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Abstract
In this paper, the methods of the stability theory of differential equations with time delays are used in the study of an 
actual engineering problem of a drone (UAV) autonomous flight. We describe correct operation of autopilot for supply 
stability of desirable drone flight. There exists a noticeable delay in getting information about position and orientation of 
a drone to autopilot in the presence of vision-based navigation (visual navigation). In spite of this fact, we demonstrate 
that it is possible to provide stable flight at a constant height in a vertical plane. We describe how to form relevant con-
trolling signal for autopilot in the case of the navigation information delay and provide control parameters for particular 
case of flight.

Keywords  Visual navigation · Drone · UAV · Autopilot · Vision-based navigation · Time delay · Stability · Differential 
equations

1  Introduction

The methods of the stability theory of differential equa-
tions with time delays are applied for solving actual engi-
neering problem of a drone (UAV) autonomous stable 
flight.

The main achievements of this paper are the following:

1.	 An example of adaptation of the mathematical theory 
(which was during long time developed without any 
connection to physics or engineering) in solving actual 
engineering problem.

2.	 The approach, proposed here for solving stabilization 
problem of drone autonomous flight, is much better 
than previously used ones in approximate engineering 
solution.

3.	 The adaptation of this mathematical theory for drone 
fight stabilization is a difficult problem, since the 

mathematical theory cannot be applied directly and 
explicitly for the system describing the drone motion. 
Indeed, we need to apply some nontrivial mathemati-
cal transform to the physical differential equations to 
make such use possible.

4.	 Even after getting from the mathematical theory con-
strains for controlled parameters defined by autopilot 
(which are necessary for stabilization drone flight), it 
is also nontrivial problem to find a solution for these 
parameters.

This paper is engineering application of mathemati-
cal stability theory for differential equations with delays 
described in [1–5]. Although there is a corresponding 
resistance of engineers to the use of theoretical results 
on stability of differential equations with delays instead 
of engineering approximate solutions, the theory of these 
equations develops intensively. Every year, hundreds of 
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papers on stability analysis of delay equations are pub-
lished. Let us start with two examples:

Example 1  These two very similar equations arise 
directly from the Newton second low: y��(t) = 0 
and x��(t) = � . Assume that � is very small and con-
sider the same initial conditions at the point 0: 
y(0) = 0, y�(0) = 0 and x(0) = 0, x�(0) = 0 . Their solu-
tions are y(t) ≡ 0 and x(t) = �

2
t2 respectively. It is clear 

that limt→∞ x(t) − y(t) = ∞ , and there is no stability with 
respect to right-hand side. Conclusion: we need a feedback 
control to stabilize the equation x��(t) = f (t) with respect 
to a right-hand side. In this way, we come to the stability 
analysis of the delay equation x��(t) = −

∑m

i=1
aix(t − �i(t)) . 

𝜏i(t) > 0 appeared as a result of information, opera-
tion or transport delays existing in all real technological 
processes.

Example 2  There exists a delusion that instead of stabil-
ity analysis of the delay equation, one can use elements 
of the modern technology, for example, GPS gives us the 
values of x(t1), x(t2), x(t3),… with very small time inter-
vals Δti = ti+1 − ti . It can be demonstrated, for exam-
ple, on the delay equation x��(t) = −ax([t]) , where [t] 
is the integer part of t  and a > 0 . At the moment t  , we 
know almost exactly x([t]) , but this does not help in sta-
bilization. Actually, it is known from the paper [6] that 
all solutions of the equation x��(t) = −ax(t − �(t)) are 
bounded if and only if ∫ ∞

0
𝜏(t)dt < ∞ . For our equation 

x��(t) = −ax([t]) , we have �(t) = t − [t] and ∫ ∞

0
�(t)dt = ∞ . 

This means that there exist unbounded solutions of the 
equation x��(t) = −ax([t]) , and this equation is unstable. 
The direct use of GPS without theoretical basis could not 
achieve stabilization even the signals from GPS come 
with very small time intervals. Results on exponential 
stability, i.e., all solutions of the homogeneous equation 
x��(t) = −

∑m

i=1
aix(t − �i(t)) tend to zero like exp(−�t) with 

positive � , were obtained for the case m ≥ 2 under corre-
sponding conditions on the coefficients and delays in the 
form of inequalities in the paper [4].

Stability analysis presents one of the necessary parts in 
the almost all papers on robotics. Their authors avoid con-
sidering the delay in their models although they accept 
fact of arising transport, information, or executive delay 
in robotics models. The technique of Lyapunov’s func-
tions which has the long history (starting with works of 
N.Krasovskii in 1950s) is usually used but is not convenient 
in many cases for stabilization by delay feedback control.

