources
to physical ones. The resources are allocated to tasks on
demand basis. Each VM can process several tasks at a time,
but no two VM process the same task at a time.

Here we apply GSA to allocate virtual machines to tasks
and used fuzzy logic to improve GSA Performance. We
used combination of Make _span (Time to finish the last
task) and Mean _Flow_Time (Average of all tasks execution
time) and Load _imbalance as cost function in GSA and
attempt to minimize this function value and consequently
maximize fitness value of masses.

4 � Gravitational search algorithm (GSA)

There are four main forces in nature. Gravity, weak force,
electromagnetic force and strong force [15]. Among
these forces, the gravitational force is weaker than the

others, but it has the fate of the universe. The gravita-
tional force is very comprehensive and covers the entire
universe while other forces are local.

In the gravitational search algorithm (GSA), optimi-
zation is done with the aid of a plan of gravitational
laws and motion in a discrete time artificial system [6].
The system environment is the same as the range of
the problem definition. Under gravity law, each mass
recognizes the location and condition of other masses
through gravitational law. Therefore, this force can be
used as a means of exchanging information.

In the first step, the system space is determined. The
environment consists of a multi-dimensional coordinate
system in the problem space. Every point in space is a
solution to the problem. The search agents are a collec-
tion of masses. Each mass has four characteristics: (a)
mass position, (b) active gravity mass, (c) inactive gravity
mass, and (d) inertia mass. The amounts of gravitational
and inertial masses are determined by the fitness of each
mass.

After the formation of the system, the rules governing it
are determined. It is assumed that only the law of gravita-
tion and rules of motion is established. To begin, imagine
the system as a collection of N masses. The position of d
dimension of the mass i is represented by xi

d
(Eq. (1)). In this

equation, m is the problem dimension.

To locate masses, it is assumed that in the search space,
all dimensions have the same span. In this system, at time
t, the mass i forces to mass j in the direction d in size f d

ij
(t) .

The value of this force is calculated as Eq. (2). Maj and Mpi
are the active gravitational mass of the mass j and the pas-
sive gravitational mass of the mass i respectively. G(t) is the
gravitational constant at time t and Rij is the distance
between i and j masses. We use Euclidean distance to
determine the distance between masses in accordance
with Eq. (3). ε is a very small number. p is the distance
exponent, which is a real number greater than one. This
value is often considered to be one.

The force on the mass i in the direction d at time t is
shown by Fd

i
(t) and is equal to the sum of the random

coefficients of the forces that k best masses enter on the
mass i (Eq. (4)). In this equation, randj is a random number
with uniform distribution in interval [0–1], which is used to
maintain the randomness feature of the search algorithm.

(1)Xi =
(
x1
i
, x2

i
,… , xm

i

)
For i = 1, 2,… ,N

(2)Fd
ij
(t) = G(t) ×

Mpi(t) ×Maj(t)

Rij(t)
p + �

×

(
xd
j
(t) − xd

i
(t)

)

(3)Rij(t) = ||xi(t), xj(t)||2

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

According to Newton’s second law, the mass i accelerates
in the direction of dimension d at time t, and this accelera-
tion is calculated by Eq. (5) in which Mii is the inertia mass
of the mass i.

The next velocity of each mass is equal to the sum of the
coefficients of the current velocity of the mass and the accel-
eration of the mass (Eq. (6)). The new position of the dimen-
sion d of the mass i is calculated by Eq. (7).

In the Eq. (6), randi is a random number that distributed
uniformly in the interval [0–1], which is used to maintain the
randomness feature of the search algorithm.

To set the gravity constant, start from a primitive value
and the value will be reduced over time. The gravitational
constant, according to Eq. (8), is a function of the initial gravi-
tational constant and time. This is true in the real world and
the gravitational constant decreases very slowly over time. A
suggestion for this function is to use an exponential relation
to reduce the gravity constant (Eq. (9)).

In Eq. (9), G0 isthe initial gravitational constant, α is a posi-
tive constant and t is the total of algorithmic repetitions.

In this algorithm, the gravitational and inertial masses
are considered equal in accordance with Eq. (10); for their
adjustment, the value of the mass target function is used
(Eq. (11)). The amount of masses is normalized using
Eq. (12).

