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Abstract
Uncertainty and risk are inherent in geotechnical engineering. Reliability-based optimization (RBO) is a methodology 
that determines the best design solution according to certain design criteria while explicitly considering the effects of 
uncertainty. RBO ensures a design that is economical as well as reliable in the presence of uncertainties. This paper sug-
gests a direct method for RBO of geotechnical systems by coupling reliability assessment and cost minimization. RBO is 
proposed as a double-loop (or nested-loop) constrained optimization problem, with cost optimization of geotechnical 
system through the outer loop repeatedly calling the inner reliability evaluation loop. First-order reliability method is 
used to compute the reliability index. An algorithm based on constrained optimization is proposed. MATLAB’s constrained 
optimization function, fmincon, is used in two loops: the outer loop to minimize the cost of geotechnical system, and 
the inner loop to minimize the reliability index to a target value while satisfying geotechnical design requirements. The 
proposed method is employed to obtain the optimal design of a gravity retaining wall, and compared with other meth-
ods, and found to be robust, accurate and feasible.

Keywords  Reliability-based optimization · Reliability analysis · Constrained optimization · First-order reliability method · 
Retaining wall

1  Introduction

It is well known that uncertainty and risk are inherent in 
geotechnical and geological engineering and that the 
quantification of these uncertainties is rational [1–7]. 
Traditional deterministic design methods accommodate 
uncertainties through empirical safety factors. However, 
these safety factors do not quantitatively measure the 
safety margin of design and do not account for the influ-
ence of different design variables and their uncertainties 
on overall system performance.

Reliability is the probability of an event occurring or the 
probability of a positive outcome and can be interpreted 
as a probability of failure. Calculating reliability gives a 

means of assessing the degree of uncertainty involved in 
geotechnical engineering calculations [6].

From the reliability theory, the chance of unsatisfactory 
performance can be expressed as Pf = 1 − Φ(�) where Pf is 
failure probability, β is the reliability index, and Φ is cumu-
lative distribution function (CDF) of a standard normal 
variable. Phoon and Ching [6] define the reliability index, 
β, as the number of standard deviations between the 
most likely value of factor of safety and the critical factor 
of safety of 1.0. By setting target the reliability index, the 
chance of unsatisfactory performance can be reduced. For 
geotechnical systems, the target reliability index is often 
in the range of 2.0–4.0 [8].

Reliability-based optimization (RBO) is a methodol-
ogy that determines the best design solution according 
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to certain predefined design criteria while explicitly con-
sidering the effects of uncertainty [9]. Uncertainties in 
geotechnical engineering come from loads, geotechnical 
properties and calculation models [10, 11]. RBO consti-
tutes a powerful methodology for solving geotechnical-
related design problems because it results in a geotech-
nical solution optimized according to predefined criteria 
(e.g. construction costs, benefits, etc.) while accounting 
for unavoidable uncertainties and satisfying geotechnical 
design requirements.

