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Abstract
The friction factor is traditionally computed through Colebrook’s equation or by using Moody’s chart. However, these 
approaches have shown their limitations in getting accurate values for such factor. Different models to calculate the 
friction factor have been proposed, achieving different levels of certainty. In this paper, we revisit the distinct strategies 
used to estimate the friction factor and propose the use of a modified version of a model proposed by these authors. This 
model is based on the phenomenology of the flow as it transitions from laminar to turbulent flow conditions.
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List of symbols
ε  Average projection of roughness, m
ν  Kinematic viscosity,  m2/s
ε/D  Relative roughness
f  Friction factor
Re  Reynolds number and similar abbreviations do not 

use italics
D  Pipe diameter, m
U  Flow maximum velocity, m/s
ū  Flow mean velocity, m/s
V*  Shear force–velocity or friction velocity, m/s

1 Introduction

In determining flow rates to distribute a fluid through a 
network of pipes, is essential to estimate losses in kinetic 
energy that the flow experiences due to head loss. To do 
that, it is necessary to calculate the friction factor (f). The 
friction factor relates to pressure drop and fluid viscous 
effects [1].

The friction factor is traditionally estimated by means of 
Colebrook equation or by using Moody’s chart. Engineer‑
ing schools worldwide teach the use of these approaches 

to calculate that factor; in spite of existing a whole body 
of literature with diverse models developed throughout 
time to determine that factor.

In this paper, we discuss the use of alternative models 
to compute the friction factor besides using Colebrook’s 
equation and/or Moody’s chart.

2  Colebrook equation and moody’s chart

At the dawn of the last century, experiments were con‑
ducted to estimate velocity distribution in a pipe; from 
these tests, it was possible to determine the friction fac‑
tor. Among the first results from those experiments, it was 
found that under the laminar regime, the friction factor 
decreases as Reynolds (Re) number increases:

Further research on the turbulent flows allowed to 
propose the following expression for the friction factor 
[2] under such regime:

(1)f =
64

Re
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Figure 1 shows plots of Eqs. (1) and (2); in the laminar 
region, f decreases with a slope of 1; whereas, for the 
turbulent region, f decreases with a slope of 0.25.

von Kárman [3] and other researches kept looking 
for expressions to accurately determine the friction fac‑
tor, particularly in the turbulent regime. Initially, it was 
proposed that the friction factor only depended on the 
effect of Reynolds number [4]. von Mises [5] first intro‑
duced the concept of pipe relative roughness and also 
described its influence on the calculation of the friction 
factor.

Eventually, Nikuradse [2], conducted a series of 
experiments to elucidate the effect of the flow’s Reyn‑
olds number and the pipe wall roughness on the friction 
factor. To do so, Nikuradse glued sand grains of different 
homogeneous particle size to smooth quartz tubes. As 
a result, he induced a “controlled” pipe wall roughness 
to his experiments.

From the works of Nikuradse [2] and von Kárman [3], 
it was developed a general expression to determine the 
velocity distribution in the vicinity of the pipe wall:

Equation (3) is a dimensionless relation that indicates 
that the flow velocity near the pipe walls is described by 
a logarithmic function.

To solve (3), it was proposed [2] a set of equations to 
calculate the friction factor: for rough pipes:

(2)f =
0.316

Re0.25

(3)
u

U
=

u

U

(
log
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))

Whereas for smooth pipes, it was obtained:

Equation (4a) only depends on the relative roughness 
(ε/D) of the pipe wall; it does not change with increasing 
the value of Re; whereas Eq. (4b) only varies with Re. This 
equation is also plotted in Fig. 1. Equation (4b) presents 
a considerable deviation from Eq.  (2). Such difference 
prompted further studies on the estimation of the fric‑
tion factor.