The current basic engineering method for analyzing 
a delayed system is replacing the system with delays to 
the system without delay and using the classical theory 
of stability (characteristic equations in linear case, and 

method of Lyapunov’s functions—in nonlinear). It is usu-
ally achieved in the frame of the following two ideas or 
their combinations [7–9]:

(A)	 to extrapolate a motion forward during the delay 
time,

(B)	 to take into account the estimate error of a current 
state and to use all possible values of the process for 
its future analysis.

The use of method (B) results in an obvious decrease in 
the accuracy of control and its effectiveness.

The use of method (A) is possible when the system is 
sufficiently inert and does not have a strong control effect 
during the delay time. Even in this case, we need to use a 
complex algorithm. This results in an increase in the time 
and cost of creating a control system, the cost of com-
puting power for extrapolation. The simplification of the 
model leads to a decrease in the accuracy and effective-
ness of control. Also, when we change and upgrade the 
system, this big work needs to be carried out again.

If there is a control effect on the behavior of the sys-
tem during the delay time, the method makes even more 
expensive and complex—it requires complex iterative 
schemes, the iterations do not always converge and 
require a long calculation time, which may insert an addi-
tional time delay. This can lead to a complete loss of con-
trollability of the system. In order not to be unfounded 
from the mathematical point of view, we added an expla-
nation of the shortcomings of approach (A) and the justi-
fication for the necessity of using new results on stability 
theory.

It looks that the use of Azbelev’s theory of stability of 
functional differential equations can open new perspec-
tives in the control in robotics (see the book [10]). In the 
book [2], based on Azbelev’s theory, there was developed 
the stability analysis and methods of estimates of solutions 
to systems of delay differential equations. The following 
can be noted as advantages of this approach:

1.	 It reduces the time and costs for control development.
2.	 It is easy to modernize the control of the system if the 

system has been changed.
3.	 Methods are universal for a wide class of systems.
4.	 Due to the high accuracy of mathematical methods, 

the system will have efficient and precise control.
5.	 There are no additional delays or control failures for 

complex cases where the controlled system is not 
inertial, and the control effect is significant during the 
delay time.

In this paper, we describe correct operation of autopilot 
for supply desirable drone flight (movement of a drone in a 
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vertical plane at a constant height). For the finding drone, 
flight parameters were used vision-based navigation 
[11–20]. For realization vision-based navigation was devel-
oped the computer program “Video-navigation of UAV over 
relief” [11]. This program was tested in Zhejiang Province in 
east China near the capital Hangzhou using Google Earth 
data [17]. There always exists a noticeable delay in getting 
information about position and orientation of a drone to 
autopilot for vision-based navigation because of computer 
processing image’s big data. In spite of this fact, we demon-
strate that it is possible to provide stable flight at a constant 
height in a vertical plane. We want to describe how to form 
relevant controlling signal for autopilot in the case of the 
navigation information delay. We plan to use the autopilot 
described in the paper for controlling flight parameters 
found from vision-based navigation.

In this paper, description of motion equations and param-
eters of drone flight controlled by autopilot is based on the 
results of the book [21].

The structure of the paper is the following. The first sec-
tion is Introduction. We described here the theme of the 
paper—state of the art with references in the field of stability 
theory methods and methods of description for drone flight 
controlled by autopilot with delay. The second section gives 
detailed preliminary results for mathematical stability theory 
methods which are used for drone flight controlled by auto-
pilot in this paper. The model of drone flight is described. In 
the third section, we use the mathematical stability theory 
for finding parameters controlled by autopilot which are 
necessary for drone flight stability and finding upper bound-
ary for the time delay. The theoretical results are compared 
with results of computer simulations. The fourth section is 
conclusion.

2 � Preliminary results of the investigation 
for drone flight stability

2.1 � Mathematical preliminary results: stability 
of systems with time delays

Throughout the paper, “e” denotes the Euler number. L∞ 
is the space of essentially bounded measurable functions: 
[0, + ∞) → R.

Consider the non-homogenous system of differential 
equations

(2.1)x
�

i
(t) +

n∑

j=1

m∑

k=1

ak
ij
(t)xj

(
t − �k

ij
(t)

)
= 0, t ∈ 0,+∞)

x(𝜉) = 0, 𝜉 < 0, i = 1,… , n,

where Ak(t) = {ak
ij
(t)}i,j=1,…,n are n × n matrices with entries 

ak
ij
(t) ∈ L∞ , �k

ij
(t) ∈ L∞ for k = 1,… ,m and i, j = 1,… , n . The 

c o m p o n e n t s  xi ∶ [0,+∞) → ℝ  o f  t h e  v e c t o r 
x = col

{
x1,… , xn

}
 are assumed to be absolutely continu-

ous and their derivatives x
�

i
∈ L∞ . A vector function x is a 

solution of (2.1) if it satisfies system (2.1) for almost all 
t ∈ [0,+∞).