RBO is emerging as a design based on safety-under-
uncertainty. A number of studies have been carried out 
for the Reliability-Based Optimization of geotechnical sys-
tems in recent past. Valdebenito and Schuëller [9] carried a 
detailed literature review on reliability-based optimization. 
Wang and Kulhawy [12] and Wang [13] used partial factors 
derived from reliability theory to optimize the design of 
shallow foundations. The partial factors needed calibra-
tion for their method. The inverse reliability approach has 
been used to demonstrate the optimum design of cantile-
ver sheet pile walls [14] and anchored sheet pile walls [15]. 
Ching and Hsu [16] proposed a methodology to transform 
reliability limit-state constraints into deterministic limit-
state constraints. Ching [17] presented an equivalence 
between reliability and factor of safety. Zhang et al. [8] pre-
sented an indirect method on the basis of the Mean First-
Order Reliability Method (MFORM) to optimize the geo-
technical system. Langford and Diederchs [18] developed 
a reliability-based design of a composite tunnel lining by 
combining a modified Rosenbluth Point Estimate Method 
(PEM), First Order Reliability Method (FORM), Monte Carlo 
Sampling method, and finite element analysis. Gong et al. 
[19] proposed and applied a fuzzy set-based Robust Geo-
technical Design (RGD) method for the design of shield-
driven tunnels. Zhao et al. [20] employed an Artificial Bee 
Colony (ABC) algorithm for reliability-based optimization 
retaining walls and spread footings. Zevgolis et al. [21] 
proposed a probabilistic geotechnical design optimization 
framework for large open pit excavations. Zhao et al. [22] 
employed least square support vector machine (LSSVM) 
and artificial bee colony (ABC) algorithm for reliability-
based support optimization of rockbolt reinforcement 
around tunnels. Santos et al. [23] used FORM based ant 
colony optimization (ACO) algorithm for reliability-based 
design optimization of geosynthetic-reinforced soil walls. 
Ji et al. [24] used inverse FORM approach for reliability-
based design in geotechnical engineering. Raviteja and 
Basha [25] presented a target reliability-based design opti-
mization (TRBDO) approach of V-shaped anchor trenches 
for municipal solid waste (MSW) landfills.

Although considerable research work has been 
reported in the field of RBO of geotechnical systems, 
the application is still limited. One limitation has been 

the difficulty of direct coupling between reliability 
assessment and cost minimization. This paper suggests 
a FORM-based direct method for RBO of geotechnical 
systems. In the proposed method, RBO is implemented 
by coupling reliability assessment and cost minimiza-
tion. RBO is proposed as a double-loop (or nested-loop) 
constrained optimization problem, with cost optimiza-
tion of the geotechnical system through the outer loop 
repeatedly calling the inner reliability evaluation loop. In 
the outer loop, the objective is the minimization of cost 
function while the constraint is a target reliability index; 
whereas, in the inner loop, the objective is the minimiza-
tion of reliability index while constraints are geotechni-
cal design requirements. The proposed method is used 
to illustrate the optimal design of retaining wall. MAT-
LAB’s constraint optimization function, fmincon [26], 
is used to implement this algorithm. The interior-point 
algorithm is used in the outer loop to search the design 
variables in global search space. The interior-point algo-
rithm is used in the inner loop to calculate the reliability 
index.

2 � Hasofer–Lind index and FORM algorithm

The stability of an engineering system, owing to the inher-
ent uncertainty of input variables, is measured by the reli-
ability index. The Hasofer-Lind index is widely used as a 
reliability index [27], the matrix formulation of which is,

where X is a vector that represents a set of random vari-
ables xi, μ is a vector of mean values, C is the covariance 
matrix, and F is the failure domain. The superscripts “T” 
and “− 1” denote transpose and inverse respectively. The 
Hasofer-Lind index can be regarded as the shortest dis-
tance in directional standard deviation units from the 
mean value point of the random variables to the bound-
ary of the limit state surface.

Low and Tang [28–30] presented an alternative formula-
tion of the Hasofer-Lind index, Eq. 1, based on the perspec-
tive of an expanding ellipsoid in the original space of the 
basic random variables and expressed the index as

where R is the correlation matrix, σi is the standard devia-
tion of random variable xi.

For correlated non-normal parameters, Low and Tang 
[30] modified Eq. 2 as the following

(1)� = min
x∈F

√
(X − �)TC−1(X − �)

(2)� = min
x∈F

√[
xi − �i

�i

]T
R−1

[
xi − �i

�i

]
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where �N
i

 and �N
i

 are the equivalent normal mean and 
equivalent normal standard deviation, respectively, for 
random variable xi and can be calculated by the Rackwitz 
and Fiessler [31] transformation. The computation of β is 
regarded as that of finding the smallest equivalent hyper-
ellipsoid (centered at the equivalent normal mean-value 
μN and with equivalent standard deviation σN) that is tan-
gent to the limit state surface.