Colebrook and White [6] conducted similar tests to 
those in [2] and eventually upon the integration of (3) with 
proper boundary conditions, Colebrook [7] came up with 
an expression to estimate the friction factor as a function 
of the relative pipe wall roughness and the flow’s Reynolds 
number:

Equation (5) is implicit in f; to solve this equation, it is 
necessary to implement a numerical scheme. Nowadays 
that is simple to do due to the advent of computing; but at 
the time this model was proposed, the calculation of f rep‑
resented a serious task. To help in computing the friction 
factor, Moody [8] developed a graphical solution to Cole‑
brook equation; such a solution is called Moody’s chart.

Given its graphic nature, the estimation of f through 
Moody’s chart is not reliable; over or underestimations 
of the friction factor occur frequently. In addition to that, 
Colebrook and Nikuradse experiments were conducted up 
to Re values of  106. Flows with higher velocities were not 
studied at the time, thus limiting the use of Eq. (5) to flows 
with Re between  103 and  106. Colebrook nor Nikuradse 
measured the friction factor under laminar flow condi‑
tions, thus Colebrook’s model is inaccurate at low flow 
velocities.

3  Other approaches to determine f

In view of these limitations, several alternatives have been 
proposed over the years to estimate the friction factor. 
These alternatives basically consist of:

1. developing new implicit or explicit models to solve for 
f based upon the integration of (3) or by conducting 
statistical analyses;

(4a)
1√
f
= 1.14 − 2 log

�
�

D

�

(4b)
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Fig. 1  Early estimations of the friction factor in the laminar and tur‑
bulent regimes
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2. the use of Lambert’s W function to obtain an exact 
analytical solution to Colebrook’s equation, and

3. the use of artificial intelligence (neural networks and 
symbolic regression) to compute the friction factor.

Apart from these approaches, the estimation of the fric‑
tion factor has been undertaken by these authors after 
revisiting the physics behind the laminar to turbulent flow 
transition.

The strategies used to calculate the friction factor are 
discussed in the upcoming sections of this text.

3.1  Models based on the integration of Eq. (3)

Of the models reported in the literature, some of them are 
explicit in f. Explicit models tend to diverge from experi‑
mental data as recently shown [9].

On the other hand, statistical analyses of factor friction 
calculations with diverse models were conducted to pro‑
pose a complex equation to compute f [10]; the resulting 
model is explicit and offers relative good approximation 
with respect to experimental measurements.

Haaland [11] produced an explicit expression to esti‑
mate f; this expression contains the first term of Colebrook 
equation; it differs from (5) in the use of the integration 
limits used to integrate (3). Zigrang and Sylvester [12] also 
developed an equation to calculate the friction factor that 
also contains the term (ε/D)/3.7 that is present in (5).

On the other hand, Churchill [13] proposed a so‑called 
universal formula to estimate the friction factor over 
a wide range of Re and relative roughness values. This 
model diverges from experimental values of f. Interest‑
ingly; Churchill’s model was built differently from others. 
It consisted of correlating analytical solutions to fluid flow 
and empirical correlations. The resulting model looks com‑
plex, but the calculation of f is amenable.

Recently Shaikh et al. [14] proposed another correlation 
to compute the friction factor. This model diverges consid‑
erably from the experimental data set [2] used for compari‑
son. The divergence in this model is more notorious at low 
Re numbers and low pipe wall roughness; this may be due 
to the fact that the model was constructed to work under 
highly turbulent flow conditions and rough pipes.

Figure 2 shows the deviation of the calculated values 
of f with the models described have with respect of the 
experimental data [2]; this comparison includes Cole‑
brook’s equation. The data shown in Fig. 2a considers an 
ε/D value of 0.0009861, which corresponds to r/k = 507 
condition in [2]; whereas to compute the data in Fig. 2b it 
was used a value of ε/D = 0.033333 which corresponds to 
r/k = 15 condition in [2].