Let us denote

It was shown in Theorem 3.2 in [1] that:
If the following conditions are fulfilled:

1.1	 There exist positive numbers z1,… , z
n
 such that 

∑m
k=1 a

k
ij
(t)zi −

∑n
j=1,j≠i

∑m
k=1

���a
k
ij
(t)

���zj ≥ 1, t ∈ [0,+∞), i = 1,… , n

1.2	 For every i = 1,… , n , at least one of the conditions 
(1.2a) or (1.2b) is fulfilled:

1.2a	There exists mi such that ak
ii
(t) ≥ 0 , aj

ii
(t) ≤ 0 , 

�k
ii
(t) ≥ �

j

ii
(t) for k = 1,… ,mi  ,  j = mi+1,… ,m , 

∑mi

k=1
ak
ii
(t) ≥ 1

e

∑m

j=mi+1

���a
j

ii
(t)

��� f o r  t ∈ [0,+∞) 

∫ t

t−�+
ii
(t)

�∑mi

k=1
ak
ii
(s) −

1

e

∑m

j=mi+1

���a
j

ii
(s)

���
�
ds ≤ 1

e
  , 

t ∈ [0,+∞) and
1.2b	There exists mi such that ak

ii
(t) ≥ 0 , aj

ii
(t) ≤ 0 , 

�k
ii
(t) ≤ �

j

ii
(t) for k = 1,… ,mi  ,  j = mi+1,… ,m , 

∑mi

k=1
ak
ii
(t) ≥

∑m

j=mi+1

���a
j

ii
(t)

��� f o r  t ∈ [0,+∞) 

∫ t

t−�+
ii
(t)

�∑mi

k=1
ak
ii
(s)−

∑m

j=mi+1

���a
j

ii
(s)

���
�
ds ≤ 1

e
  , 

t ∈ [0,+∞) and ∫ s+Δi

s

∑mi

k=1
ak
ii
(�)d� ≤ 1

e
 ∀s ≥ 0 , 

where Δi = esssupt≥0

{
�+
ii
(t) − �−

ii
(t)

}

Then system (2.1) is exponentially stable.

2.2 � Engineering preliminary results: drone’s motion 
equations

2.2.1 � Nonlinear equations

Let us define the following variables and parameters used 
in equations of motion for a drone (see Fig. 1) [21]:

1.	 For forces and moments of forces: 

P—Tractive force directed along longitudinal drone 
axis

�+
ii
(t) = max

m≥k≥1
�k
ii
(t)

�−
ii
(t) = min

m≥k≥1
�k
ii
(t)

Δi = esssupt≥0

{
�+
ii
(t) − �−

ii
(t)

}
.
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Y—Carrying force orthogonal to flight velocity
X—Resistance force opposite to V
G—Gravitation force
Mz—Total moment of aerodynamical forces with 
respect of transversal axis
f1, f2, f3—Random forces and random moments of 
forces

2.	 For variables describing motion: 

V—Flight velocity tangent to trajectory (with 
respect of air)
H—Height above mean sea level of a drone flight
L—Drone path in longitudinal direction
ϑ—Pitch angle, i.e., angle between longitudinal 
drone axis and horizontal plane
θ—Tilting of velocity about horizontal plane
α—Angle of attack, i.e., angle between longitudinal 
axis of a drone and projection of drone velocity on 
the symmetry plane of the drone

3.	 Drones parameters: 

m = G/g—Drone mass
Jz—Inertial moment of drone with respect of axis 
z p—air density

4.	 Controlling signals: 

�p—Position of drone central control knob
�B—Deviation of drone control elevator

5.	 External environment parameters: 

Ux and Uy—wind velocities along axes x and y , cor-
respondently

It is shown in [21] that forward movement and rota-
tion are described by the system of equations:

Here

cx  and cy—coefficients of resistance and carrying 
forces, correspondently
mz—Coefficient of moment
S—Area of winds
ba—Length of wind chord
�(H)—Air density at a flight height
M = V∕a—Mach number
a—Sound velocity

Aerodynamical damping moment:

L1—Distance from tail unit to center of mass
k, k′—Constants

(2.2)

m
dV

dt
= P

(
𝛿p(t),M(V ,H)

)
cos(𝛼) − X (𝛼, V ,H) − G sin(𝜃) + f1(t)

mV
d𝜃

dt
= P

(
𝛿p(t),M(V ,H)