(4)Fd
i
(t) =

∑

j∈kbest,j≠i

randj × Fd
ij
(t)

(5)ad
i
(t) =

Fd
i
(t)

Mii(t)

(6)Vd
i
(t + 1) = randi × Vd

i
(t) + ad

i
(t)

(7)xd
i
(t + 1) = xd

i
(t) + Vd

i
(t + 1)

(8)G(t) = G
(
G0, t

)

(9)G(t) = G0e
−�

t

T

(10)Mai = Mpi = Mii = Mi

(11)qi(t) =
fiti(t) − worst(t)

best(t) − worst(t)

(12)Mi(t) =
qi(t)

∑N

j=1
qj(t)

In Eq. (11), fiti(t) represents the amount of fitness of
mass i at time t.

In minimizing problems, we can use Eqs. (13) and (14)
to calculate the best and worst value of fitness.

In maximization problems, the best and worst are
defined according to Eqs. (15) and (16).

At the beginning of the algorithm, each mass is ran-
domly positioned in a point of space, which is the answer
to the problem. Then, at each moment of time, the masses
are evaluated, and the position of each mass is determined
after calculating the Eqs. 2 to 7. Also, gravitational and
inertia masses and Newton gravity constant are updated
in each step according to Eqs. 8 to 16. The stop condition
can be determined by the number of repetitions. The block
diagram of the GSA is shown in Fig. 1 [6].

5 � Using GSA enhanced by fuzzy for resource
allocation in cloud computing
environments

As mentioned the problem of tasks scheduling on exist-
ing virtual machines in cloud environment is a NP-hard
problem. If we show the number of tasks with Tas knum
and the number of virtual machines with VMnum, then the
number of possible allocations is VMnumTasknum. The duty
of scheduler is finding an allocation of virtual machines
to input tasks such that the computational and memory
requirements of all tasks are satisfied with the lowest cost.

This cost can be defined in a variety of ways. The most
important costs are:

1.	 Make span: Time to finish the last task
2.	 Mean (Flow-Time): Average of all tasks execution time
3.	 Load imbalance

Cost can be a combination of these parameters.
For scheduling, we can use traditional algorithms

such as Round Robin algorithm, but because they have a
serial structure, offer only possible responses that are not

(13)best(t) = min
j∈{1,…,N}

fitj(t)

(14)worst(t) = max
j∈{1,…,N}

fitj(t)

(15)best(t) = max
j∈{1,…,N}

fitj(t)

(16)worst(t) = min
j∈{1,…,N}

fitj(t)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

necessarily optimal or relatively optimal. Also do not meet
the load balance criterion.

As noted above, the problem of scheduling and allocat-
ing resources in the cloud is a NP-Hard problem and due
to the size of the search space, the time needed to check
the entire space sequentially and find the best answer is
required exponential time. Because of the good perfor-

mance of GSA in nonlinear problems, we used this algo-
rithm for tasks scheduling in Cloud environment.

First, to code problem responses, we create a
sequence of tasks assigned to each machine and then
we combine the created sequences to each other and
store in an array named Allocated. The length of this
array is equal to the number of tasks (Task num), and in

each section, allocated task numbers in each machine
are stored. Also, in an array named Tasks ln VM with the
length of the number of virtual machines (V Mnum),
the number of tasks assigned to each machine is kept.
Figure 2 shows an example of coding for the 10 tasks
scheduling on 6 machines. In this figure as mentioned in
problem state section, each VM can process several tasks
at a time, for example task#1 and task#3 are executed
on VM#1 and task#6, task#8 and task#10 are executed
on VM#5. Since we have 10 tasks here, so the length
of Allocated array is 10. The Allocated array, along with
the Tasks lnV Marray, determines each task executes on
which virtual machine. For example, Tasks lnVM[1] = 2
means that two tasks are running on VM#1, and since
Allocated[1] = 1 and Allocated[2] = 3, so tasks 1 and 3
are running on VM#1. Likewise TaskslnVM[2] = 1 means
that one task is running on VM#2, and since two tasks
are running on VM#1, therefore the first two cells of the
Allocated array store the tasks numbers that runs on the
VM#1, and the third cell shows the executed task num-
ber on the VM#2. HereAllocated[3]= 2 and it means that
task#2is running on VM#2.

