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Abstract
The aim of this paper is to allocate resources to tasks and scheduling tasks on existing virtual machines (VMs) in cloud 
environments, so that the time to finish the last work and average of all tasks execution time are minimized, and loads 
are distributed balanced on virtual machines. Since task scheduling in the cloud environment is a continuous pro-
cess, so scheduling improvements, although slight, play an important role in cloud efficiency. On the other hand the 
resource allocation problem in cloud computing and user tasks scheduling on existing virtual machines is a NP-hard 
problem, and traditional algorithms requires exponential time to examine search space of this problem in sequence and 
finding the best answer, therefore we used Gravitational Search Algorithm (GSA) that has a high efficiency in solving 
nonlinear problems, for solving this problem. To do this, we create masses by combining sequences of tasks assigned 
to all machines. Each mass position is a solution of the problem. Then we find the best possible assignment using the 
gravitational search algorithm. We used fuzzy logic to determine the number of masses that affect one another during 
the implementation of the GSA. To calculate the cost, we use a combination of Make_ span (Time to finish the last task) 
and Mean_ Flow_Time (Average of all tasks execution time) and Load_ imbalance. The results show that the proposed 
method achieves more optimal response than genetic algorithm and GSA without fuzzy for resource allocation. It means 
that proposed algorithm allocated resources to tasks with less make span and mean_ flow time and more load balancing 
than other two algorithms.

Keywords  Cloud computing · Gravitational search algorithm (GSA) · Resource allocation · Tasks scheduling · Fuzzy logic

1  Introduction

Cloud computing is a computational model based on 
Internet that provides a fresh model for the supply, con-
sumption and delivery of computing services (including 
infrastructure, software, platform, and other computing 
resources) by utilizing the network. In cloud computing, 
resources such as disk, network, RAM, and processor, or 
services such as a database, according to customer needs, 
are provided online.

Clouds are divided into several categories based on the 
type of service they provide: Infrastructures as a Service 

(IaaS), Platforms as a Service (PaaS) and Software as a 
Service (SaaS). Iaas is a combination of the hardware and 
services needed to run the cloud. Paas is a computing plat-
form and a set of applications to an enterprise by a cloud 
provider. SaaS is a software distribution that is hosted by 
the service provider and used by users online [1].

One of the most important issues in cloud computing 
is how to allocate resources (such as CPU, Memory) to 
user requests. Virtualization is generally used to allocate 
resources in the cloud environment. A tasks scheduler is 
used to map each task to virtual machines (VMs) to mini-
mize a given cost function. Cost can be power/energy 
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consumption [2] or make-span, that is, the time when 
finishes the latest task, or flow-time, that is, the sum of 
initialization times of all the tasks [3].

The problem of resource allocation in cloud com-
puting and user tasks scheduling on existing virtual 
machines is a NP-hard problem [4]. So the search space 
for this problem is so large that if an algorithm wants 
to examine this space in sequence and find the best 
answer, it requires exponential time. Therefore, intelli-
gent and heuristic methods and algorithms are used to 
solve this problem.

Main issue in cloud computing is resource deficiency. 
Therefore, maximizing the utilization of resources at 
same time minimizing the make span is an important 
object [5]. One way to increase utilization of resource 
and consequently increase cloud throughput is to avoid 
overloading on resources and balancing load on them. 
On the other hand, the service level agreement (SLA) for 
cloud environment uses the average response time to 
reflect the Quality of Service (QoS) and cloud users want 
this time to be minimal. Therefore, in a good scheduling 
method, minimizing make span (time to finish the last 
task) and minimizing average of all tasks execution time 
and maximizing load balancing should be considered.

Task scheduling and resource allocation in the cloud 
environment are continuous processes, so scheduling 
improvements, although slight, play an important role 
in cloud efficiency. Since the task scheduling prob-
lem is a nonlinear problem and Rashedi et al. [6] have 
shown that the Gravitational Search Algorithm (GSA) 
has a high efficiency in solving nonlinear problems, and 
results obtained by GSA in most cases provide superior 
results and in all cases are comparable with other algo-
rithms such as Particle Swarm Optimization (PSO) and 
Genetic algorithm (GA), so in this study we used GSA 
for task scheduling to achieve mentioned purposes. To 
increase the accuracy of the algorithm, we used fuzzy 
logic in our proposed method to determine the num-
ber of masses that affect one another during the imple-
mentation of the GSA. The results show that proposed 
method, in comparison with the Genetic Algorithm (GA) 
and GSA without fuzzy enhancement, receives roughly 
more optimal responses for resource allocation and it 
allocated resources to tasks with less make span and 
mean_ flowtime and more load balancing than other 
two algorithms.