Low and Tang [32] presented an efficient alternative to 
Eq. 3 to calculate the reliability index β by varying dimen-
sionless number ni as the following equation

where n, termed as an equivalent standard normal vector, 
is a column vector of ni. Low and Tang [32] have shown 
that random variable xi can be obtained from ni by Eq. 5a 
for normal distribution and by Eq. 5b for the lognormal 
distribution.

The reliability index, in this study, is calculated using Eq. 4 
as proposed by Low and Tang [32].

3 � MATLAB constrained optimization 
function, fmincon

The constrained minimization [26] is the technique of find-
ing a vector x that is the local minimum to a scalar function 
f(x) subject to constraints on the allowable x:

where b and beq are vectors, A and Aeq are matrices, c(x) and 
ceq(x) are functions that return vectors, lb and ub are lower 
and upper bounds, respectively and f(x) is a function that 
returns a scalar. In MATLAB’s Optimization toolbox, fmin-
con function is used for constrained optimization. MATLAB 
uses different nonlinear methods including Trust Region 

(3)� = min
x∈F

√√√√√
[
xi − �N

i

�N
i

]T

R−1
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]

(4)� = min
x∈F

√
�T R−1�

(5a)xi = �i + ni�i

(5b)

xi = exp
[
� + �ni

]
, � =

√
ln
[
1 +

(
�i∕�i

)2]
, � = ln�i − 0.5�2

(6)min
x

f (x) suchthat

⎧
⎪⎪⎨⎪⎪⎩

c(x) ≤ 0

ceq(x) = 0

A ⋅ x ≤ b

Aeq ⋅ x = beq
lb ≤ x ≤ ub

Reflective algorithm, Sequential Quadratic Programming 
(SQP) algorithm, and Interior Point algorithm.

4 � Reliability‑based optimization using 
a constrained optimization technique

In order to minimize the cost of a geotechnical system 
while satisfying a minimum value of the reliability index, 
termed as target reliability index βT, MATLAB constrained 
optimization function, fmincon, is used. It is a two-level 
(or double loop) optimization problem. The fmincon 
function is used in two loops; the outer loop to minimize 
the cost of the geotechnical system and the inner loop 
to minimize the reliability index β to a target reliabil-
ity index value βΤ while satisfying geotechnical design 
requirements (Fig. 1).

Calculation sequence to minimize the cost function of 
the geotechnical system, referred to as an outer loop, is 
summarized as follows:

Step 1: Initialize design variables (e.g. dimension of the 
geotechnical system).
Step 2: Run the interior-point algorithm with MATLAB 
fmincon function. The objective is the minimization of 
the cost of the geotechnical system. The constraint is 
the target reliability index βΤ. The calculated β should 
be less than or equal to βΤ. For the calculation of β, the 
control is passed to the inner loop where the β is calcu-
lated (Eq. 4) and control is passed back.
Step 3: If the cost of the geotechnical system is mini-
mized while satisfying the target beta constraint (i.e. 
β − βΤ ≤ 0), optimal design requirements are satisfied.
Step 4: If the cost of the geotechnical system is not mini-
mum, design variables are modified and the process is 
repeated from step 2.

Calculation sequence to obtain the reliability index β, 
referred to as the inner loop, is summarized as follows:

Step 1: Initialize vector n.
Step 2: Run the interior-point algorithm with MATLAB 
fmincon function. The objective is the minimization of 
the reliability index β. The constraints are geotechnical 
design equations (e.g. factor of safety against overturn-
ing, sliding, bearing capacity, and eccentricity for a grav-
ity retaining wall).
Step 3: Calculate β using Eq. 4. If the β is minimum while 
satisfying the geotechnical design equations, pass con-
trol to the outer loop.
Step 4: If the β is not minimum, vector n is modified and 
the process is repeated from Step 2.
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The flowchart of the above-mentioned calculation 
sequence is shown in Fig. 1.