)
sin(𝛼) − Y(𝛼, V ,H) − G cos(𝜃) − f2(t)

Jz
d2
𝜗

dt2
= Mz

(
𝛼,M(V ,H), 𝛼̇, 𝜗̇, 𝛿B(t)

)
+ f3(t)

dH

dt
= V sin(𝜃) + Uy(t)

dL

dt
= V cos(𝜃) + Ux(t)

𝜗 = 𝜃 + 𝛼

P = P
(
𝛿p, V

)
, X = cx(𝛼,M)S

𝜌(H)V2

2
, Y = cy(𝛼,M(V ,H))S

𝜌(H)V2

2
,𝜗 = 𝜃 + 𝛼,

Mz = mz

(
𝛼,M(V ,H), 𝛼̇, 𝜗̇, 𝛿B

)
baS

𝜌(H)V2

2
,M(H)def

V

a(h)

mz

(
𝛼, 𝛼, 𝜗̇, V , 𝛿B, 𝜌

)
= m1z

(
𝛼,M(V ,H), 𝛿B

)
+m2z

(
M(V ,H), 𝛼̇, 𝜗̇

)

m2z

(
M(V ,H), 𝛼̇, 𝜗̇

)
= k

(
L1

M(V ,H)
𝜗̇ + k�𝛼̇

)

Fig. 1   Parameters of drone’s longitudinal motion
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Dependence of parameters on a flight height above 
mean sea level is defined by the following equations:

where

TH(H)—Temperature at a flight height
T (0), �(0)—Temperature and air density at mean sea 
level
�—Adiabatic constant
R—Gas constant
�—Temperature gradient over height

�(H) = �(0)

�
TH(H)

T (0)

� 1

�−1

; a(H) =
√
�RTH(H); TH(H) = T (0) − �H,

2.2.2 � Stationary desirable trajectory

2.2.2.1  Solution of nonlinear equation  For the constant wind, 
zero-controlling external small random forces and moments, 
we can find a steady-state solution for a drone flight:

where ΔUx(t),ΔUy(t)—small wind fluctuations.
The steady-state solution can be obtained from (1) by 

equating all external small random forces and moments, 
controlling parameters, wind velocity fluctuations, all 
derivatives to zero:

V0, �0, �0,�0,H0, (Ux)0, (Uy)0

Uy(t) = (Uy)0 + ΔUy(t)

Ux(t) = (Ux)0 + ΔUx(t),

G sin(�0) = P0 cos(�0) − (cx)0S
�0V

2
0

2

def
= −

1

2
(c�

x
)0S�0V

2
0

G cos(�0) = P0 sin(�0) + (cy)0S
�0V

2
0

2

def
=

1

2
(c�

y
)0S�0V

2
0

(
mz

)
0
= 0

V0 sin(�0) = −(Uy)0

L(t) = (V cos(�0) + (Ux)0)t + L(0)

�0 = �0 − �0

�p(t) = 0; �B(t) = 0; f1(t) = 0; f2(t) = 0; f3(t) = 0;ΔUx(t) = 0;ΔUy(t) = 0

Table 1   Coefficients of 
equations for longitudinal 
motion

Drone

Lightweight Middle Heavy

H = 11 km 
M = 0.9
�
a
= 3.8 s

H = 0, landing H = 4 km 
M = 0.65
�
a
= 2.1 s

H = 8 km 
M = 0.8
�
a
= 2.5 s

H = 12 km 
M = 0.9
�
a
= 4 s

H = 0, landing

n11 0.024 0.12 0.019 0.026 0.048 0.12
n12 − 0.11 − 0.28 0.019 − 0.025 − 0.079 − 0.12
n13 0.2 0.4 0.3 0.1 0.17 0.3
n14 − 4.3·10−4 – − 4.4·10−4 − 4·10−4 − 4.2·10−4 –
n21 − 0.4 − 0.8 − 0.6 − 0.36 − 0.68 − 0.65
n22 2.4 2.4 2.66 3 2.4 2.35
n23 0 0.02 0 0 0 0.015
n24 − 1.22·10−2 – − 1.28·10−2 − 1.1·10−2 − 1.2·10−2 –
n31 0 0 0 0 − 1.2 0
n0 0.4 0.59 0.59 1.17 0.68 0.9
n32 38 6.6 10.63 42 36 8
n33 2.45 1.67 1.69 2.5 2.42 2.35
n34 − 0.053 – − 0.055 − 0.05 − 0.05 –
nB 49 15.2 24.5 28 46 8.4
n
p

0.022 0.019 0.021 0.02 0.02 0.019
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Here we use the following steady-state parameters:

