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Abstract
In this paper, a stochastic nonlinear multiscale computational scheme is proposed to study the influence of the vari-
ability in both physical parameters of constituent materials and geometrical parameters such as fiber orientation, fiber 
arrangement of short fiber reinforced composites on the damage propagation. The aim is to predict many probable 
damage patterns in a huge number of scenarios under complex strain conditions and to discuss the influential level of 
variability in the physical and geometrical parameters for short fiber reinforced composites. The parameterization and 
numerical modelling for short fiber reinforced plastics made by injection molding are conducted. The random physical 
parameters are considered theoretically by the first-order perturbation based stochastic homogenization method, while 
sampling is used for the random geometrical parameters. When the scenario becomes huge in the stochastic nonlinear 
analysis, a computational scheme using sub-sampling is proposed. Moreover, the stochastic prediction of the homog-
enized properties of the composite material and their probable degradation are discussed. The stochastic computa-
tion of microscopic strains is analyzed though the damage propagation simulation. When the geometrical variability is 
considered, a definition of an average strain distribution among many samples is also presented. The efficiency of the 
accelerated element-by-element scaled conjugate gradient iterative solver is shown by solving many three-dimension 
random short fiber reinforced models with hundreds of thousands of degrees of freedom. The stochastic computational 
scheme provides a suitable reference to predict failure under specific reliability requirements of short fiber reinforced 
composites or other composite materials.

Keywords Stochastic finite element method · Sampling and sub-sampling · Variability · Microscopic damage evolution · 
Fiber reinforced composites

1 Introduction

All materials, especially composite materials, are charac-
terized by various degrees of inherent variability or ran-
domness. Variability exists on all scales from the arrange-
ment of a material microstructure to the structure at the 
macroscale. Particularly, there may exist variability in the 

constituent material properties, and geometries of the 
composite materials at various scales. The variability in 
these parameters induces variability of the mechanical 
behavior and damage evolution in the materials which 
may cause severe random reflections of composite struc-
tures. Besides, the variability of the materials may result 
in huge unpredicted scenarios of damage evolution. 
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Damages in a composite structure may remain hidden 
below the surface, undetectable by visual inspection until 
the entire structure has failed. Recently, the stochastic 
finite element method (SFEM) is an efficient technique to 
consider variability or randomness in composite materi-
als and has become a useful tool in several engineering 
fields. It is always required to develop a robust compu-
tation framework to take into account the variability or 
randomness in a design process of composite structures.

Some popular SFEMs, such as the spectral method [1] 
including the Karhunen–Loeve (KL) expansion [2], the 
polynomial chaos (PC) expansion [3], and the stochastic 
perturbation method [4–7], are used to represent the 
input and output random fields. Computational cost in 
SFEM is smaller than that in the Monte Carlo simulation 
(MCS), because the accuracy of MCS depends on the large 
enough number of samples, especially when there are 
many random parameters. The spectral method was used 
to represent the result in an explicit form, using a finite 
number of random variables. The KL and PC expansions 
consist of discretizing random parameters in a Fourier-like 
series and solve the problem along with a basis of orthog-
onal random variables. The stochastic perturbation tech-
nique is based on the n-th order Taylor expansion. Using 
the stochastic perturbation technique, Talha and Singh [6] 
analysed the thermo-mechanical stability with random-
ness in the material properties of functionally graded 
material plates. Zhou et al. [7] presented a perturbation-
based stochastic homogenization framework to predict 
the effective elastic properties considering randomness in 
the macroscopic properties of the constituents. One of the 
authors introduced a first-order perturbation based sto-
chastic homogenization (FPSH) method for random mod-
elling in the estimation of mechanical properties of human 
vertebral trabecular bone [5]. Afterward, this method was 
applied to analyze three-phase composite material con-
sidering randomness in both physical and geometrical 
parameters at the microscale [8]. The FPSH method has 
been developed for considering many random physical 
parameters in constituent materials to clarify the effect of 
randomness in each engineering constant of constituent 
mechanical properties [9]. Additionally, the accuracy of 
the FPSH was verified and compared with the MCS. The 
asymptotic expansion homogenization method would 
be used to simulate the damage propagation of a brittle 
representative volume element (RVE) model with a low 
level of damage or failure probability at the micro scale 
[10, 11]. The asymptotic homogenization approach was 
also clearly presented by Ramírez-Torres et al. [12]. Since 
to shorten the entire computational process in nonlinear 
analysis, and since the results of the higher-order expan-
sion are not always give higher accuracy than that of the 

first-order expansion, the first-order perturbation tech-
nique was used our previous work [13] and in this work.