These plots show the effect of pipe wall roughness on 
f; as the roughness increases, the higher is the departure 

of the calculated values of f, with respect to the meas‑
ured values. Of the different models shown in Fig. 2a, b, 
Colebrook’s offers the best fit of all of them. Figure 2b 
shows that computed f values tend to converge to the 
measured data as the numerical value of the friction 
factor increases. Such condition is attained as the flow 
augments its inertia, i.e. Re scales up. Low Re numbers 
present more deviation in the calculated friction factor 
with respect to the measured data.

The plots in Fig. 2a, b also indicate the effect of proper 
selection of integration limits to solve Eq. (3); this is the 
key point with Eq. (5). The manner in which Colebrook 
selected the integration limits allows for having such 
good agreement with the experimental f values. Table 1 
shows the expressions referred to in this section.

3.2  Estimation of the friction factor by solving 
Colebrook equation analytically

To provide better solutions for the friction factor, it has 
been proposed the use of Lambert’s W function [15]. This 
function offers a mathematical tool that can be used to 
solve engineering problems of different nature [16], 
among them solving Colebrook’s equation analytically 
rather than numerically as has been the case. W function 
is defined as [16, 17]:

To solve (5) with the aid of (6), the former must be 
transformed is such a way that it satisfies the latter.

To transform (5) into a suitable form to apply (6), it is 
necessary to use dimensionless parameters. The selec‑
tion of such parameters leads to possible exact solutions 
for Colebrook’s equation. These solutions differ from 
author to author, obtaining different results.

For example, More [15] proposed the solution of Cole‑
brook’s equation using three parameters along with an 
explicit form of the Lambert W function. This is shown in 
Table 2. More’s analytical solution to Colebrook’s equa‑
tion is:

To solve this expression, the  W0 term represents an 
explicit form of the Lambert W function. This can be 
solved using MATLAB or MAPLE or any similar software, 
or it can be approximated [18] by:

(6)W exp (W) = x ⇔ W = W(x)

(7)
f =

1

c

[
W0

(
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(
a

bc

)

bc

)
−

a

b

]2
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Fig. 2  Departure of calculated values of the friction factor with respect of Nikuradse data set for: a ε/D = 0.00098619, b ε/D = 0.033333
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Mikata and Walczak [17], used W function to obtain the 
following expression for f:

This expression is valid for  x1 > 1. The terms in (9) are 
depicted in Table 2.

(8)W0(x) = ln

⎡
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x
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1√
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x2 − ln

�
Y
�
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���

Brkić [18] obtained an approximated solution to Cole‑
brook’s equation. The resulting expression was obtained 
using (8):

Recently, a modification of Eq. (10) was proposed [19]. 
This results in Eq. (10a). Equation (10a) is more accurate 
and simpler than (10), besides, it consumes less compu‑
tational resources:

(10)
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Table 1  Some available models to estimate the friction factor

Ref. Model Validity Error (%)

Colebrook [7] 1√
f
= −2 log

�
1

3.7

�

D
+

2.51

Re

1√
f

�
4 × 103 < Re < 108

0 < ε/D < 0.05
Romeo [10] 1√
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Re
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Re
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�0.9345
���
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0 < ε/D < 0.05
10.94

Haaland [11] 1√
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= −1.8 log

�
6.9

Re
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3.7D
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10−6 < ε/D < 0.05
43.86

Zigrang [12] 1√
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Churchill [13]

f = 8 ×

⎡⎢⎢⎢⎢⎢⎣

�
8

Re

�12

+
1

⎡
⎢⎢⎣

�
2.457 ln

�
1

( 7
Re )

0.9
+0.27

�

D

��16

+

�
37530

Re

�16⎤⎥⎥⎦

3
2

⎤⎥⎥⎥⎥⎥⎦

1

12
4 × 103 < Re < 108

10−6 < ε/D < 0.05
11.64

Shaikh [14]
f = 0.25 ×

[
log

(
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1.14−2 log
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Re
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Table 2  Expressions to 
calculate the friction factor 
using Lambert’s W function

Ref. Solution using W function Parameters used in solution with W function

More [15] f =
1

c
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(
exp( a

bc )
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The value of variable a in (10a) is at least  105.
Rollmann and Spindler [20], also provided an explicit 

solution for f using Lambert’s W function. Their expression 
for the friction factor is:

Figure 3 compares the results for the friction factor 
obtained by using Eqs. (7), (9), (10) and (11) respectively 
as they are compared with Nikuradse’s experimental data 
set and the calculated f values with Colebrook equation.