In next section, a brief summary of tasks scheduling in 
Cloud environments is presented. In Sect. 3, we explain 
necessity to improve scheduling methods and describe 
problem statement. Section 4 gives an overview of GSA. 
In Sect. 5, how using enhanced GSA by fuzzy for resource 
allocation is mentioned, and in Sect. 6 achieved results are 
given.

2 � Related works

Scheduling is one of the key issues of optimization and 
has an important role in increasing the reliability of the 
system. The main purpose of the scheduling is to allocate 
resources to the tasks and to find the proper sequence 
of the tasks to execute with appropriate time [7]. Since 
the application of cloud computing is increasing andas 
mentioned finding an optimal solution for the tasks 
scheduling is a NP-hard problem, in recent years, tasks 
scheduling techniques for cloud environment received 
great attention from the researchers.

In [8] a scheduler has been proposed using the par-
ticle swarm optimization (PSO) algorithm to schedule 
tasks and allocate resources to tasks, which uses this 
scheduler less time consuming than the Best Resource 
Selection (BRS) algorithm.

Lakra and Yadav [9], proposed a multi-purpose tasks 
scheduling algorithm for tasks mapping to VMS to 
increase the efficiency of the data center and reduce 
costs without violating the SLA (Service Level Agree-
ment). This method is simulated using Cloud Sim simu-
lator and results show throughput improvement.

Li et al. [10] presented a method for scheduling tasks 
in cloud environments based on ant colony optimization 
(ACO) algorithm. The main goal of this proposed algo-
rithm is to balance the entire system load while minimiz-
ing the time it takes to end the last task.

Priya et al [11] proposed a fuzzy multidimensional 
resource scheduling model to increase the resource 
scheduling efficiency in the cloud by introduce a 
resource scheduling and load balancing algorithm.

In [12], Mansouri et al. proposed a hybrid method 
using fuzzy system and particle swarm optimization 
(PSO) algorithm to increase load balancing and cloud 
throughput. In their study, they used fuzzy system for 
calculating fitness with some input factors such as tasks 
length, speed of CPU, size of RAM, and execution time. In 
their paper, the combination of crossover and mutations 
operators with POS algorithm is used to improve optimi-
zation performance. The experimental results show that 
the proposed algorithm has a better performance com-
paring to other methods in some terms such as imbal-
ance degree and make span.

Jena and Mohanty [13] using Genetic algorithm to 
task scheduling in multi-cloud computing. The aim of 
their paper is to map the tasks to VMs in order to have 
maximum customer consent and minimum time that 
needs to finish the last task. They first using Genetic 
algorithm to map tasks to the virtual machines and 
then schedule tasks by using shortest job algorithm. The 
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results show that the proposed algorithm efficiency is 
more than existing algorithms.

Muthulakshmi and Somasundaram [14] integrate the 
simulated annealing (SA) and artificial bee colony (ABC) 
algorithm to scheduling the tasks according to their size 
and priority of the request and distance between client 
nodes to a server in the cloud environment. They use 
Cloud Sim tool too simulation the results. The results show 
that the proposed algorithm is more efficient in terms of 
reduced make span.

3 � Problem statement

As mentioned in the introduction section, tasks schedul-
ing is one of the most important issues in cloud comput-
ing. For cloud providers, a good scheduling should reduce 
costs and avoid overloading on resources to increase sys-
tem efficiency. From the cloud user’s view, make span and 
the average of all tasks execution time should be mini-
mized. Therefore, to satisfy the interest of both groups, 
the proposed algorithm should consider minimizing make 
span and average of all tasks execution time and maximiz-
ing utilization of resource by balancing load on them.