For the improvements in the design processing technol-
ogies on cost-efficient design, the building block approach 
(BBA) is applied to test scale-up from coupons, elements, 
and subcomponents to establish final composite struc-
tures [14, 15]. At the lower level of the BBA, the composite 
microstructures of coupons are tested. The engineering 
constants, strengths, and strain-to-failure of a coupon 
are estimated by tension, compression, and shear tests 
[15]. However, the manufacturing processes of compos-
ite materials involves many randomness or variability in 
microstructures affecting the quality of the component. 
This BBA needs to involve many experiments to achieve 
a safe design. It results in excessive cost and time-con-
suming processes. Therefore, the replacement of a huge 
number of experimental tests of composite materials by 
the stochastic numerical simulation considering the vari-
ability or randomness is a big matter of concern recently.

The types of variabilities in SFEM can be categorized 
into the variabilities of physical [8], geometrical param-
eters [16, 17] and other sources such as initial/boundary 
conditions and loading conditions [18]. Particularly, the 
parameterization of geometrical variability is very impor-
tant but challenging. One of the authors investigated the 
influence of the variability in geometrical parameters of 
fluctuated meso/micro-structure of plain-woven fab-
ric GFRP laminate on its properties and introduced the 
parameterized geometrical quantities of randomness 
[17]. Recently, fiber reinforced composite materials have 
many applications in a wide range of engineering fields 
and industries such as aerospace, automobile, and light 
industrial products, because of their low density, high 
strength and design flexibility [19]. Especially, short fiber 
reinforced composites are being used extensively since 
they can be used to make large and complex body parts 
[20]. During the injection molding process, fibers break-
age also usually occurs, and a random orientation distri-
bution, a fiber length distribution, random fiber arrange-
ment would result in the final product. Mortazavin and 
Faremi [19] investigated the anisotropic effects on tensile 
strength of short fiber reinforced plastics and found the 
variation of these materials caused by fiber orientation. 
Ioannis et al. [21] showed the larger effect of microstruc-
ture parameters such as aspect ratio, fiber orientation on 
the macroscopic behavior of short fiber reinforced ther-
moplastic composites. The mechanical properties of short 
fiber reinforced composites are critically dependent on 
these morphological structures, especially fiber orienta-
tion distribution which can result in the unreliable deter-
mination of the deterministic computation [22]. The fiber 
orientation in short fiber reinforced composites made by 
injection molding has been optimized by Chen et al. [23]. 
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Additionally, fiber arrangement in microstructures of short 
fiber reinforced composites should also be considered. To 
maximize the effectiveness of short glass fiber structures 
in mechanical properties, damage behaviors, fiber orien-
tation, and fiber arrangement were deeply considered in 
this research.

So far, a few researches were presented to investigate 
microscopic damage of fiber reinforced composites. For 
instance, Mishnaevsky et al. [24] proposed a numerical 
algorithm to investigate damage evolution and analyzed 
the interplay of damage mechanisms in unidirectional 
fiber reinforced composites. Sasayama et al. [25] intro-
duced the tensile failure of injection molded short glass 
fiber reinforced polyamide 6,6 by using a multiscale mech-
anistic model. Notta-Cuvier et al. [26] presented a damage 
model for short fiber reinforced composites with random 
fiber orientation subjected to uniaxial tension. An analy-
sis of fracture progress in unidirectional composites under 
tension using the extended finite element method was 
performed by Wang et al. [27]. Jha et al. [28] introduced 
a computational modelling framework for investigating 
the damage effects into fiber reinforced matrix compos-
ite materials. When considering variability or randomness 
in damage analysis, a nonlinear SFEM is recommended. 
Darith-Anthony Hun et  al. [29] proposed a stochastic 
multiscale approach to model crack propagation in ran-
dom heterogeneous microstructure and described the 
characterization of subscale-induced randomness on the 
macroscopic response of the domain. Karel Matouš et al. 
[30] showed the big role of virtual material testing and 
three-dimensional multiscale simulation for the nonlin-
ear material behavior and the importance of multiscale 
computation to consider aleatoric uncertainty from the 
microscopic scale to the macroscopic scale.

In the following work, the influence of microstructural 
variability on the damage propagation of short fiber rein-
forced composites is investigated by a stochastic nonlinear 
multiscale computational scheme. In Sect. 2, microstruc-
ture modeling of a short fiber reinforced plastic made by 
injection molding is introduced. In addition to the FPSH 
method for considering random physical parameters 
is presented. Following that, the scheme of sampling 
using for random geometrical parameters, and scheme of 
sub-sampling using for a huge scenario in the stochastic 
nonlinear analysis are proposed. In Sect. 3, one numeri-
cal exampling to show the application of the proposed 
scheme for the short fiber reinforced plastic is carried out 
to predict probable damage patterns under a complex 
strain condition. The discussion of the influence of physical 
and geometrical parameters on this material is also shown 
in this section. The efficiency of the accelerated element-
by-element scaled conjugate gradient (EBE-SCG) solver 
[13] is performed in this example. Conclusion remarks are 

provided in Sect. 4. This present work represents the first 
step towards developing a robust simulation framework 
for the prediction of practical damage evolution of com-
posite materials.