From the explicit solutions shown in (7), (9), (10) and 
(11), it is clear that some of the terms in (5) have to be 
re‑ordered in a suitable form to apply (6). From this set of 
equations, it results that the use of Lambert’s W function 
is tricky; since if it is not used properly it leads to errors in 
determining accurate values for the friction factor.

In Fig.  3, for the smoothest pipe condition 
(ε/D = 0.0009861), Eqs. (9), (10) and (11) are in good agree‑
ment with Colebrook’s equation and almost present the 
same deviation with respect of Nikuradse’s experimental 
data. Only More’s equation disagrees with respect to the 
other models cited.

On the other hand, when the pipe roughness increases 
to its maximum tested value (ε/D = 0.03333333), the model 
in [20] does not work as well as in the smoother (pipe wall) 
condition; furthermore, More’s model goes out of scale 
and more deviations with respect of the experimental 
data set are observed with Colebrook’s equation as well as 
with the models in [17] and [18]. This indicates the strong 

(10a)

1√
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∼ 0.8686

�
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1.038C
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Re

8.0878

�

D

B = ln (Re) − 0.7794
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(11)f =
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2

ln (10)
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Re

(2.51)(3.71)

�

D

]−2

influence that pipe roughness has on the estimation of 
the friction factor.

Solutions provided in [15, 20] include a form of the W 
function that might be the main source of deviation from 
the experimental data. On the contrary, the formulae for f 
in [17] and that in [18] provide reasonable accuracy in their 
predictions for such factor. From these observations, it can 
be stated that when used properly, W function provides 
a useful tool to solve Colebrook’s equation analytically 
rather than numerically. Figure 4, shows that Brkić’s solu‑
tions [18, 19] are more accurate with respect to (5) than 
Mikata’s.

Furthermore, the use of analytical solutions of (5) not 
only proves the correctness of the equation, but it also 
provides reliable solutions to f for an ample range of Re 
and pipe wall roughness conditions. Figure 5, shows the 
departure from the experimental data set and the models 
obtained through the use of the W function.

The use of Lambert’s W function offers a comprehen‑
sive tool to solve Colebrook’s equation; however, to use it 
appropriately, the user needs to be familiar with how the 
W function works and second, it requires understanding 
the fluid flow problem.

3.3  Estimation of the friction factor using neural 
networks and artificial intelligence

Another approach taken recently to calculate the friction 
factor in pipe networks is that of artificial intelligence. The 
main issue with this strategy to calculate the friction fac‑
tor relies on how to “train” a neural network to give good 
estimates of f.

Parveen et al. [21] proposed the use of artificial intel‑
ligence (AI) to estimate the friction factor. They proposed 
this approach to avoid the use of recursive calculations 
needed to solve Colebrook’s equation. The authors [21] 
tried different AI strategies to calculate the friction factor; 

Fig. 3  Estimation of the fric‑
tion factor using Lambert’s W 
function and its comparison 
with Nikuradse [2] results and 
Colebrook [7] equation
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they found out that vector regression gives the best 
results.

Although this approach seems to work well, still the 
implementation of the neural network and its training to 
obtain the best values of f is complex and if this is not done 
properly, this whole approach will not work.

Özger and Yildirim [22] proposed the use of adaptive 
neuro‑fuzzy computational techniques to estimate the 
friction factor in pipe networks; their results are compa‑
rable with those obtained using (5) for distinct Re and ε/D 
conditions. This AI approach works upon using logical 
statements; the technique does not require mathemati‑
cal formulations and relies on establishing logical relation‑
ships between input and output variables.