Task scheduling and resource allocation in the cloud 
environment are continuous processes, so scheduling 
improvements, although slight, play an important role 
in cloud efficiency. Since task scheduling is a nonlinear 
problem and GSA has a high efficiency in solving nonlin-
ear problems, therefore in this paper we used GSA for task 
scheduling to satisfy optimization constraints.

In our proposed method, physical resources are shared 
among several tasks using virtualization. Virtual resource 
requests are described by a set of parameters, including 
CPU, Memory and other resources requirements. The cloud 
provider satisfies a request by mapping virtual resources 
to physical ones. The resources are allocated to tasks on 
demand basis. Each VM can process several tasks at a time, 
but no two VM process the same task at a time.

Here we apply GSA to allocate virtual machines to tasks 
and used fuzzy logic to improve GSA Performance. We 
used combination of Make _span (Time to finish the last 
task) and Mean _Flow_Time (Average of all tasks execution 
time) and Load _imbalance as cost function in GSA and 
attempt to minimize this function value and consequently 
maximize fitness value of masses.

4 � Gravitational search algorithm (GSA)

There are four main forces in nature. Gravity, weak force, 
electromagnetic force and strong force [15]. Among 
these forces, the gravitational force is weaker than the 

others, but it has the fate of the universe. The gravita-
tional force is very comprehensive and covers the entire 
universe while other forces are local.

In the gravitational search algorithm (GSA), optimi-
zation is done with the aid of a plan of gravitational 
laws and motion in a discrete time artificial system [6]. 
The system environment is the same as the range of 
the problem definition. Under gravity law, each mass 
recognizes the location and condition of other masses 
through gravitational law. Therefore, this force can be 
used as a means of exchanging information.

In the first step, the system space is determined. The 
environment consists of a multi-dimensional coordinate 
system in the problem space. Every point in space is a 
solution to the problem. The search agents are a collec-
tion of masses. Each mass has four characteristics: (a) 
mass position, (b) active gravity mass, (c) inactive gravity 
mass, and (d) inertia mass. The amounts of gravitational 
and inertial masses are determined by the fitness of each 
mass.

After the formation of the system, the rules governing it 
are determined. It is assumed that only the law of gravita-
tion and rules of motion is established. To begin, imagine 
the system as a collection of N masses. The position of d 
dimension of the mass i is represented by xi

d
(Eq. (1)). In this 

equation, m is the problem dimension.

To locate masses, it is assumed that in the search space, 
all dimensions have the same span. In this system, at time 
t, the mass i forces to mass j in the direction d in size f d

ij
(t) . 

The value of this force is calculated as Eq. (2). Maj and Mpi 
are the active gravitational mass of the mass j and the pas-
sive gravitational mass of the mass i respectively. G(t) is the 
gravitational constant at time t and Rij is the distance 
between i and j masses. We use Euclidean distance to 
determine the distance between masses in accordance 
with Eq. (3). ε is a very small number. p is the distance 
exponent, which is a real number greater than one. This 
value is often considered to be one.

The force on the mass i in the direction d at time t is 
shown by Fd

i
(t) and is equal to the sum of the random 

coefficients of the forces that k best masses enter on the 
mass i (Eq. (4)). In this equation, randj is a random number 
with uniform distribution in interval [0–1], which is used to 
maintain the randomness feature of the search algorithm.

(1)Xi =
(
x1
i
, x2

i
,… , xm

i

)
For i = 1, 2,… ,N

(2)Fd
ij
(t) = G(t) ×

Mpi(t) ×Maj(t)

Rij(t)
p + �

×

(
xd
j
(t) − xd

i
(t)

)

(3)Rij(t) = ||xi(t), xj(t)||2
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According to Newton’s second law, the mass i accelerates 
in the direction of dimension d at time t, and this accelera-
tion is calculated by Eq. (5) in which Mii is the inertia mass 
of the mass i.

The next velocity of each mass is equal to the sum of the 
coefficients of the current velocity of the mass and the accel-
eration of the mass (Eq. (6)). The new position of the dimen-
sion d of the mass i is calculated by Eq. (7).

In the Eq. (6), randi is a random number that distributed 
uniformly in the interval [0–1], which is used to maintain the 
randomness feature of the search algorithm.