If the number of available resources is equal to Res-
num, then the capacities of the virtual machines in an
array called VMsCapacity with Resnum × VMnum dimen-
sions are stored. The column i of this array shows the
amount of i-th virtual machine resources. Also resource
requirements for tasks are stored in an array named Tasks
Requirements with dimensions Resnum × Tasknum. The
j column of this array shows the amount of resources
requested by j-thtask. The structure of the VMs Capacity
and Tasks Requirements arrays is shown in Fig. 3.

Given that at any time, depending on the resources
of each virtual machine, it can be assigned to more than
one task, therefore, if part of Allocated array that stores
the number of executed tasks on the y machine is as in
Fig. 4, then the Eq. (17) at the time t is established.

To calculate the allocation cost at any moment, we
use Eq. (18):

Constants α and β shows the importance of each cri-
terion. For example, if α = 1 and β = 1, then only Make
span parameter is important and if α = 1 and β = 0, then
only second parameter is important. The fitness of

(17)
x+TasksInVM[y]−1∑

j=x

(TasksRequirements[r]
[
Allocated

[
j
])

≤ VMsCapacity[r]
[
y
]
∀r, 1 ≤ r ≤ Resnum

(18)cost = � × (� ×make_span + (1 − �) ×mean_flowtime) + (1 − �) × Load_imbalance

Fig. 1   Block diagram of the GSA

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

Fig. 2   Coding for the scheduling of 10 tasks on 6 machines

Fig. 3   Structure of VMs capacity and tasks requirements arrays

Fig. 4   A part of the allocated array that stores the scheduled tasks numbers on the y machine

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

appropriateness of the allocation at any time is obtained
from Eq. (19):

Any allocation that has more fitness will be a better
allocation.

After formulating allocations, we use the gravitational
search algorithm to find an optimal allocation.

Since the fitness function is defined in such a way that
a better allocation is more competent, so at the time
t, the best and the worst allocation is obtained from
Eqs. (20) and (21), respectively, where N is the number
of problem responses in time t.

After calculating the best and worst response, the
mass of each response in the time t is calculated using
relations Eqs. (22) and (23):

If the system is a collection of N masses, then the posi-
tion of each mass is a point of space, which is the answer
to the problem. In our problem, the answer is coded in
Allocated array therefore, the position of the dimension d
of the mass i is represented by Allocatedd

i
(Eq. (24)). In this

equation the number of tasks (Task num) is the dimen-
sion of the problem.

Euclidean distance (Norm 2) is used to determine the
distance between masses, according to Eq. (25).

In this system, at time t, to mass i by mass j, a force of
Fd
ij

 is entered in the direction d dimension. The value of
this force is calculated from Eq. (26).

The sum of all forces applied to mass i is obtained
from Eq. (27). To improve the power of the algorithm,

(19)fitness =
1

cost

(20)best(t) = max
j∈{1,…,N}

fitnessj(t)

(21)worst(t) = min
j∈{1,…,N}

fitnessj(t)

(22)qi(t) =
fitnessi(t) − worst(t)

best(t) − worst(t)

(23)Mi(t) =
qi(t)

∑N

j=1
qj(t)

(24)
Allocatedi =

(
Allocated1

i
,… ,Allocatedd

i
,… ,AllocatedTasknum

i

)

(25)Rij(t) = Allocatedi(t),Allocatedj(t)2

(26)

Fd
ij
(t) = G(t) ×

Mi(t) ×Mj(t)

Rij(t) + �
×

(
Allocatedd

j
(t) − Allocatedd

i
(t)

)

only the k best set containing the k best members is
allowed to affect other members. Because in the initial
repetition of the algorithm, there is a need for pervasive
search, so the start time affects all the masses on one
another, and over time, the number of members affect-
ing the population is reduced by a linear ratio, until the
end, only 2% of the best of the population affect to other
members.

In this equation rand j is a random number with a uni-
form distribution in the interval [0, 1] and used to maintain
the randomness of the search.