Salmasi et al. [23] also calculated the friction factor by 
using extended neural networks. In this case, the authors 
used the gene expression programming approach. They 

noticed the extent of errors induced by this method, nev‑
ertheless, the results obtained seem to be satisfactory. 
Figure 6 shows the data obtained by this research and 
compares it with Nikuradse [2] and Swanson et al. [24] 
experimental data.

Results in Fig.  6, show that there is good corre‑
spondence among the calculated values of f in [23] 
and the experimental data for smooth pipe, i.e. ε/Dδ0 
[24] and Nikuradse’s [2] smoothest testing condition 
(ε/D = 0.00098619). On the other hand, for the rougher 
condition, the computed data set [23] shows the same 
behaviour with ε/D = 0.08, like that of the experimentally, 
measured [2] with ε/D = 0.03333; unfortunately, the data 
available from [23] does not match the experimental con‑
ditions in terms of the roughness reported in [2]. In spite 
of this, the AI computed values of the friction factor seems 
to work accordingly to the experimental results.

Fig. 4  Comparison between 
Mikata [17] and Brkić [18, 19] 
analytical solution with respect 
of Coelbrook [7] equation

Fig. 5  Comparison between 
calculated values of f using 
Lambert’s W function and 
Nikuradse [2] data set
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Samadianfard [25], used another AI technique to esti‑
mate the friction factor. In this work, gene expression pro‑
gramming was used. From this work, an explicit expression 
to determine the friction factor was obtained:

By extending his work, Samadianfard et  al. [26], 
improved the accuracy of (12), resulting in an expression 
far more complex than (12). To get to such a level of exact‑
ness, the neural network needed to estimate the friction 
factor besides involving more complicated mathematical 
operations, it also grew substantially.

In another report [27], it is proposed to calculate the 
friction through the use of a unified approach to obtain a 
single expression to estimate f, such expression is:

Equation  (13) links the different hydrodynamic 
regimes obtaining a continuous representation of f for 
several values of Re and ε/D. For this solution scheme to 
work, the authors used a combination of independent 
functions. The terms in (13) all of them are independent 
functions that represent different flow characteristics. 
The y’s functions in (13) are called switching functions; 
they smoothly transition the different hydrodynamic 
flow regimes. They are generated with the use of Heuris‑
ticLab software [28], which uses heuristic and evolution‑
ary algorithms for different AI applications. The y’s func‑
tions are sigmoid in nature and are presented in Table 3.

(12)f =
Re
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D − 0.6315093
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3 + Re
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+ 0.0275308
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6.929841
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) 1
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10
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D
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D
+ 4.781616

)(√
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D
+

9.99701
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)

(13)f = a
(
1 − y1

)
+ c1

(
y1 − y3

)
+ c3y2

On the other hand, the c’s functions in (13) link the 
different y functions. These functions are of different 
natures of the y’s ones. They depict the hydrodynamic 
regime and are estimated from either Blasius or von 
Kárman logarithmic velocity distributions, such as (3). 
Lastly, a function relates to the laminar flow regime 
and is equivalent to Eq. (1). Table 3 shows the functions 
embedded in (13). Equations (12) and (13) are compared 
to the Nikuradse data set in Fig. 7.

From the plots in Fig. 7, it is clear that (13) offers a bet‑
ter representation of the friction factor than (12); this is 
particularly more evident for high roughness. This figure 
along with the data shown in Fig. 6 demonstrates the 
potential use of AI programming techniques to evaluate 
the friction factor, particularly in big pipe networks. The 
computation of this factor can be speeded up signifi‑
cantly with the use of AI algorithms; however, the chief 
concern with this approach definitely relies on the expe‑
rience of the programmer.