(
�c

′

x

�M

)

0

 , 
(

�c
′

y

�M

)

0

,
(

�cx

��

)

0
,
(

�cy

��

)

0
,
(

�P

��P

)

0
,
(
c
′

y

)

0
,
(
c
′

x

)
0
 , 
(

𝜕mz

𝜕𝛼̇

)

0
, 

(
�mz

��

)

0
,
(

𝜕mz

𝜕𝜗̇

)

0
,
(

�mz

�M

)

0
,
(

�mz

��B

)

0
—values of the functions and 

i t s  d e r i v a t i v e s  f o r  t h e  s t e a d y  v a l u e s 
V0, �0, �0,�0,H0,

(
Ux

)
0
,
(
Uy

)
0
, �B(t) = 0, �P(t) = 0

2.2.2.2  Choosing desirable parameters for stationary solu-
tion  The typical real values of the coefficients nij are given 
in Table 1.

2.2.3 � Linear equations for perturbations with respect 
to stationary solution

2.2.3.1  Concluding linear equation for  the  perturba-
tions  Since system (1) is nonlinear, it is too hard to use those 
equations to analyze stability. We need to linearize those 
equations on the premise that the parameters �0 , �0 , V0 , �0 , 

(
TH
)
0
= T0 − �H0; �0 = �(0)

(
TH
(
H0

)

T0

) 1

�−1

; a0 =

√
�R

(
TH
)
0
; M0 =

v0

a0

P0 = P
(
0,M0

)
;
(
cx
)
0
= cx

(
a0,M0

)
;
(
cy
)
0
= cy

(
a0,M0

)
; (mz)0 = mz

(
a0,M0, 0, 0, 0

)

H0 corresponding with steady flight get small increments 

Δ�,Δ�,ΔV,Δ�,ΔH caused by perturbations action on a flight.
Let us define the following deviations from the station-

ary path:

The correspondent parameters are the following:

rz—inertial radius

We can make linearization of (1) in the neighborhood of 
the found steady-state solution:

V = V0 + ΔV (t)

� = �0 + Δ�

� = �0 + Δ�(t)

� = �0 + Δ�(t)

H = H0 + ΔH(t)

v(t) =
ΔV

V0
; h(t) =

ΔH

V0�a
; �(t) = Δ�; �(t) = Δ�; �(t) = Δ�; vy(t) =

ΔUy

V0
; vx(t) =

ΔUx

V0
;

�a =
m

�0V0S
;� =

bam

2r2
z
�0S

; r2
z
=

Jz

m

t̄ =
t

𝜏a
; p =

d

dt̄

c
�

x
(M)def cx

(
�0,M

)
− 2

P(0,M) cos(�0)

�0SV
2
0

; c
�

y
(M)def cy

(
�0,M

)
+ 2

P(0,M) cos(�0)

�0SV
2
0

;

Fig. 2   Automatic control
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2.2.3.2  Description of controlled parameters in linear equa-
tions defined by  autopilot  For the case when stationary 
parameters cannot provide stability of the desirable sta-
tionary trajectory themselves, we need to use autopilots 
(Fig.  2). An autopilot states the controlling parameters 
�p, �B to be functions of the output-controlled parameters 
(�(t);h(t);�(t);�(t)):

(
p + n11

)
� + n12� + n13� + n14h = np�p + f1(t)

− n21� +
(
p + n22

)
� −

(
p + n23

)
� + n24h = f2(t)

n31� +
(
n0p + n32

)
� +

(
p2 + n33p

)
� + n34h = −nB�B(t) + f3(t)

− n41� + n42� − n42� + ph = �y(t)

n11 =
M0

2

(
𝜕c

�

x

𝜕M

)

0

+ (cx)0; n12 =
1

2

((
𝜕cx

𝜕𝛼

)

0

− (cy)0

)
;

n13 =
1

2
(c

�

y
)0; n14 =

𝛽V0𝜏0

2(TH)0

[
M0

2

(
𝜕c

�

x

𝜕M

)
−

(
cx
)
0

𝛾 − 1

]
;

n21 = −

(
M0

2

(
𝜕c

�

y

𝜕M

)

0

+ (cy)0

)
; n22 =

1

2

((
𝜕cy

𝜕𝛼

)

0

+ (cx)0

)
;

n23 =
1

2
(c

�

x
)0; n24 =

𝛽V0𝜏0

2(TH)0

[
M0

2

(
𝜕c

�

y

𝜕M

)

0

−

(
cy
)
0

𝛾 − 1

]
;

n31 = −𝜇M0

(
𝜕mz

𝜕M

)

0

; n32 = −𝜇

(
𝜕mz

𝜕𝛼

)