Because in the initial repetition of the algorithm, there is a
need for pervasive search, so in most papers often the start
time affects all the masses on one another, and over time,
the number of members affecting the population is reduced
by a linear ratio, until the end, few of the best of the popula-
tion affect to other members. Here we used fuzzy logic to
control and adjust the k parameter. Our general policy for
determining k is that if the optimal answer of the algorithm
does not change significantly in much iteration, then we
increase the value of k so that more masses can affect each
mass. This makes it possible for a mutation to occur and the
algorithm does not get stuck in the local optimal. Also, when
the problem response variations are high, we reduce the k
value to avoid wasting time and increasing the convergence
speed of the algorithm.

To do this, we used a fuzzy inference system with two
inputs and one output. The first input is the number of itera-
tions where the current response remains unchanged and
named fixed number. The second input is the ratio of the
number of response changes to the time elapsed since the
start of the algorithm and named variation. The output of
our fuzzy system shows the k parameter that determines
number of members that allowed affecting other members.
Figure 5 shows structure of proposed fuzzy system.

Our fuzzy inputs and output membership functions are
shown in Fig. 6.

Figure 7 shows our fuzzy inference system rules. As shown
in this figure, when the optimal answer of the algorithm
does not change significantly in much iteration, the value
of k best increased because the algorithm does not get stuck
in the local optimal, and when the problem response varia-
tions are high, the k value reduced to avoid wasting time and
increasing the convergence speed of the algorithm.

Plot of the output surface of proposed fuzzy inference
system using fixed number and variation inputs and k best
output is shown in Fig. 8.

(27)Fd
i
(t) =

∑

j∈kbest,j≠i

randj × Fd
ij
(t)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

After calculating the force applied to the mass, the accel-
eration of the mass i in the direction of dimension d at time
t is obtained by using Eq. (28).

The next velocity of each mass is equal to the sum of the
coefficients of the current velocity and the acceleration of

(28)ad
i
(t) =

Fd
i
(t)

Mi(t)

Fig. 5   Structure of proposed fuzzy system

Fig. 6   Our fuzzy inputs and output membership functions

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

the mass in accordance with Eq. (29). The new position of
dimension d of the mass i is calculated according to Eq. (30).

In Eq. (29), randi is a random number with a uniform
distribution in the interval [0, 1] and used to maintain the
randomness of the search.

As mentioned, in the Allocated array, the tasks num-
bers are stored, and since each task only runs on one
machine, we scaled the values obtained in Eq. (30)
in such a way that they are placed in the interval [1,

(29)Vd
i
(t + 1) = randi × Vd

i
(t) + ad

i
(t)

(30)Allocatedd
i
(t + 1) = Allocatedd

i
(t) + Vd

i
(t + 1)

Tasknum] and there are no duplicate values in the Allo-
catedi array members.

In Eq. (26), the gravity constant starts from an initial
value and decreases with time. To calculate this con-
stant, Eq. (31) is used.

In this Equation, G0 is the initial gravitational con-
stant, α is a positive constant and T is the total of algo-
rithm repetitions, that is, the system lifetime.

The proposed method is summarized in the pseudo-
code as follows:

(31)G(t) = G0e
−�

t

T

Fig. 7   Our fuzzy inference
system rules

Fig. 8   Output surface of pro-
posed fuzzy inference system

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

Resource allocation with GSA

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

6 � Results

In this section, we compare the responses from the
implementation of the proposed method to the
responses obtained using the GSA without fuzzy
enhancement and using genetic algorithm. To run the
algorithm we used a system with CPU = core i7 4800MQ,
RAM = 8 GB, VGA = AMD Radeon HD 8790 M with 2 GB
Dedicated Memory. To test the proposed method, we
first create virtual machines with random numbers of
each of the available resources using a function called
create vms. Also, by creating a function called create

tasks, we create number of arbitrary tasks with random
numbers of each of the available resources.

Each time we compare the proposed algorithm with
the mentioned algorithms, we use the same virtual
machines and the same tasks. In this way, before each
comparison, we call the mentioned functions for creat-
ing virtual machines and tasks.