2  Stochastic nonlinear multiscale 
computational scheme

2.1  Microstructure modeling of short fiber 
reinforced composites

In this section, a modelling scheme of short fiber rein-
forced composite materials is presented. When model-
ling, all geometrical parameters such as fiber orientation, 
fiber lengths, fiber arrangement, or fiber ratio should be 
considered. However, in this work, only fiber orientation 
and fiber arrangement, which may have significant effects 
on the properties and damaged behavior of the material, 
are investigated considering a certain fiber length distri-
bution. Figure 1 shows the microstructure modeling for 
a skin-core-skin layered specimen of injection molded 
short fiber reinforced composite material with a two-scale 
coordinate setup with the definition of a scale ratio λ of a 
macroscopic scale x and a microscopic scale y by Eq. (1). 
Microstructures of injection molded short fiber reinforced 
plastics can be divided into 3 regions including skin-core-
skin regions [31]. Due to large shearing near the mold wall, 
the fibers in the skin regions are mainly aligned in the flow 
direction and are the dominant layers. In the core region, 
because of low shearing and large extensional flow, the 
fibers are more aligned transversely to the flow direction. 
The fibers in the first layer of the skin regions are immedi-
ately adjacent to the cavity wall due to the fountain flow, 
which moves and rotates the fibers toward the wall. The 
geometry of mold, the type of resin, and other injection 
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Fig. 1  Microstructure modeling for skin-core-skin layered speci-
men of injection molded short fiber reinforced composite material
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parameters lead to the variability of fiber orientation in the 
skin regions. As the basic building block approach of fiber 
reinforced composites, the investigation or prediction of 
microscopic damage propagation of injection molded 
products at the coupon level is very important to avoid 
over-designed structure and high-risk structural designs. 
The variability of the composite material can be captured 
in the microstructures of coupons by using statistical rep-
resentative element (SVE) whose minimum size is decided 
based on statistics of nearest fiber distance, fiber length, 
fiber orientation and fiber volume fraction.

In the mechanic approach, fiber orientation is modelled 
by using fiber orientation tensor [32]. On the other hand, 
in the manufacturing approach, fiber orientation is mod-
elled by using two angles φ and θ assigned in ranges of 
[− φmin, φmax] and [− θmin, θmax] as shown in Fig. 2. Note that 
when φ  = 0° and θ  = 90°, all the fibers are oriented in the 
flow direction, whereas φ  = 90° and θ  = 90° means the 
orientation is perpendicular to the flow direction. In this 

(1)� =
x

y

stochastic simulation, the fiber orientation sample j is 
denoted by XO

j
 with random distribution f (XO

j
) . The fiber 

arrangement sample i is denoted by XA
i | j with random dis-

tribution f (XA
i | j) . Where f denotes the probability density 

function. To automatically model random short fiber rein-
forced composites, we customized a commercial software 
Meshman Particle Packing (Insight, Inc., Tokyo, Japan) [33]. 
Meshman Particle Packing is a model generator for the 
discrete element method (DM). The software can pack not 
only isolated particles but also cluster particles in a speci-
fied region with arbitrary shapes. Therefore, we developed 
this software to generate random short fibers. In other 
words, this software includes an engine for packing short 
fibers using random numbers. We can set arbitrary lengths 
for short fibers, fiber orientations, and fiber arrangements 
as well. To this end, from input candidates of different fiber 
orientations, different fiber lengths, this software can eas-
ily generate many models with a different total number of 
fibers packed in the same region, and different fiber orien-
tation distributions by random numbers. Additionally, it is 
one step to provide a tool to find the optimal three-dimen-
sion SVE size of not only short fiber reinforced plastics but 
also other complex composites.

During the injection molding process, the resin flow and 
complicated structure cause fibers to be non-uniformly 
dispersed in random orientation and random arrange-
ment. For illustration of the modelling, Fig. 3 shows some 
microstructure models with different fiber arrangements 
for the given fiber orientation variabilities of 16 short fibers 
generated by the Meshman Particle Packing. All informa-
tion on these models will be provided more in Sect. 3.