0

;

n33 = −
𝜇

𝜏𝛼

(
𝜕mz

𝜕𝜗̇

)

0

; n34 = −𝜇
𝛽𝜏𝛼V0

2(TH)0
M0

(
𝜕mz

𝜕M

)

0

;

n0 = −
𝜇

𝜏𝛼

(
𝜕mz

𝜕𝛼̇

)

0

;

n41 = sin(𝜃0); n42 = cos(𝜃0);

np =

(
𝜕P

𝜕𝛿P

)

0
cos(𝛼0)

𝜌0sV
2
0

; nB = −𝜇

(
𝜕mz

𝜕𝛿B

)

0

; p =
d

dt̄

�P(t − �) = p1�(t − �) + p2�(t − �) + p3�(t − �) + p4h(t − �);

�B(t − �) = b1�(t − �) + b2�(t − �) + b3�(t − �) + b4h(t − �)

which are deviations from the desirable stationary trajec-
tory. The values of the output parameters can be obtained 
by autopilot from navigation measurements, for example, 
from vision-based navigation, inertial navigation, satellite 
navigation, and so on. On the basis of these navigation 
measurements, the autopilot forms controlling signals 
to decrease undesirable deviation. Unfortunately, there 
always exists some time delay � in getting information 
about the output-controlled parameters to autopilot for 
any navigation measurements. So, we have a problem, 
because of the lack of some necessary information for 
controlling. In this paper, we demonstrate that we are pos-
sible even for such conditions with the time delay to get 
controlling signal providing a stable flight.

3 � Analysis of drone flight stability

3.1 � Adjusting the system of linear differential 
equation for perturbations to the form 
appropriate for using preliminary mathematical 
theory

We have to adjust our system to a proper form to apply the 
theory of stability.

Let us start with linear substitution. It brings the system to 
a form where all diagonal coefficients are nonzero.

The first substitution is following:

Now we have:

��(t) = −n11�(t) − n12�(t) − n13�(t)

− n14h(t) = np�p(t − �)

��(t) = ��(t) + n21�(t) − n22�(t) + n23�(t) − n24h(t)

���(t) = −n0�
�(t) − n33�

�(t) − n31�(t)

− n32�(t) − n34h(t) − nB�B(t − �)

h�(t) = n41�(t) − n42�(t) + n42�(t)

h(t) = �(t) −Wv(t) ⇒ h�(t) =
d�(t)

dt
−W

dv(t)

dt
;

��(t) = −n11�(t) − n12�(t) − n13�(t) − n14(�(t) −W�(t)) = np�p(t − �)

��(t) = ��(t) + n21�(t) − n22�(t) + n23�(t) − n24(�(t) −W�(t))

���(t) = −n0�
�(t) − n33�

�(t) − n31�(t) − n32�(t) − n34(�(t) −W�(t)) − nB�B(t − �)

��(t) = W
(
−n11�(t) − n12�(t) − n13�(t) − n14(�(t) −W�(t)) + np�p(t − �)

)

+ n41�(t) − n42�(t) + n42�(t)
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The second linear substitution is used here to decrease 
the order of the system.

�P and �B are control parameters. We want to express 
them as linear combinations of our original variables:

Taking this into account the system will be the 
following:

3.2 � Applying the mathematical theory 
for stabilization of drone flight with respect 
to the chosen desirable stationary trajectory

Apply the condition (1.1) of Theorem 3.2 in [1], described 
in Sect. 2 of this paper to system (3.1)

Consider the system of inequalities:

��(t) = �(t) + b0�(t);

��(t) = − n11�(t) − n12�(t) − n13�(t)

− n14(�(t) −W�(t)) + np�p(t − �)

��(t) = �(t) + b0�(t) + n21�(t) − n22�(t)

+ n23�(t) − n24(�(t) −W�(t))

��(t) = �(t) + b0�(t)

��(t) = −nB�B(t − �) +
((
−n23 − b0

)
n0 − b0

(
n33 + b0

))
�(t)

+
((
−Wn24 − n21

)
n0 +Wn34 − n31

)
�(t)

+
(
−n33 − b0 − n0

)
�(t) +

(
n0n24 − n34

)

�(t) − �(t)
(
−n0n22 + n32

)

��(t) = W�p(t − �)np +
(
W2n14 −Wn11 + n41

)

�(t) +
(
−Wn13 + n42

)
�(t)

+
(
−Wn12 − n42

)
�(t) −W�(t)n14

�P(t − �) = p1�(t − �) + p2�(t − �) + p3�(t − �) + p4h(t − �);

�B(t − �) = b1�(t − �) + b2�(t − �) + b3�(t − �) + b4h(t − �)