For the first comparison, we put G0 = 100 and α = 2.
First, we create 100 masses randomly. For the genetic
algorithm, we also consider the Crossover’s probability
to be 0.3 and the mutation’s probability to be 0.2. We
also consider the initial population to be 100.

Fig. 9   Compare fitness value and convergence of proposed method with GSA without fuzzy enhancement and GA

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y

Figure 9 shows the results of running the algorithm
with eight categories of virtual machines and various
tasks. The convergence condition is the steady state of
the best answer in the last 150 repetitions of the algo-
rithm. For example in Run_Number#1, from the itera-
tion#94 to the iteration#244, fitness of our proposed
method remained the same and in 150 iterations, no
improvement was observed. So this algorithm stop in
iteration#244. The convergence condition for the other
two algorithms is the same as the convergence condition
of this algorithm.

As Eq. (18) showed, cost of each solution is calculated
based on the combination of make span and mean_ flow
time and Load_ imbalance. On the other hand, accord-
ing to Eq. (19), the fitness of each solution is inversely
related to its cost. So being fuzzy _GSA fitness higher
than other two algorithms in Run_Number#1 means that
it allocated resources to tasks with less make span and
mean _flow time and more load balancing than other
two algorithms. Overall the results show that the pro-
posed method obtains roughly more optimal responses
than genetic algorithm and GSA without fuzzy. The

Fig. 10   Compare proposed
method best solution with GSA
without Fuzzy and GA best
solution

Fig. 11   Compare proposed method number of iteration with GSA without Fuzzy and GA number of iteration

Vol.:(0123456789)

SN Applied Sciences (2020) 2:195 | https://doi.org/10.1007/s42452-020-2014-y	 Research Article

comparison of the results of these eight runs with the
twelve other runs is illustrated in Fig. 10.

As showed in Fig. 9, the proposed method often con-
verges to the optimal response in less number of itera-
tions than the genetic algorithm, but more number of
iterations than the GSA without fuzzy. This increment is
due to k best tuning by fuzzy and makes the GSA algo-
rithm not get stuck in the local optimum. Figure 11 shows
number of iterations of these algorithms from twenty
times execution.

7 � Conclusion

Since resource allocation and tasks scheduling problem
in cloud environment is a NP-hard problem and previous
studies showed that GSA has a high efficiency in solv-
ing nonlinear problems, so in this study we used GSA
for resource allocation in cloud environment. For this,
first we coded problem responses in some arrays that
each code showed a sequence of tasks assigned to each
machine. Here we used combination of Make_ span and
Mean _Flow_ Time and Load_ imbalance as cost func-
tion in GSA and attempt to minimize this function value
and consequently maximize fitness value of masses. To
increase the accuracy of the algorithm, we used fuzzy
logic to determine the number of masses that affect one
another during the implementation of the GSA and then
continue the other steps of the GSA. The results show
that proposed method, in comparison with the Genetic
Algorithm (GA) and GSA without fuzzy enhancement,
receives roughly more optimal responses for resource
allocation and it allocated resources to tasks with less
make span and mean_ flow time and more load balanc-
ing than other two algorithms. Although the proposed
method often converges to the optimal response in less
number of iterations than the GA and makes the GSA
algorithm not get stuck in the local optimum. Future
works can include other parameters such as the number
of tasks to be completed per unit of time in terms of cost.
Also to increase the speed of the algorithm and reduce
the number of iterations, for k best determining, time is
also considered as the input of the fuzzy system so that
time has verse effect on k best.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Manvi SS, Shyam GK (2014) Resource management for infra-
structure as a service (IaaS) in cloud computing: a survey. J
Netw Comput Appl 41:424–440. https​://doi.org/10.1016/j.
jnca.2013.10.004

	 2.	 Nguyen T, Quang-Hung N, Tuong NH, Tran VH, Thoai N (2013) Vir-
tual machine allocation in cloud computing for minimizing total
execution time on each machine. In: International conference
on computing, management and telecommunications (Com-
ManTel), Ho Chi Minh City, pp 241–245. https​://doi.org/10.1109/
ComMa​nTel.2013.64823​98