If the person who is to set up artificial intelligence (the 
neural network, symbolic regression) to compute f is not 
familiar with the hydrodynamics of the system to calcu‑
late, then serious errors could be induced and wrong 
values will be obtained. For this reason, errors of new 
models should be verified by numerical experiments.

Additionally, if specific expressions to determine 
f are produced through AI algorithms, these expres‑
sions [such as (12) and (13)] are far more complex than 
those developed from the integration of (3) and those 
obtained through the use of W function.

Fig. 6  Comparison of the friction factor calculated with artificial 
intelligence algorithms (Salmasi et  al. [23]) and measured values 
of f in a smooth pipe (Swanson et al. [24]) and pipes with different 
roughness (Nikuradse [2])

Table 3  Functions in Eq. (13) to calculate f

Function Expression

a 64
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1048
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1020
Re6

(
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2.306Re
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)
+1050
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(
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0.316
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4  Phenomenological approach

In view of the different alternatives to compute the fric‑
tion factor, these authors presented [9] not long ago a new 
analytical model to calculate the friction factor under a 
wide range of both Re and ε/D conditions.

These authors believe that this model is better suited 
to calculate f since it was conceived upon modelling the 
laminar to turbulent transition. This fact is quite impor‑
tant; Colebrook model and the others obtained through 
integration of the logarithmic velocity distribution fail to 
include (directly) the effect of turbulence on the friction 
factor.

It can be seen in Moody’s chart that within the laminar 
flow regime, the friction factor decreases as Re increases. 
Upon getting to the laminar to turbulent transition, the 
friction factor value tends to increase (irrespective of the 
pipe roughness) to a maximum value and as Re comes 
close to 4 × 103, the friction factor drops progressively 
until reaching a stable value, which is no longer affected 
by Re. Furthermore, the wall roughness seems to have a 
stronger effect on f rather than Re as the flow becomes 
fully turbulent.

In this regard, the Díaz–Plascencia model [9] succeeds 
where previous models have failed. The key feature of this 
model is that it assumes the laminar to turbulent flow tran‑
sition as a sigmoid type of function that results from the 
randomness of the flow associated with the turbulence. 
This element of the model allows for pursuing the best 
accuracy in the different models and strategies (W func‑
tion, AI) used to compute the friction factor.

Upon further work on this model, the authors have 
modified (an upcoming publication offers specific details) 
the original equation reported in [9] to the following form:

Equation (14) is similar to (13) in the sense that it is 
comprised of independent functions working together. 
The first term of (14) represents the friction factor under 
the laminar flow regime; the second term includes λ1 and 
τ1 that are parameters of a sigmoid function that charac‑
terizes the laminar to turbulent regime transition; these 
two parameters are constant and have values of λ1 = 0.02 
and τ1 = 3000. This transition relates to the boundary 
layer present next to the pipe wall; as this transition takes 
place, the sudden increase in the friction factor occur; as 
the flow accelerates, the boundary layer attached to the 
pipe wall thins and the influence of the roughness of the 
pipe becomes more important, as the flow becomes fully 
turbulent, the friction factor tends to stabilize. This last 
feature is also accounted for in the last term of (14), which 
also is of sigmoid nature but it implies the effect of the 
roughness on the friction factor. The parameters λ2 and τ2 
accounts for the Reynolds and roughness effects respec‑
tively. Table 4 shows the parameters and functions used 
in (14).

(14)f =
64
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+
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1 + exp
(

�1−Re

100

) +
�2

1 + exp
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�2−Re
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×

�

D

)

Fig. 7  Comparison of 
calculated values of f with 
expressions obtained through 
artificial intelligence algo‑
rithms (Samadianfard [25], 
Brkić [2]) and measured values 
(Nikuradse [2])

Table 4  Parameters and functions in Eq. (14) to compute f

Parameter/function Value/expression

λ1 0.02
τ1 3000
λ2 ||||||

�1 −

(
1

−2 log
(

1
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�
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)
)2||||||

τ2 �2 =
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�
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)2 −
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+ 7953.8
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Considerations made to obtain (14) are similar to those in 
[27]. The main difference between (13) and (14) relies on the 
manner in which the respective functions in these expres‑
sions were constructed. Whereas Brkić and Praks [27] used 
heuristic algorithms (based on AI), these authors focused on 
modelling the change of flow regime phenomenon using 
independent experimental data sets [2, 24, 29] and theoreti‑
cal models well established.