To set the gravity constant, start from a primitive value 
and the value will be reduced over time. The gravitational 
constant, according to Eq. (8), is a function of the initial gravi-
tational constant and time. This is true in the real world and 
the gravitational constant decreases very slowly over time. A 
suggestion for this function is to use an exponential relation 
to reduce the gravity constant (Eq. (9)).

In Eq. (9), G0 isthe initial gravitational constant, α is a posi-
tive constant and t is the total of algorithmic repetitions.

In this algorithm, the gravitational and inertial masses 
are considered equal in accordance with Eq. (10); for their 
adjustment, the value of the mass target function is used 
(Eq.  (11)). The amount of masses is normalized using 
Eq. (12).

(4)Fd
i
(t) =

∑

j∈kbest,j≠i

randj × Fd
ij
(t)

(5)ad
i
(t) =

Fd
i
(t)

Mii(t)

(6)Vd
i
(t + 1) = randi × Vd

i
(t) + ad

i
(t)

(7)xd
i
(t + 1) = xd

i
(t) + Vd

i
(t + 1)

(8)G(t) = G
(
G0, t

)

(9)G(t) = G0e
−�

t

T

(10)Mai = Mpi = Mii = Mi

(11)qi(t) =
fiti(t) − worst(t)

best(t) − worst(t)

(12)Mi(t) =
qi(t)

∑N

j=1
qj(t)

In Eq.  (11), fiti(t) represents the amount of fitness of 
mass i at time t.

In minimizing problems, we can use Eqs. (13) and (14) 
to calculate the best and worst value of fitness.

In maximization problems, the best and worst are 
defined according to Eqs. (15) and (16).

At the beginning of the algorithm, each mass is ran-
domly positioned in a point of space, which is the answer 
to the problem. Then, at each moment of time, the masses 
are evaluated, and the position of each mass is determined 
after calculating the Eqs. 2 to 7. Also, gravitational and 
inertia masses and Newton gravity constant are updated 
in each step according to Eqs. 8 to 16. The stop condition 
can be determined by the number of repetitions. The block 
diagram of the GSA is shown in Fig. 1 [6].

5 � Using GSA enhanced by fuzzy for resource 
allocation in cloud computing 
environments

As mentioned the problem of tasks scheduling on exist-
ing virtual machines in cloud environment is a NP-hard 
problem. If we show the number of tasks with Tas knum 
and the number of virtual machines with VMnum, then the 
number of possible allocations is VMnumTasknum. The duty 
of scheduler is finding an allocation of virtual machines 
to input tasks such that the computational and memory 
requirements of all tasks are satisfied with the lowest cost.

This cost can be defined in a variety of ways. The most 
important costs are:

1.	 Make span: Time to finish the last task
2.	 Mean (Flow-Time): Average of all tasks execution time
3.	 Load imbalance

Cost can be a combination of these parameters.
For scheduling, we can use traditional algorithms 

such as Round Robin algorithm, but because they have a 
serial structure, offer only possible responses that are not 

(13)best(t) = min
j∈{1,…,N}

fitj(t)

(14)worst(t) = max
j∈{1,…,N}

fitj(t)

(15)best(t) = max
j∈{1,…,N}

fitj(t)

(16)worst(t) = min
j∈{1,…,N}

fitj(t)
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necessarily optimal or relatively optimal. Also do not meet 
the load balance criterion.

As noted above, the problem of scheduling and allocat-
ing resources in the cloud is a NP-Hard problem and due 
to the size of the search space, the time needed to check 
the entire space sequentially and find the best answer is 
required exponential time. Because of the good perfor-

mance of GSA in nonlinear problems, we used this algo-
rithm for tasks scheduling in Cloud environment.