(3.1)

��(t) = −n11�(t) − n12�(t) − n13�(t) − n14(�(t) −W�(t))

+ np
(
p1�(t − �) + p2�(t − �) + p3�(t − �) + p4((�(t − �) −W�(t − �))

)

��(t) = �(t) + b0�(t) + n21�(t) − n22�(t) + n23�(t) − n24(�(t) −W�(t))

��(t) = �(t) + b0�(t)

��(t) = − b0
(
�(t) + b0�(t)

)

− n0
(
�(t) + b0�(t) + n21�(t) − n22�(t) + n23�(t) − n24(�(t) −W�(t))

)

− n33
(
�(t) + b0�(t)

)
− n31�(t) − n32�(t) − n34(�(t) −W�(t)) − nB

(
b1�(t − �)

)

+ b2�(t − �) + b3�(t − �) + b4(�(t − �) −W�(t))

��(t) = W
(
p1�(t − �) + p2�(t − �) + p3�(t − �) + p4(�(t − �) −W�(t − �))

)
np

+
(
W2n14 −Wn11 + n41

)
�(t) +

(
−Wn13 + n42

)
�(t)

+
(
−Wn12 − n42

)
�(t) −W�(t)n14

Taking other coefficients from the first column of Table 1, 
we get following:

(3.2)

(
n
p
p4W + n14W − n

p
p1 + n11

)
z1 −

|||−npp2 + n12
|||z2

−
|||−npp3 + n13

|||z3 −
|||−npp4 + n14

|||z5 ≥ 1

(3.3)
n22z2 −

||n24W + n21
||z1 − ||n23 + b0

||z3 − z4 −
||n24||z5 ≥ 1

(3.4)−b0z3 − z4 ≥ 1

(3.5)

(
b0 + n0 + n33

)
z4 −

||−n0n21 − n0n24W − n21 + n34W

−n
B
b1 + n

B
b4W

||z1 − ||n0n22 − n32 − n
B
b2
||z2

−
|||n0b0 + n33b0 + b

2

0
+ n0n23 + n

B
b3
|||z3

− ||n0n24 − n34 − n
B
b4
||z5 ≥ 1

(3.6)

(
−n

p
p4W + n14W

)
z5 −

|||−W
2
n
p
p4 +W

2
n14 +Wn

p
p1

−Wn11 + n41
||z1 −

||||
−n

p
p2 + n12 +

n42

W

||||
z2

−
||||
−n

p
p3 + n13 −

n42

W

||||
z3 ≥ 1

n11 = 0.024, n12 = −0.11, n13 = 0.2,

n14 = −0.00043, n21 = −0.4, n22 = 2.4,

n23 = 0, n24 = −0.0122, n31 = 0,

n32 = 38, n33 = 2.45,

n34 = −0.053, n0 = 0.4, n
B
= 49,

n
P
= 0.022, n41 = 0, n42 = 1;
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We choose z1 = 1 ⋅ |z|,z2 = 1 ⋅ |z| ,  z3 = 10−10 ⋅ |z|, 
z4 = 10−10 ⋅ |z|,z5 = 1 ⋅ |z| , where |z| ≫ 1, |z| ⋅ 10−10 ≫ 1

From (3.5)

From (3.4) 

We choose b0 = −1.001

Then we can calculate parameters b1, b2, b3, b4:

b1 = −
n21

(
n0 + 1

)

nB

b2 =
n0n22 − n32

nB

b3 = −
b2
0
+ n0b0 + n33b0 + n0n32

nB

b4 =
n0n24 − n34

nB

b0 ≥ −n0 − n33 + 1∕
(
|z| ⋅ 10−10

)

b0 ≥ −
(
1 + 1∕

(
|z| ⋅ 10−10

))

b1 = 0.01142857143, b2 = −0.7559183673,

b3 = 0.03777242857, b4 = 0.0009820408163

From (3.3)

We choose W = −63

We choose

n22 −
||n24W + n21

|| −
(||n23 + b0

|| + 1
)
⋅ 10−10 − ||n24|| ≥

1

|z|
n22
||n24||

−

(||n23 + b0
|| + 1

)

||n24||
⋅ 10−10 − 1 −

1

|z|||n24||
−

n21

n24
≥ W

≥ −
n22
||n24||

+

(||n23 + b0
|| + 1

)

||n24||
⋅ 10−10 + 1 +

1

|z|||n24||
−

n21

n24

162.95 −

(||n23 + b0
|| + 1

)

||n24||
⋅ 10−10 −

1

|z|||n24||
≥ W

≥ −228.51 +

(||n23 + b0
|| + 1

)

||n24||
⋅ 10−10 +

1

|z|||n24||

||||
−npp2 + n12 +

n42

W

||||
=
|||−npp2 + n12

||| =
||||
n42

2W

||||
||||
−npp3 + n13 −

n42

W

||||
=
|||−npp3 + n13

||| =
||||
n42

2W

||||
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Fig. 3   Numerical simulation of system (3.1) for time delay � = 0.447(unitless time), where y1(t) = v(t), y2(t) = α(t), y3(t) = ϑ(t), y4(t) = φ(t), 
y5(t) = λ(t)
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so