Fig. 2  Definition of fiber 
orientation
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Fig. 3  Microstructure models with different fiber arrangements for given fiber angel variabilities by modified Meshman ParticlePacking
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When the physical and geometrical randomness at the 
microscale is considered, the prior probabilistic homogeni-
zation method is applied to many microstructure models 
according to fiber orientation sample j and fiber arrange-
ment sample i in case of j. In the probabilistic procedure, 
the expectation is not only to find the output results from 
a single value of an arbitrary quantity of interest such as 
homogenized properties DH , microscopic strain � but also 
the random distribution in the quantities of interest f

(
DH

)
 

and f (�) . The probability density function of homogenized 
property and average strain for many SVEs considering 
randomness in both physical and geometrical param-
eters can be obtained by the Gaussian mixture distribu-
tion method as in Eqs. (2–3). A Gaussian mixture distribu-
tion is used, because it can capture nonlinear formulation 
and quantify the randomness on the results. It is also a 
probabilistic model that assumes all the results of many 
models are represented by a mixture of Gaussian distri-
butions with random parameters [34]. In this work, jmax is 
the maximum number of fiber orientation samples and 
imax is the maximum number of fiber arrangement samples 
concerning j.

where 
∑jmax

j
f
�
XO
j

�∑imax

i
f
�
XA
i � j

�
= 1 . f

(
XO
j

)
 and f

(
XA
i | j

)
 are 

considered as the Gaussian weighted densities. They could 
be given first and then updated by experimental results 
which can be seen in our previously published paper [5]. 
In this work, they are obtained by taking flat probability. 
f
(
DH
Xi | j

)
 and f

(
�
Xi | j

)
 will be derived and presented in the 

following part.

2.2  First‑order perturbation based stochastic 
homogenization (FPSH) method considering 
random physical parameters

In the general formulation for a certain SVE, we consider a 
three–dimensional elastic body Ω as the assembly of peri-
odic microstructures SVEs as shown in Fig. 4. The elastic 
constants vary within an SVE of the composite. The solu-
tion of displacements also depends both on x and scale 
ratio λ. Dependence on y can be considered periodic for 
a fixed x at the macroscopic level. For different points x, 
the structure of the composite may vary, but on a point 
x, a periodic pattern can be found. The SVE model Y is the 
union of each constituent material domain Yr, where r = 1, 

(2)f
(
DH

)
=

jmax∑

j

f
(
XO
j

){ imax∑

i

f
(
XA
i | j

)
f
(
DH
Xi | j

)}

(3)Ave(�) =

jmax∑

j

f
(
XO
j

){ imax∑

i

f
(
XA
i | j

)
f
(
�
Xi | j

)}

2, 3, …, MTOT. The volume of Y is defined by |Y | . Ω is a ran-
dom quantity. The physical quantity is dependent on the 
microstructure. The displacement depends on both x and 
y of the domain Ω × Y. To analyse microscopic behaviours 
of composite materials at the coupon level, a two-scale 
homogenization method was studied [13]. The homog-
enized composite material model is utilized for the global 
mesh, while the microscopic heterogeneity, microscopic 
strain, and damage propagation are considered in the SVE 
model with random physical parameters of constituent 
materials and variabilities of geometrical parameters.

The macroscopic displacement is expanded asymp-
totically using the perturbation parameter λ [13]. The 
perturbed displacement expresses the heterogeneous 
microstructure deformation. A characteristic displacement 
�kl
s

 of a periodic function with respect to the microscale y 
was assumed in the same way as conventional homog-
enization theory [35]. It shows that the macroscopic strain 
can bridge the macroscale and microscale as well as the 
microscopic displacement. The Voigt notation kl = 11, 22, 
33, 23, 31, 12 is used to show six modes of characteris-
tic displacements and index s = 1–3 shows the degree of 
freedom of each node. Each mode of the characteristic 
displacements �kl shows the displacement under corre-
sponding applied macroscopic strain due to the micro-
scopic heterogeneity [13]. �kl also depends on the location 
of a point x. Additionally, characteristic displacements will 
be changed in nonlinear damage propagation solution 
due to the increase of given macroscopic strain, or load-
ing conditions.

In the derivation of two-scale homogenization theory, 
an averaging principle for a periodic function g used for 
the microscopic SVE model is given by Eq. (4) [35].

The class of the model is characterized by the assump-
tion that the macroscopic strain E and stress Σ at a point 

(4)lim
�→0∫�

g
(
x

�

)
d� = ∫

�

1

|Y | ∫Y

g(y)dYd�

Fig. 4  Two-scale problem of heterogeneous media
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x are the volume averages of their respective microscopic 
identical fields over a pre-described SVE as shown in 
Eq. (5). Where ε and σ are microscopic strain and stress, 
respectively.