5 � Illustrative example: retaining wall design

Gravity retaining wall design is adopted to illustrate the 
application RBO. Four failure modes are considered: (1) 
overturning failure, (2) sliding failure, (3) bearing capacity 
failure and, (4) eccentricity failure. Each failure mode is a 
design constraint. The goal is to obtain a design with mini-
mum wall area (i.e. cost function) satisfying both target 
reliability requirements in addition to all design require-
ments. Gravity retaining wall design, adopted from the 
literature [8, 20], is based on Knappett and Craig [33]. A 
6 m high concrete gravity retaining wall, as shown in Fig. 2 
is considered.

The active force Fa, based on Coulomb’s earth pressure 
theory [33] is given as

where Ka is coulomb’s active earth pressure coefficient. 
Based on Fig. 2, the following geometric relationships 
exist:

The forces and moment arms involved in the overturning 
limit state are listed in Table 1.

(7)Fa = 0.5Ka�sH
2

(8)� = a tan(
b3

H
)

(9)� = �w + �

(10)B = b1 + b2 + b3

Fig. 1   Flowchart of reliability-
based optimization algorithm
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5.1 � Limit state function for overturning failure

Based on the forces and moment arms shown in Table 1, the 
resisting moment MR and overturning moment MO are given 
in the following equations:

The limit state function for overturning failure is

(11)MR =

4∑
i=1

Wiai + FVaFV

(12)MO = FHaFH

(13)g1(�) = MR −MO

5.2 � Limit state function for sliding failure

Considering the force equilibrium in the vertical direction, 
the resultant base reaction RV is

The limit state function for sliding failure is

5.3 � Limit state functions of bearing capacity 
and eccentricity failure

Considering the moment equilibrium at the toe, the 
moment arm of the resultant base reaction is given by

The eccentricity of base reaction is given by

The maximum base pressure is given by

The limit state functions for bearing capacity and eccen-
tricity are given by Eqs. 19 and 20 respectively.

Limit state functions for overturning (Eq.  13), sliding 
(Eq. 15), bearing capacity (Eq. 19), and eccentricity (Eq. 20) 
are the geotechnical design requirements.

5.4 � Uncertainties of input variables

Six uncertain variables are considered: the friction angle of 
backfill material (ϕf); the friction angle between the back-
fill material and the retaining wall (δw); the unit weight 
of backfill material (γf); the cohesion along the interface 
between the wall base and the founding soil (cb); the 
friction angle along the interface between the wall base 
and the founding soil (δb), and the maximum allowable 
bearing pressure of the foundation (qu). The distribution 
and statistics of these variables are adopted from [8] and 
summarized in Table 2. The correlation matrix assumed for 

(14)RV =

4∑
i=1

Wi + FV

(15)g2(�) = RV tan
(
�b
)
+ Bcb − FH

(16)aRV =
(
MR −MO

)
∕RV

(17)e = 0.5B − aRV

(18)qmax =
RV

B

(
1 +

6e

B

)

(19)g3(�) = qu −
RV

B

(
1 +

6e

B

)

(20)g4(�) = 1 −
6e

B

Fig. 2   Reliability-based design of gravity retaining wall (based on 
Zhang et al. [8])

Table 1   Forces and moment arms for rotational failure of retaining 
wall

Force Moment arm

W
1
= 0.5b

1(H − h)�c a
1
= 2b

1
∕3

W
2
= b

1
h�c a

2
= b

1
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W
3
= b

2
h�c a

3
= b

1
+ 0.5b

2

W
4
= b

3
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4
= b

1
+ b

2
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FH = Fa cos (�) aFH
= H∕3
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= b

1
+ b

2
+ 2b

3
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these variables is also adopted from [8] and summarized 
in Table 3.

5.5 � Procedure for design optimization

Suppose the objective is to minimize the area of a retain-
ing wall (i.e. the cost function) by changing the design 
variables d = {b1, b2, b3, h}. The target failure probability 
for retaining wall is in the range of 0.01–0.0001 [34, 35]. In 
this example, the target reliability index βT ≥ 3.0 is set for all 
failure modes which corresponds to the failure probability 
of 0.0013. The design space is considered as 0 < b1 < 3 m; 
0.5 m < b2 < 3 m, 0 < b3 < 3 m, 0.4 m < h < 6 m. The reliability-
based optimization problem can be written as

where C(d) is area of retaining wall and β1, β2, β3, β4 and are 
the reliability constraints for the limit states of overturn-
ing, sliding, bearing capacity and eccentricity respectively.