This flow modelling approach seems to be the best 
manner to describe not only the friction factor but more 
importantly the flow transition from laminar to the turbu‑
lent regime, In addition to that, it seems that this modelling 
approach is gaining adepts since other works in this regard 
have been published lately [30, 31].

Avci and Karagoz [30] set out to model the friction factor 
by balancing out the kinetic energy that a flow experiences 
as it gains momentum, transitioning from the laminar to the 
turbulent flow.

Similar to these authors, they proposed an expression for 
that factor comprising the laminar and turbulent flows, their 
proposed equation contains the laminar flow friction factor 
(fl= 64/Re) term, whereas, the turbulent flow contribution 
(ft) to the friction factor is a complex function. The effect of 
wall roughness is added through an empirical constant (Cm), 
their suggested equation is:

On the other hand, Kaltenbacher et al. [31] modelled 
the laminar to turbulent transition particularly. They 
did so by assuming the flow as two dimensional and 
depending upon the pressure drop and the pipe wall 
roughness. They proposed the use of a smooth (γ) func‑
tion that allows for the flow transition. This γ function, in 
turn, is comprised of different “smaller” functions work‑
ing to stabilize the flow transition.

These novel results [30, 31] are in good agreement 
with experimental sets [2, 24]. Furthermore, these works 
offer similar results to those by these authors [9], and 
Brkić and Praks [27].

Figure 8 compares the results for f from the Díaz–Plas‑
cencia model with some of the solutions obtained for 
this factor using some of the solution schemes depicted 
in this work. It can be seen in this figure that Eqs. (13) 
and (14) offer the best approximations to Nikuradse’s 
experimental results. The other models tested show 
almost the same deviations from the experimental data. 
Table 5 shows the relative error for the different models 
compared in Fig. 8. The least relative errors are obtained 
by Eqs. (13) and (14) respectively.

(15)f = ft +
(
64

Re
− ft

)
exp

(
−

(
CmRe

2560

)8
)

Fig. 8  Comparison of the 
computed friction factor using 
distinct calculation schemes 
with respect of Nikuradse [2] 
data

Table 5  Relative error with 
respect of Nikuradse [2] results 
for different models tested

Model Solution strategy % error
(ε/D = 0.00098619)

% error
(ε/D = 0.033333)

Colebrook [7] Integration of logarithmic veloc‑
ity distribution

11.57 4.02

Mikata [17] Lambert’s W function 15.24 5.25
Brkić [18] Lambert’s W function 12.72 4.72
Brkić [26] Artificial intelligence 3.72 1.64
Díaz–Plascencia [9] Phenomenological approach 8.58 1.96
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To quantify the deviation from the measured f values, 
the relative error was computed using:

The strategies shown to compute the friction fac‑
tor show distinct degrees of accuracy with respect to 
Nikuradse’s data sets.

To further test some of the different tools used to com‑
pute the friction factor, in Fig. 9 we compare the friction 
factor calculated with Colebrook’s equation (Eq. 5) with the 
models shown in Eqs. (9), (10a), (12), (13) and (14). These 
models have been tested over larger Re and ε/D ranges 
of values. The Reynolds number varied from  103 to  108; 
whereas the pipe wall roughness varied from 0.0009 (very 
smooth) to 0.08 (rougher).