First, to code problem responses, we create a 
sequence of tasks assigned to each machine and then 
we combine the created sequences to each other and 
store in an array named Allocated. The length of this 
array is equal to the number of tasks (Task num), and in 

each section, allocated task numbers in each machine 
are stored. Also, in an array named Tasks ln VM with the 
length of the number of virtual machines (V Mnum), 
the number of tasks assigned to each machine is kept. 
Figure 2 shows an example of coding for the 10 tasks 
scheduling on 6 machines. In this figure as mentioned in 
problem state section, each VM can process several tasks 
at a time, for example task#1 and task#3 are executed 
on VM#1 and task#6, task#8 and task#10 are executed 
on VM#5. Since we have 10 tasks here, so the length 
of Allocated array is 10. The Allocated array, along with 
the Tasks lnV Marray, determines each task executes on 
which virtual machine. For example, Tasks lnVM[1] = 2 
means that two tasks are running on VM#1, and since 
Allocated[1] = 1 and Allocated[2] = 3, so tasks 1 and 3 
are running on VM#1. Likewise TaskslnVM[2] = 1 means 
that one task is running on VM#2, and since two tasks 
are running on VM#1, therefore the first two cells of the 
Allocated array store the tasks numbers that runs on the 
VM#1, and the third cell shows the executed task num-
ber on the VM#2. HereAllocated[3]= 2 and it means that 
task#2is running on VM#2.

If the number of available resources is equal to Res-
num, then the capacities of the virtual machines in an 
array called VMsCapacity with Resnum × VMnum dimen-
sions are stored. The column i of this array shows the 
amount of i-th virtual machine resources. Also resource 
requirements for tasks are stored in an array named Tasks 
Requirements with dimensions Resnum × Tasknum. The 
j column of this array shows the amount of resources 
requested by j-thtask. The structure of the VMs Capacity 
and Tasks Requirements arrays is shown in Fig. 3.

Given that at any time, depending on the resources 
of each virtual machine, it can be assigned to more than 
one task, therefore, if part of Allocated array that stores 
the number of executed tasks on the y machine is as in 
Fig. 4, then the Eq. (17) at the time t is established.

To calculate the allocation cost at any moment, we 
use Eq. (18):

Constants α and β shows the importance of each cri-
terion. For example, if α = 1 and β = 1, then only Make 
span parameter is important and if α = 1 and β = 0, then 
only second parameter is important. The fitness of 

(17)
x+TasksInVM[y]−1∑

j=x

(TasksRequirements[r]
[
Allocated

[
j
])

≤ VMsCapacity[r]
[
y
]
∀r, 1 ≤ r ≤ Resnum

(18)cost = � × (� ×make_span + (1 − �) ×mean_flowtime) + (1 − �) × Load_imbalance

Fig. 1   Block diagram of the GSA
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Fig. 2   Coding for the scheduling of 10 tasks on 6 machines

Fig. 3   Structure of VMs capacity and tasks requirements arrays

Fig. 4   A part of the allocated array that stores the scheduled tasks numbers on the y machine
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appropriateness of the allocation at any time is obtained 
from Eq. (19):

Any allocation that has more fitness will be a better 
allocation.

After formulating allocations, we use the gravitational 
search algorithm to find an optimal allocation.

Since the fitness function is defined in such a way that 
a better allocation is more competent, so at the time 
t, the best and the worst allocation is obtained from 
Eqs. (20) and (21), respectively, where N is the number 
of problem responses in time t.

After calculating the best and worst response, the 
mass of each response in the time t is calculated using 
relations Eqs. (22) and (23):

If the system is a collection of N masses, then the posi-
tion of each mass is a point of space, which is the answer 
to the problem. In our problem, the answer is coded in 
Allocated array therefore, the position of the dimension d 
of the mass i is represented by Allocatedd

i
(Eq. (24)). In this 

equation the number of tasks (Task num) is the dimen-
sion of the problem.

Euclidean distance (Norm 2) is used to determine the 
distance between masses, according to Eq. (25).

In this system, at time t, to mass i by mass j, a force of 
Fd
ij

 is entered in the direction d dimension. The value of 
this force is calculated from Eq. (26).