Suppose that, in a heterogeneous material, the prop-
erties of constituents have randomness or variability. To 
express the randomness in the physical parameters of con-
stituents, � =

(
�1, �2,…

)
 is used. In this formulation,f (�) 

complies with a normal distribution corresponding to 
Exp(f (�)) = 0 and Var(f (�)) = �2 [8]. Usually, � depends on 
λ and therefore � is defined at the microscopic scale. Here-

after, vector and matrix form are used. It is assumed that 
microscopic mechanical properties of constituent materi-
als vary corresponding to random physical parameters � 
according to the normal distribution as in Eq. (6).

where D0

r
 and second term expresses the expected values 

and variance of mechanical properties, and the operator 

Pmnst
=

{
1 for(s, t) = (m, n), (n,m)

0 for others
 is used to assign the 

component mn of constituent material r corresponding to its 
random physical parameter �r,mn to the stress–strain matrix 
Dr. D1

r,mn
 is the component mn of the first order terms of Dr.

For a certain SVE, the microscopic displacement, which 
is different from the perturbed displacement, can be 
written by Eq. (7) [36]. Where the first term is associated 
with a homogeneous strain field corresponding to the 
macroscopic strain E, and the second term is the displace-
ment fluctuation field. Similarly, the SVE strain field can 
be decomposed into a homogeneous term and a fluctua-
tion term. Because the volume average of this strain field 
is equal to the macroscopic strain, the volume average of 
the displacement fluctuation term or the strain fluctuation 
term needs to equal 0 [9].

(5)E ≡ 1

|Y | �Y

�dY , � ≡ 1

|Y | �Y

�dY

(6)f
(
Dr

)
≈ D0

r
+

6∑

m=1

6∑

n=1

(
PmnD

1

r,mn

)
f
(
�r,mn

)

Based on the above setup in Eq. (6), the characteristic 
displacement also can be expanded by the first-order per-
turbation with respect to � with the formula in Eq. (8) [13].

For solving by finite element method, the zeroth, 
and first-order terms in a discretized form of �kl can be 
obtained by solving the Eqs. (9–10), respectively.

where B is the strain–displacement matrix and an operator 
to extract a column from a matrix is defined as Qkl

=

{
q11 q22 q33 q23 q31 q12

}T
 with qst =

{
1 for st = kl,

0 for others .

Subsequently, the macroscopic stress–strain matrix DH 
can be computed by Eq. (11). The zeroth and first-order 
terms of DH are obtained in Eqs. (12–13) by using all modes 
of the zeroth and first-order terms of �kl .

When the given macroscopic strain E is applied to the 
SVE model, the microscopic strain ε of each element is 
determined in a stochastic way by Eq. (14).

(7)f
(
umicro

)
= E y − f

(
�kl

)
Ekl

(8)f
(
�kl

)
≈
(
�kl

)0
+

MTOT∑

r

6∑

m=1

6∑

n=1

(
�kl

r,mn

)1

f
(
�r,mn

)

(9)

(

∫Y

BTD0BdY

)(
�kl

)0
= ∫Y

BT
(
D0Qkl

)
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)(
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)1
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PmnD
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)
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(
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DH
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2.3  Nonlinear computational scheme considering 
microscopic stochastic damage propagation

In this section, a nonlinear computational scheme of sto-
chastic microscopic damage propagation considering 
both physical and geometrical randomness is presented. 
The random physical parameters �r,mn are considered 

theoretically in FPSH, but sampling is used for random 
geometrical parameters XO

j
 and XA

i | j at the initial state of 
the first cycle c = 1. When damage appears under applied 
strain conditions, and then the scenario becomes huge 
afterward for each sample cXS in the stochastic nonlinear 
analysis, sub-sampling cXS

n
 is applied (see Fig. 5a). Where n 

Fig. 5  Algorithm of stochastic 
damage propagation analysis

(a)

(b)
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is the level of the standard deviations. In this work, two 
sub-samplings cXS

0
 and cXS

3
 corresponding to the expected 

value (50% of probability) and three deviation level (99.7% 
of probability) are addressed.