	 3.	 Carretero J, Xhafa F, Abraham A (2006) Genetic algorithm based
schedulers for grid computing systems. Int J Innov Comput Inf
Control 3:1053–1071

	 4.	 Maqableh M, Karajeh H, Masa’deh R (2014) Job scheduling for
cloud computing using neural networks. Commun Netw 6:191–
200. https​://doi.org/10.4236/cn.2014.63021​

	 5.	 Sasikaladevi N (2016) Minimum makespan task scheduling algo-
rithm in cloud computing. Int J Grid Distrib Comput 9(11):61–70.
https​://doi.org/10.14257​/ijgdc​.2016.9.11.05

	 6.	 Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravita-
tional search algorithm. Inf Sci 179(13):2232–2248. https​://doi.
org/10.1016/j.ins.2009.03.004

	 7.	 Zhao C, Zhang S, Liu Q, Xie J, Hu J (2009) Independent tasks
scheduling based on genetic algorithm in cloud computing.
In: 5th International conference on wireless communications,
networking and mobile computing, Beijing, pp 1–4. https​://
doi.org/10.1109/WICOM​.2009.53018​50

	 8.	 Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarmop-
timization-based heuristic for scheduling workflow applica-
tions in cloud computing environments. In: 24th IEEE interna-
tional conference on advanced information networking and
applications, Perth, WA, pp 400–407. https​://doi.org/10.1109/
AINA.2010.31

	 9.	 Lakra AV, Yadav DK (2015) Multi-objective tasks scheduling
algorithm for cloud computing throughput optimization. Pro-
cedia Comput Sci 48:107–113. https​://doi.org/10.1016/j.procs​
.2015.04.158

	10.	 Li K, Xu G, Zhao G, Dong Y, Wang D (2011) Cloud task schedul-
ing based on load balancing ant colony optimization. In: Sixth
annual chinagrid conference, Liaoning, pp 3–9. https​://doi.
org/10.1109/china​grid.2011.17

	11.	 Priya V, Kumar CS, Kannan R (2019) Resource scheduling
algorithm with load balancing for cloud service provision-
ing. Appl Soft Comput 76:416–424. https​://doi.org/10.1016/j.
asoc.2018.12.021

	12.	 Mansouri N, Zade BMH, Javidi MM (2019) Hybrid task schedul-
ing strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput Ind Eng 130:597–633.
https​://doi.org/10.1016/j.cie.2019.03.006

	13.	 Jena T, Mohanty JR (2018) GA-based customer-conscious
resource allocation and task scheduling in multi-cloud com-
puting. Arab J Sci Eng 43:4115. https​://doi.org/10.1007/s1336​
9-017-2766-x

	14.	 Muthulakshmi B, Somasundaram K (2017) A hybrid ABC-SA based
optimized scheduling and resource allocation for cloud environ-
ment. Clust Comput. https​://doi.org/10.1007/s1058​6-017-1174-z

	15.	 Holliday D, Resnick R, Walker J (1993) Fundamentals of physics.
Wiley, Hoboken

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1109/ComManTel.2013.6482398
https://doi.org/10.1109/ComManTel.2013.6482398
https://doi.org/10.4236/cn.2014.63021
https://doi.org/10.14257/ijgdc.2016.9.11.05
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1109/WICOM.2009.5301850
https://doi.org/10.1109/WICOM.2009.5301850
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1016/j.procs.2015.04.158
https://doi.org/10.1016/j.procs.2015.04.158
https://doi.org/10.1109/chinagrid.2011.17
https://doi.org/10.1109/chinagrid.2011.17
https://doi.org/10.1016/j.asoc.2018.12.021
https://doi.org/10.1016/j.asoc.2018.12.021
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1007/s13369-017-2766-x
https://doi.org/10.1007/s13369-017-2766-x
https://doi.org/10.1007/s10586-017-1174-z

	Using gravitational search algorithm enhanced by fuzzy for resource allocation in cloud computing environments
	Abstract
	1 Introduction
	2 Related works
	3 Problem statement
	4 Gravitational search algorithm (GSA)
	5 Using GSA enhanced by fuzzy for resource allocation in cloud computing environments
	6 Results
	7 Conclusion
	References