The sum of all forces applied to mass i is obtained 
from Eq. (27). To improve the power of the algorithm, 

(19)fitness =
1

cost

(20)best(t) = max
j∈{1,…,N}

fitnessj(t)

(21)worst(t) = min
j∈{1,…,N}

fitnessj(t)

(22)qi(t) =
fitnessi(t) − worst(t)

best(t) − worst(t)

(23)Mi(t) =
qi(t)

∑N

j=1
qj(t)

(24)
Allocatedi =

(
Allocated1

i
,… ,Allocatedd

i
,… ,AllocatedTasknum

i

)

(25)Rij(t) = Allocatedi(t),Allocatedj(t)2

(26)

Fd
ij
(t) = G(t) ×

Mi(t) ×Mj(t)

Rij(t) + �
×

(
Allocatedd

j
(t) − Allocatedd

i
(t)

)

only the k best set containing the k best members is 
allowed to affect other members. Because in the initial 
repetition of the algorithm, there is a need for pervasive 
search, so the start time affects all the masses on one 
another, and over time, the number of members affect-
ing the population is reduced by a linear ratio, until the 
end, only 2% of the best of the population affect to other 
members.

In this equation rand j is a random number with a uni-
form distribution in the interval [0, 1] and used to maintain 
the randomness of the search.

Because in the initial repetition of the algorithm, there is a 
need for pervasive search, so in most papers often the start 
time affects all the masses on one another, and over time, 
the number of members affecting the population is reduced 
by a linear ratio, until the end, few of the best of the popula-
tion affect to other members. Here we used fuzzy logic to 
control and adjust the k parameter. Our general policy for 
determining k is that if the optimal answer of the algorithm 
does not change significantly in much iteration, then we 
increase the value of k so that more masses can affect each 
mass. This makes it possible for a mutation to occur and the 
algorithm does not get stuck in the local optimal. Also, when 
the problem response variations are high, we reduce the k 
value to avoid wasting time and increasing the convergence 
speed of the algorithm.

To do this, we used a fuzzy inference system with two 
inputs and one output. The first input is the number of itera-
tions where the current response remains unchanged and 
named fixed number. The second input is the ratio of the 
number of response changes to the time elapsed since the 
start of the algorithm and named variation. The output of 
our fuzzy system shows the k parameter that determines 
number of members that allowed affecting other members. 
Figure 5 shows structure of proposed fuzzy system.

Our fuzzy inputs and output membership functions are 
shown in Fig. 6.

Figure 7 shows our fuzzy inference system rules. As shown 
in this figure, when the optimal answer of the algorithm 
does not change significantly in much iteration, the value 
of k best increased because the algorithm does not get stuck 
in the local optimal, and when the problem response varia-
tions are high, the k value reduced to avoid wasting time and 
increasing the convergence speed of the algorithm.

Plot of the output surface of proposed fuzzy inference 
system using fixed number and variation inputs and k best 
output is shown in Fig. 8.

(27)Fd
i
(t) =

∑

j∈kbest,j≠i

randj × Fd
ij
(t)
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After calculating the force applied to the mass, the accel-
eration of the mass i in the direction of dimension d at time 
t is obtained by using Eq. (28).

The next velocity of each mass is equal to the sum of the 
coefficients of the current velocity and the acceleration of 

(28)ad
i
(t) =

Fd
i
(t)

Mi(t)

Fig. 5   Structure of proposed fuzzy system

Fig. 6   Our fuzzy inputs and output membership functions
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the mass in accordance with Eq. (29). The new position of 
dimension d of the mass i is calculated according to Eq. (30).

In Eq. (29), randi is a random number with a uniform 
distribution in the interval [0, 1] and used to maintain the 
randomness of the search.

As mentioned, in the Allocated array, the tasks num-
bers are stored, and since each task only runs on one 
machine, we scaled the values obtained in Eq.  (30) 
in such a way that they are placed in the interval [1, 

(29)Vd
i
(t + 1) = randi × Vd

i
(t) + ad

i
(t)

(30)Allocatedd
i
(t + 1) = Allocatedd

i
(t) + Vd

i
(t + 1)

Tasknum] and there are no duplicate values in the Allo-
catedi array members.

In Eq. (26), the gravity constant starts from an initial 
value and decreases with time. To calculate this con-
stant, Eq. (31) is used.

In this Equation, G0 is the initial gravitational con-
stant, α is a positive constant and T is the total of algo-
rithm repetitions, that is, the system lifetime.