Then we can calculate parameters p2,p3:

We introduce new variable p5 = p1 −Wp4 . Substituting 
p1 = p5 +Wp4 , we get conditions for parameters p4 and p5 
from (3.2) and (3.6):

We find the parameters and choose the particular ones 
that satisfy the requirements:

p2 = −

|||
n42

2W

||| +
||n12||

np
, p3 = −

|||
n42

2W

||| +
||n13||

np
;

p2 = −5.360750359, p3 = 9.451659450

(
n14W −

||||
n42

2W

||||
(
1 + 10−10

)
+ n11

)
− nPp5 −

|||−npp4 + n14
||| > 0

(
n14W −

||||
n42

2W

||||
(
1 + 10−10

))
− npp4W −

|||W
2n14 +Wnpp5 −Wn11 + n41

||| > 0

(3.7)

− 0.022p5 + 0.04315349210 − ||0.022p4 + 0.00043|| > 0

0.022p4 − 0.007506507971 − ||0.00309 + 0.022p5
|| > 0

Now it is possible to find the requirements for delay: We 
apply the conditions (1.2) of Theorem 3.2 in [1], described 
in Sect. 2 of this paper to system (3.1).

From equation for ��(t) , we get two conditions.
The first condition is 

(
n14W + n11 − npp1

)
� ≤ 1

e
 . From 

this condition, we get that 0.821� ≤ 0.368 and finally we 
have � ≤ 0.448.

p1 = −35, p4 = 0.5512345678
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Fig. 4   Numerical simulation of system (3.1) for time delay � = 1(unitless time), where y1(t) = v(t), y2(t) = α(t), y3(t) = ϑ(t), y4(t) = φ(t), y5(t) = λ(t)

The second condition 
(
n14W + n11 − n

p
p1 −

|||npp4W
|||
)

� ≤ 1

e
 . From this condition, we get that 0.057� ≤ 0.368 and 

finally, � ≤ 6.445.
F r o m  e q u a t i o n  f o r  ��(t)  ,  w e  g e t  t h a t (

n14W − npp4W
)
� ≤ 1

e
 . It means that 0.791� ≤ 0.368 and 

finally, we get � ≤ 0.465.
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Finally, from three conditions above, we get the follow-
ing condition:

It is unitless time normalized by �a = 3.8 s . Delay time 
in seconds is defined by

3.3 � Comparing theoretical results with computer 
simulations

We made numerical simulation of system (3.1) for different 
values of time delay (Figs. 3, 4 and 5) and for the controlled 
parameters of autopilot, which are chosen in the chapter 
above.

From the mathematical theory, we know that such a 
system must be stable for time delay satisfying condition 
(3.8). Indeed, we see from Fig. 3 that initial perturbations 
of stationary solution decrease in time as it was predicted 
by theory.

If the system has the same controlled parameters of 
autopilot, but time delay larger then upper boundary in 

(3.8)� ≤ 0.448.

(3.9)�s ≤ 0.448�a = 0.448 ∗ 3.8 s = 1.703 s.

(3.8), the mathematical theory cannot give any predic-
tion. Indeed, condition (3.8) is sufficient, but not necessary. 
Numerical simulations demonstrate that system is stable 
even for larger values of time delay (see Fig. 4). However, 
for large enough values of time delay, the system begins to 
diverse (see Fig. 5). This result demonstrates that our upper 
boundary for time delay is correct but can be improved.

4 � Conclusion

We demonstrated possibility to supply stable drone auto-
matic flight when there exists a time delay in transfer of 
information (about motion parameters) from navigation 
measurement devices to autopilot. We found controlled 
parameters for some cases of flight and estimated upper 
boundary of time delay for such system. Numerical simula-
tions demonstrate that our estimation of upper boundary 
for time delay is correct but can be improved. It is an open 
problem for future investigation.
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Fig. 5   Numerical simulation of system (3.1) for time delay � = 2(unitless time) , where y1(t) = v(t), y2(t) = α(t), y3(t) = ϑ(t), y4(t) = φ(t), y5(t) = λ(t)
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