Many popular damage criteria for the damage model, 
such as maximum stress, maximum strain [13] as well as 
Tsai-Hill, Tsai-Wu [10, 11], Hoffman [37], Hashin [38], were 
widely used. In this framework, an arbitrary failure rule is 
accepted, but just for simplicity, a non-interactive criterion 
using maximum effective strain �cr is employed. This crite-
rion considers that the element of the matrix phase fails 
when its Mises microscopic strain exceeds the respective 
allowable �cr(see Fig. 5b). This criterion can be extended to 
reliability analysis when the respective allowable is consid-
ered as a random variable f

(
�cr

)
 . Based on the results of 

characteristic displacements solved by the EBE-SCG solver 
in FPSH, effective microscopic strains are calculated in the 
different levels of standard deviations. Once an element 
is damaged, the mechanical properties of that element 
will be updated by damaged properties which result in 
the stiffness degradation. Following this, the characteristic 
displacements must be simultaneously updated in the left-
hand side loop, so-called the sub-cycle (see Fig. 5b). The 

calculations are performed continuously under the same 
macroscopic strain level until there is no element dam-
aged anymore. During this sub-cycle computation, the 
strain relaxation is achieved. If damage does not occur, 
the macroscopic strain increases with small increments 
and afterward, the iterative process repeats according to 
the updated microscopic strain at the next cycle c + 1. The 
simulation of each model is stopped until there is no dam-
age to occur and no given macroscopic strain to update.

3  Numerical example

3.1  Sampling

For illustration in this work, 11 SVE models, con-
taining 16 short glass fibers with 3 fiber lengths of 
0.435 mm, 0.543 mm, and 0.645 mm in yellow, green, 
red color respectively, are demonstrated for the pro-
posed stochastic nonlinear damage scheme as shown 
in Fig. 6. The matrix is transparent. The size of the SVE is 
224 mm × 224 mm × 672 mm suitable to model the skin 
layer and core layer as well. The volume fraction of fiber is 

Fig. 6  Initial configuration of samples for cycle 1, 1XS
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4.5%. We seek to investigate the influences of fiber orienta-
tion and fiber arrangement on the damage propagation 
of the injection molded short fiber reinforced plastic in 
the angel range [-100,  100] of fiber orientation. All input 
parameters of the models generated by Meshman Parti-
cle Packing are provided in Table 1. There are 5 random 
fiber orientation samples with respect to its random fiber 
arrangements. The properties of constituent materials 
are given in Table 2 [24]. The properties of fibers and the 
matrix are employed corresponding to E-glass and Epoxy 
resin. Only the damage of the resin is performed in this 
example. The randomness of the material can be consid-
ered separately for each component of the stress–strain 
matrix of each constituent. In this example, to investigate 
the influence of only random physical parameter in the 
matrix phase and due to the limitation of the first order 
perturbation expansion, the randomness of this material 
is set in the same way as in our previous papers [13]. Once 
the elements of the matrix phase are damaged, the ran-
dom physical parameters of these elements are set to be 
zero.

3.2  Results

Many probable damage patterns of the short glass fiber 
reinforced composite are predicted and visualized in the 
three-dimension from the stochastic nonlinear simula-
tion when considering randomness in both physical and 
geometrical parameters. In this simulation, a combined 
transverse and shear strain E =

{
0 0.005 0 0.005 0 0

}
 

was assumed for the applied macroscopic strain. For short 
expression, we used E = 0.005 instead of the above one. 

The damage criterion utilizing for the effective strain in the 
matrix phase is assumed as �cr = 0.011 . The initial damages 
of the models were detected at E = 0.003. The results were 
verified by trying other smaller macroscopic strain incre-
ments with no significant difference. The contact between 
fiber and matrix is considered perfect. The number of 
10-noded tetrahedral elements of 11 SVE models goes 
from 318,093 to 332,027 with more than 4 hundreds of 
thousands of degrees of freedom. Damage initiation refers 
to the beginning of the degradation of the stiffness of 
finite matrix elements. The process of degradation begins 
when the microscopic effective strain satisfies the dam-
age criterion. Since the value of the effective microscopic 
strain in the matrix element exceeds the strain threshold, 
the properties of this element are changed, and Young’s 
modulus of this element is set to a very low value about 
0.00,001% of the initial value in this work. The numbers of 
failed elements are printed out in a file, which was used 
to visualize the calculated damage evolution in the matrix 
phase.

Some damage patterns of the material models without 
(top) and with (bottom) transparent boxes are shown in 
Fig. 7. Damaged resin appears near the fibers and then 
penetrates to other neighbor fibers. As the random fiber 
orientation and fiber arrangement, the damage patterns 
grow complexly in the different modes. Using the pro-
posed scheme, the damages of the random microstruc-
tures can be captured even though the morphologies are 
quite complex. Additionally, even with the same morphol-
ogy of the same model, this stochastic simulation can cap-
ture different damage patterns with different damaged 
volume fractions when considering quite small random 
physical parameter in the matrix phase. For illustration, the 
results of two other models XA

1 |2 and XA
1 |4 are shown in 

Fig. 8. With the same morphology of the model XA
1 |2 , the 

observed stochastic damaged volume fraction corre-
sponding to the three standard deviation level is 4.45% 
larger than the observed deterministic one corresponding 
to 50% of probability. It can be concluded that the variabil-
ity of the microstructure has a significant effect on the 
damage growth. The proposed scheme is one step to 
develop the virtual damage testing tool for complex 
microstructures at the microscale.