MATLAB’s constrained optimization function, fmincon, 
is used for the double loop optimization problem. In the 
outer loop, the objective is the minimization of the area of 
the retaining wall (Eq. 21) while the constraint is �i ≤ �T . In 

(21)min C(�) = b1h + 0.5(H − h)b1 + b2H + 0.5b3H

subject to 𝛽i(�) ≥ 3 i = 1, 2, 3, 4

0 < b1 < 3

0.5 < b2 < 3

0 < b3 < 3

0.5 < h < 6

the inner loop, the objective is the minimization of the reli-
ability index βi (Eq. 4) while the constraints are correspond-
ing limit state functions of overturning failure (Eq. 13), slid-
ing failure (Eq. 15), bearing capacity failure (Eq. 19) and 
eccentricity (Eq. 20) respectively.

5.6 � Results and discussion

The optimization process is started with initial design 
values as b1 = 1.6 m, b2 = 1 m, b3 = 0.6 m, and h = 1 m. The 
proposed method presented in Sect. 4 is implemented in 
MATLAB R2018a on a laptop equipped with an Intel Core 
i7-7500 CPU running at 2.70 GHz. The average computa-
tional time is less than 31 s. After running the optimization, 
the results summary is shown in Fig. 3 and Table 4. Four 
optimal scenarios listed in Table 4 are discussed below. 

Overturning failure: Optimal 1 is the optimized solu-
tion when the design constraint is limit state function of 
overturning failure (Eq. 13) with the reliability constraint 
β1 minimized to the target reliability index value βT. Fig-
ure 4a shows the convergence of cost function and reli-
ability constraint β1. From the calculated values of design 
variables (i.e. retaining wall dimensions), reliability con-
straints β2, β3 and β4 corresponding to limit state functions 
of sliding failure, bearing capacity failure and eccentricity, 

Table 2   Distribution and statistics of uncertain variables for retain-
ing wall design

Variable Distribution Mean SD

γf (kN/m3) Normal 18.5 1
cb (kN/m2) Lognormal 20 5
δb (°) Lognormal 26 3
qu (kN/m2) Lognormal 350 70
δw (°) Lognormal 24 3
ϕf (°) Lognormal 34 4

Table 3   Correlation matrix 
of uncertain variables for 
retaining wall design

γf cb δb qu δw ϕf

γf 1 0 0 0 0 0
cb 0 1 − 0.4 0.4 0 0
δb 0 − 0.4 1 0.4 0 0
qu 0 0.4 0.4 1 0 0
δw 0 0 0 0 1 0.8
ϕf 0 0 0 0 0.8 1

Fig. 3   Calculated values of reliability constraints βi for optimal sce-
narios of overturning (OT), sliding (SL), bearing capacity (BC) and 
eccentricity (e) failures, respectively, for the target reliability con-
straint βT ≥ 3.0
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respectively are then calculated. Figure 4b shows the con-
vergence of these reliability constraints when these are 
determined using Eq. 4. It is noted that only β1 correspond-
ing to overturning failure is equal to βT whereas the rest 
of reliability constraints are less than βT. Thus optimal 1 
does not satisfy all reliability constrains, and thus design 
requirements.

Sliding failure: Optimal 2 is the optimized solution when 
the design constraint is limit state function of sliding fail-
ure (Eq. 15) with the reliability constraint β2 minimized to 

the target reliability βT. The convergence of cost function 
and reliability constraint β2 is shown in Fig. 5a. The rest of 
reliability constraints β1, β3 and β4 are calculated from the 
optimized solution. The convergence of β1, β3 and β4 are 
shown in Fig. 5b. Only β1 and β2 are above βT. Thus Opti-
mal 2 does not satisfy bearing capacity and eccentricity 
requirements.