The proposed method is summarized in the pseudo-
code as follows:

(31)G(t) = G0e
−�

t

T

Fig. 7   Our fuzzy inference 
system rules

Fig. 8   Output surface of pro-
posed fuzzy inference system
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6 � Results

In this section, we compare the responses from the 
implementation of the proposed method to the 
responses obtained using the GSA without fuzzy 
enhancement and using genetic algorithm. To run the 
algorithm we used a system with CPU = core i7 4800MQ, 
RAM = 8 GB, VGA = AMD Radeon HD 8790 M with 2 GB 
Dedicated Memory. To test the proposed method, we 
first create virtual machines with random numbers of 
each of the available resources using a function called 
create vms. Also, by creating a function called create 

tasks, we create number of arbitrary tasks with random 
numbers of each of the available resources.

Each time we compare the proposed algorithm with 
the mentioned algorithms, we use the same virtual 
machines and the same tasks. In this way, before each 
comparison, we call the mentioned functions for creat-
ing virtual machines and tasks.

For the first comparison, we put G0 = 100 and α = 2. 
First, we create 100 masses randomly. For the genetic 
algorithm, we also consider the Crossover’s probability 
to be 0.3 and the mutation’s probability to be 0.2. We 
also consider the initial population to be 100.

Fig. 9   Compare fitness value and convergence of proposed method with GSA without fuzzy enhancement and GA
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Figure 9 shows the results of running the algorithm 
with eight categories of virtual machines and various 
tasks. The convergence condition is the steady state of 
the best answer in the last 150 repetitions of the algo-
rithm. For example in Run_Number#1, from the itera-
tion#94 to the iteration#244, fitness of our proposed 
method remained the same and in 150 iterations, no 
improvement was observed. So this algorithm stop in 
iteration#244. The convergence condition for the other 
two algorithms is the same as the convergence condition 
of this algorithm.

As Eq. (18) showed, cost of each solution is calculated 
based on the combination of make span and mean_ flow 
time and Load_ imbalance. On the other hand, accord-
ing to Eq. (19), the fitness of each solution is inversely 
related to its cost. So being fuzzy _GSA fitness higher 
than other two algorithms in Run_Number#1 means that 
it allocated resources to tasks with less make span and 
mean _flow time and more load balancing than other 
two algorithms. Overall the results show that the pro-
posed method obtains roughly more optimal responses 
than genetic algorithm and GSA without fuzzy. The 

Fig. 10   Compare proposed 
method best solution with GSA 
without Fuzzy and GA best 
solution

Fig. 11   Compare proposed method number of iteration with GSA without Fuzzy and GA number of iteration
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comparison of the results of these eight runs with the 
twelve other runs is illustrated in Fig. 10.

As showed in Fig. 9, the proposed method often con-
verges to the optimal response in less number of itera-
tions than the genetic algorithm, but more number of 
iterations than the GSA without fuzzy. This increment is 
due to k best tuning by fuzzy and makes the GSA algo-
rithm not get stuck in the local optimum. Figure 11 shows 
number of iterations of these algorithms from twenty 
times execution.

7 � Conclusion

Since resource allocation and tasks scheduling problem 
in cloud environment is a NP-hard problem and previous 
studies showed that GSA has a high efficiency in solv-
ing nonlinear problems, so in this study we used GSA 
for resource allocation in cloud environment. For this, 
first we coded problem responses in some arrays that 
each code showed a sequence of tasks assigned to each 
machine. Here we used combination of Make_ span and 
Mean _Flow_ Time and Load_ imbalance as cost func-
tion in GSA and attempt to minimize this function value 
and consequently maximize fitness value of masses. To 
increase the accuracy of the algorithm, we used fuzzy 
logic to determine the number of masses that affect one 
another during the implementation of the GSA and then 
continue the other steps of the GSA. The results show 
that proposed method, in comparison with the Genetic 
Algorithm (GA) and GSA without fuzzy enhancement, 
receives roughly more optimal responses for resource 
allocation and it allocated resources to tasks with less 
make span and mean_ flow time and more load balanc-
ing than other two algorithms. Although the proposed 
method often converges to the optimal response in less 
number of iterations than the GA and makes the GSA 
algorithm not get stuck in the local optimum. Future 
works can include other parameters such as the number 
of tasks to be completed per unit of time in terms of cost. 
Also to increase the speed of the algorithm and reduce 
the number of iterations, for k best determining, time is 
also considered as the input of the fuzzy system so that 
time has verse effect on k best.
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