In this part, the microscopic strain distributions resulted 
from the above stochastic damage simulation are dis-
cussed. The significant influences of the variability in the 
physical and geometrical parameters on the microscopic 
strains are figured out as shown in Fig. 9. The strain distri-
butions in the matrix are highlighted on the high strain 
values and the differences among the models. The aver-
age strain is obtained by using Eq. (3). It can be observed 
that the variation of the microscopic strains on the right 

Table 1  Setting of samplings

Orientation 
sample No.

Fiber 
orienta-
tion XO

j

Angle φ Angle θ Number of samples 
w.r.t fiber arrange-
ment, imax

1 X
O

1
[− 3, 3] [87, 93] 2

2 X
O

2
[− 6, 6] [84, 96] 2

3 X
O

3
[− 10, 10] [80, 100] 2

4 X
O

4
[− 3, 3] [80, 100] 2

5 X
O

5
[− 10, 10] [87, 93] 3

Table 2  Properties of constituent materials

Material 
number, r

Young’s 
modulus 
(GPa)

Poisson’s ratio Random 
parameter 
�r,mn

Fiber 1 72 0.26 –
Matrix 2 3.79 0.37 0.03
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distribution tail which expresses the number of large strain 
values is more significant than that of the left tail which 
expresses the number of small strain values in case of 
linear analysis due to the macroscopic strain E= 0.003 as 
shown in Fig. 9a. It means that a huge scenario of the dam-
age propagations is considered at the initial stage before 
the damage evolution based on the stochastic calculation 
of microscopic strains. The variability among the strain dis-
tributions is much complex since the damage propagates 
during the stochastic damage process.

Figure 10 shows the probable degradation of the appar-
ent stiffness (i.e.,DH

11
 , DH

22
 and DH

44
 ) in the range of the three-

standard deviation during the damage propagation. It 
can be seen from DH

11
 that the composite is stiffer in the 

direction of alignment of the fibers when compared to 
the other directions. Initially isotropic constituent materi-
als change the composite properties to orthotropic due 
to the applied macroscopic strain. At the final damage 
state, the degradation of DH

22
 was faster than those of 

other components due to the applied strain conditions, 

Fig. 7  Some damage patterns predicted at cycle 3, 3XS
n

 (n = 0 or 3)

Fig. 8  Influence of physical parameters on damage pattern when the properties of matrix are (top) average or (bottom) 3 times of standard 
deviation at cycle 3, 3XS

n
[n = 0 (top) or 3 (bottom)]
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and the material was getting weakest in transverse direc-
tions since the components DH

22
 is reduced catastrophically. 

The light solid color shows the region of the degradation 

of the apparent stiffness considering the variability in the 
physical and geometrical parameters in the nonlinear sto-
chastic simulation.

(a)

(c) (d)

(b)

Fig. 9  Strain distributions in matrix highlighting on high strain value and on the differences among models
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Fig. 10  Degradation of apparent stiffness
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3.3  Discussion

As shown in Fig. 9a, at the initial state before the damage 
occurred, the higher effective strain distribution was found 
in case of XS

3

(
XA
3 |5

)
 and the minimum one was found in 

case of XS
0

(
XA
2 |5

)
 . This tells that the influence of the 

arrangement in the same orientation sample gave the 
maximum and minimum effective strain distributions and 
therefore the influence of the arrangement can lead to 
conclude that it is more significant than the influence of 
the orientation in this analysis. At cycle 3 with E = 0.005 as 
shown in Fig. 9d, it is quite reasonable that the maximum 
effective strain distribution was founded for XS

3

(
XA
2 |2

)
 and 

the minimum one is XS
0

(
XA
1 |5

)
 , which respectively agreed 

with the minimum and maximum of the degraded stiff-
ness of the components DH

11
 , DH

22
 , DH

44
 as shown in Fig. 11, 

where the results of only some samplings were visible.
In the case of the orientation sample 5 with 3 different 

arrangements, by comparing the degraded stiffness 
among 3 SVE models, i.e. XS

0

(
XA
1 |5

)
,XS

0

(
XA
2 |5

)
 , XS

0

(
XA
3 |5

)

(blank circles in Fig. 11) of DH
11

 , DH
22

 , DH
44

 , it can be pointed 
out that large difference was found among them. Addi-
tionally, the damaged volume evolution of the different 
arrangements for the same orientation samples resulted 
in quite different behavior. For instance, only the results of 
the orientation samples 2 and 5 are shown in Fig.  12. 