Bearing capacity failure: Optimal 3 is the optimized 
solution when the design constraint is limit state func-
tion of bearing capacity failure (Eq. 19) with the reliability 

Table 4   Optimization results for target reliability constraint βT ≥ 3.0

a β1 is the calculated value of reliability index for overturning limit state (Eq. 13)
b β2 is the calculated value of reliability index for sliding limit state (Eq. 15)
c β3 is the calculated value of reliability index for bearing capacity limit state (Eq. 19)
d β4 is the calculated value of reliability index for eccentricity limit state (Eq. 20)

Optimal scenarios Design Constraint d Reliability constraint Remarks

b1 (m) b2 (m) b3 (m) h (m) C(d) (m2) β1
a β2

b β3
c β4

d

Optimal 1 Overturning 1.224 0.5 0 0.4 6.917 3.000 2.900 0.548 0.000 All βi  ≯ βT

Optimal 2 Sliding 1.262 0.5 0 0.4 7.038 3.287 3.000 0.718 0.000 All βi ≯ βT

Optimal 3 Bearing Capacity 1.838 0.5 0 0.4 8.883 7.772 4.400 3.000 1.828 All βi ≯ βT

Optimal 4 Eccentricity 2.065 0.5 0 0.4 9.607 9.615 4.895 3.767 3.000 All βi  ≥ βT

Fig. 4   a Convergence of objec-
tive and reliability constraint β1 
for overturning failure, b deter-
mination of other reliability 
constraints from the optimized 
solution

Fig. 5   a Convergence of objec-
tive and reliability constraint β2 
for sliding failure, b deter-
mination of other reliability 
constraints from the optimized 
solution
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constraint β3 minimized to the target reliability βT. Fig-
ure 6a shows the convergence of cost function and reli-
ability constraint β3. The rest of reliability constraints β1, 
β2 and β4 are calculated from the optimized solution as 
shown in Fig. 6b. Only β4 is below βT. Thus optimal 3 does 
not satisfy eccentricity requirement.

Eccentricity failure: Optimal 4 is the optimized solu-
tion when the design constraint is limit state function of 
eccentricity failure (Eq. 20) with the reliability constraint 
β4 minimized to the target reliability βT. Figure 7a shows 
the convergence of cost function and reliability constraint 
β4. Other reliability constraints β1, β2 and β3 are calculated 
from the optimized solution as shown in Fig. 7b. All reli-
ability constraints are above βT.

As seen in Fig. 3 and Table 4, only optimal 4 case sat-
isfies all the reliability constraint requirements (i.e. All 
βi ≥ βT). Thus optimal 4 is the optimized solution satisfying 
the reliability requirement as well as the design require-
ments. The Convergence of design variables (i.e. retaining 
wall dimensions) for the optimized solution are shown in 
Fig. 8. The calculated values of the reliability constraints 
for initial and optimized design are summarized in Table 5. 
To check the accuracy of proposed method, the reliability 
constraints for the optimized solution are also calculated 
by Microsoft Excel’s built-in optimization routine SOLVER 

as proposed by Low and Tang [32]. GRG nonlinear solving 
method is used in Excel’s optimization routine. Figure 9 
shows the Excel’s spreadsheet results. The reliability con-
straints calculated by Excel’s optimization retinue match 
with the present study results. Equivalent standard nor-
mal vectors, n, for all optimal scenarios are summarized 
in Table 6.    

Fig. 6   a Convergence of objec-
tive and reliability constraint 
β3 for bearing capacity failure, 
b determination of other 
reliability constraints from the 
optimized solution

Fig. 7   a Convergence of objec-
tive and reliability constraint β4 
for eccentricity failure, b deter-
mination of other reliability 
constraints from the optimized 
solution