In the plots shown in Fig. 9, it can be seen that the mod‑
els represented by Eqs. (5), (9), (10a) and (12) show the 
same trend. As the Reynolds number increases from  103 
to roughly  104, the friction factor calculated with these 
expressions decreases continuously until stabilizing at 
Re > 104. This behaviour is observed in every ε/D value 
used to carry out the calculations. No indication of tran‑
sitioning from the laminar to the turbulent flow regime is 

(15)%error = 100 ×
|||||
fcomputed − fNikuradse

fNikuradse

|||||

indicated by this set of models. This fact seems to limit the 
predictive capacity of these models.

On the contrary, the Brkić and Praks [27] and Díaz and 
Plascencia [9] models, they clearly indicate the transition 
from laminar to turbulent flow that is expected as the Re 
increases from  103 to  104, regardless of the roughness of 
the pipe wall. Furthermore, such transitions seem to occur 
at around Re ~ 3.5 × 103, and it is consistent throughout the 
whole tested interval.

The laminar to turbulent transition is more abrupt as 
the pipe wall roughness values increases. Once the turbu‑
lent regime takes place and stabilizes, it is clear that the 
values for the friction factor calculated with Eqs. (13) and 
(14) are in very good agreement with the other friction 
factor values calculated with the other models cited.

Table 6, compares the error % that the different models 
evaluated in this work have with respect of Colebrook’s 
equation. The error % was calculated using Eq. (15), using 
f computed with Eq. (5) as reference.

The data in Table 6 shows the models presented in refer‑
ences [17, 19, 25] are in very good agreement with Cole‑
brook’s model. On the other hand, Brkić and Praks unified 
formula and the model proposed by these authors present 
the higher error % respect to Colebrook’s compared to the 
other models tested. The Brkić and Praks unified formula 

Fig. 9  Comparison of different models to calculate the friction factor with respect to the Colebrook [7] equation
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[27] provides a new unified expression for Newtonian 
fluids valid for all pipe flow regimes from laminar to fully 
rough turbulent flow. This equation follows the inflectional 
form of curves suggested in Nikuradse’s experiment rather 
than the monotonic shape proposed by Colebrook and 
White. For this reason, it is obvious that the this new uni‑
fied formula has a larger error than the simple model of 
Colebrook. Similarly, the Díaz and Plascencia model, shows 
and represents with accuracy the inflections shown by 
Nikuradse’s data.

The novel formulas should be tested with respect to the 
Nikuradse’s data set.This is due to the fact that Eqs. (13) 
and (14), take into account the effect of the flow transi‑
tion on the pipe wall roughness; whereas the models in 
Eqs. (5), (9), (10a) and (12) do not do so. Because of this 
these models behave in the same manner. Moreover, the 
good fit between Mikata’s model and Colebrook’s is due 
to Eq. (9) is proposed as an analytical solution to Eq. (5). 
Equations (10a) and (12) were formulated using AI strat‑
egies that not necessarily take into account the physics 
behind the flow problem. Because of this feature, these 
models show a higher departure from Nikuradse’s data set, 
as indicated in Table 5.

In this regard, it is clear that the best approach to model 
the friction factor is that of considering the laminar‑turbu‑
lent transition in the model formulation or what we call 
the phenomenological approach. This is a considerable 
contribution to the field of flow friction.

5  Final remarks

The calculation of the friction factor can be done in many 
different manners. It has been shown that the different 
strategies used to calculate the factor offer relatively simi‑
lar results.

Besides the classic Colebrook model, other alternatives 
such as the use of Lambert W function and artificial intel‑
ligence training/programming are available to determine 
the friction factor. These other approaches offer similar 
results than classic models; however, their implementation 
requires experience in both the fluid dynamics problem 
and the actual computing procedure. If the person who 

decides to use these approaches is inexpert in both, it will 
induce considerable errors in the calculation of this factor.

Modelling the flow behaviour as it transitions from 
laminar to turbulent seems to be the best approach to 
calculate the friction factor under different Re and pipe 
wall roughness conditions. This not only gives the best 
estimations for the friction factor but allows for a better 
understanding of the physics behind the change from 
laminar to turbulent flow regime.
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