Fig. 11  SVE specification in degraded apparent stiffness with 
enlarged views on the components DH

11
 , DH

22
 , DH

44
 due to E = 0. 005 

(Only the results of orientation samples 2 and 5 are shown)

Fig. 12  Influence of fiber 
arrangement on damaged 
volume evolution

(a)

(b)
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Furthermore, looking at the results of sub-samplings XS
0
 

and XS
3
(blank and solid circles) for the 3 SVEs of the orienta-

tion sample 5 in Fig. 11, the variability influence of the 
physical parameters on the degraded stiffness was smaller 
in most of the cases than that of the arrangement or ori-
entation. To this end, we can illustrate the influential level 
(blue arrows) of the physical and geometrical parameters 
on the strain distributions and the homogenized stiffness 
as shown in Fig. 13.

However, the results in the linear analysis of the proba-
bilistic density function of DH

r,mn
 pointed out that the vari-

ability influence of the physical parameter is larger than 
the variability influence of geometrical parameters (see 
Fig. 14). The mixture distribution of the homogenized 
properties was obtained by Eq.  (2). In this state, the 

Fig. 13  Variability influence level of physical and geometrical 
parameters

(a) (b) (c)

Fig. 14  Probabilistic density function of DH in the linear analysis

Fig. 15  Number of EBE-SCG 
iterations and damaged 
volume evolution of a sample 
XS
3

(
XA
1 | 2

)
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influence level (green arrows) of the physical and geo-
metrical parameters can be shown in Fig. 13.

The acceleration by using the previous solutions as ini-
tial vectors has already been shown in our previous paper 
[13]. Figures 15 and 16 with Table 3 show the number of 
the EBE-SCG iterations and damaged volume evolutions 
of two samples XS

3

(
XA
1 |2

)
 and XS

3

(
XA
1 |4

)
 . For the solutions 

of the zeroth-order and the first-order terms of the char-
acteristic displacements of both samples, when the dam-
aged volume increased significantly, the number of itera-
tions did not always increase. The reason is that the 
previous solutions worked well for the faster convergence 
even though the damaged volume increased. As the 
increase of sub-cycle numbers, the damaged volume is 
saturated and together with that, the number of SCG itera-
tion is decreased. But at the beginning of the cycle, the 
macroscopic strain is increased, so the number of iteration 
was again larger.  

4  Concluding remarks

In this paper, a stochastic multiscale computational 
scheme for the damage propagation considering the 
physical and geometrical variabilities in the microstruc-
tures of short glass fiber reinforced composites was per-
formed. The FPSH method was used to take into account 
the variability in the physical parameters of the resin, 
whereas the sampling scheme was used for the variabil-
ity of the geometrical parameters (fiber orientation, fiber 
arrangement) of the material. The sub-sampling was used 
in the stochastic nonlinear damage simulation since the 
scenarios become huge. The sub-sampling is very useful 
when the variability of the damage threshold is consid-
ered, although it is assumed to be deterministic in this 
paper. A huge number of the probable damage patterns 
of the short fiber reinforced plastic were predicted and 
visualized in the three-dimension to show many scenar-
ios of damage propagations. The stochastic simulation 
can capture the different damage patterns of the same 
morphology in one model even considering quite small 
random physical parameter in the matrix phase. The influ-
ential level of the variability in the microstructure of the 
material on microscopic strains, damage evolutions, and 
degraded properties were discussed. Even though the 
results in the linear analysis of the homogenized proper-
ties of the material pointed out that the influence of the 
physical parameter is larger than the influence of geo-
metrical parameters, the influence of the fiber arrange-
ment is more significant than the influences of the physi-
cal parameter and the fiber orientation in a small range 

Fig. 16  Number of EBE-SCG 
iterations and damaged 
volume evolution of a sample 
XS
3

(
XA
1 | 4

)

Table 3  Legend of iterations
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during the damage evolution. The stochastic simulation 
is useful for the quality assurance of composite materials 
and structures when the experimental results have large 
variability and have to be collected by doing big enough 
times. In further research, the proposed scheme can be 
applied to consider the uncertainty or variability in the 
constraint condition and loading condition, where the 
concept of the sub-sampling may work when the scenario 
gets huge. Additionally, uncertainty or variability quanti-
fication in nonlinear multiscale computational simulation 
should be further investigated.

However, the present study has some limitations and 
is open to several improvements. For instance, the pro-
posed stochastic method should also consider the inter-
face and interphase damage behavior, fiber failure as well 
as matrix failure with different practical damage models. 
The homogenization method should not be used once the 
localization occurs. One of the popular methods proposed 
by Rukavina et al. [39], which can consider a fully damage 
process including a complete set of failure modes, should 
be considered in further work.
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