Fig. 8   Convergence of design variables for optimal 4 scenario
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Table 5   Summary of 
optimization results for target 
reliability constraint βT ≥ 3.0

a β1 is the calculated value of reliability index for overturning limit state (Eq. 13)
b β2 is the calculated value of reliability index for sliding limit state (Eq. 15)
c β3 is the calculated value of reliability index for bearing capacity limit state (Eq. 19)
d β4 is the calculated value of reliability index for eccentricity limit state (Eq. 20)

d Reliability constraint

b1 (m) b2 (m) b3 (m) h (m) C(d) (m2) β1
a β2

b β3
c β4

d

Initial 1.6 1 0.6 1 13.400 17.085 6.667 3.666 4.897
Optimized 2.065 0.5 0 0.4 9.607 9.615 4.895 3.767 3.000

Fig. 9   Verification of Optimal 4 calculations for βi using EXCEL’s solver

Table 6   Equivalent standard normal vector n for different optimal scenarios

β1 β2 β3 β4 β1 β2 β3 β4

Optimal 1 design variables Optimal 2 design variables
n1 0.91091 0.80230 0.10365 0.00000 1.01921 0.83484 0.13638 0.00000
n2 0.00000 − 0.47681 − 0.16355 0.00000 0.00000 − 0.50318 − 0.21561 0.00000
n3 0.00000 − 1.23312 − 0.16355 0.00000 0.00000 − 1.27563 − 0.21561 0.00000
n4 0.00000 − 1.13995 − 0.40887 0.00000 0.00000 − 1.18587 − 0.53904 0.00000
n5 − 2.63928 − 2.01413 − 0.30568 0.00000 − 2.88881 − 2.07790 − 0.39820 0.00000
n6 − 2.76933 − 2.23058 − 0.34574 0.00000 − 3.02650 − 2.30158 − 0.44984 0.00000

Optimal 3 design variables Optimal 4 design variables
n1 3.14289 1.30996 0.58348 0.50770 4.23191 1.48605 0.73341 0.91332
n2 0.00000 − 0.90828 − 0.95204 0.00000 0.00000 − 1.06431 − 1.21211 0.00000
n3 0.00000 − 1.87936 − 0.95204 0.00000 0.00000 − 2.09957 − 1.21211 0.00000
n4 0.00000 − 1.85842 − 2.38010 0.00000 0.00000 − 2.10925 − 3.03027 0.00000
n5 − 6.63972 − 2.92364 − 1.53572 − 1.61369 − 8.08771 − 3.20440 − 1.88346 − 2.63737
n6 − 6.83396 − 3.24513 − 1.70728 − 1.70608 − 8.28277 − 3.55921 − 2.08244 − 2.76959



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:168 | https://doi.org/10.1007/s42452-020-1948-4

The results obtained from the present study are com-
pared, in Table 7, with past studies [8, 20]. The results of 
the present study match precisely with those reported 
by Zhao et al. [20]. Zhao et al. [20] used Artificial Bee 
Colony (ABC) algorithm and Microsoft Excel’s SOLVER. 
Zhang et al. [8] used an indirect method by using a map-
ping function. The advantage of the proposed method, 
over others [8, 20], is its direct approach which couples 
reliability assessment and cost minimization. This study 
shows that MATLAB’s constrained optimization tech-
nique can be used in double-loop optimization prob-
lems encountered in geotechnical engineering.

6 � Conclusions

The findings of the study reported in this paper are sum-
marized as follows:

1.	 A direct method is proposed for reliability-based opti-
mization (RBO) by coupling reliability assessment and 
cost optimization. RBO is proposed as a double-loop 
(or nested-loop) constrained optimization problem, 
with cost optimization of the geotechnical system 
through the outer loop repeatedly calling the inner 
reliability evaluation loop.

2.	 MATLAB’s constrained optimization function, fmincon, 
is used to implement the algorithm. The interior-point 
algorithm is used in both loops.

3.	 The optimal design of gravity retaining wall is illus-
trated using the proposed method. The results of the 
optimal design match precisely with those reported 
earlier [8, 20]. The reliability constraints of the opti-
mized solution are verified by calculating them using 
Microsoft Excel’s SOLVER.

4.	 The advantage of the proposed method is its direct 
approach which couples reliability assessment and 
cost minimization.
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