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Abstract
Wind power’s uncertainty is from the intermittency and fluctuation of wind speed, which brings a great challenge to 
solving the power system’s dynamic economic dispatch problem. With the wind-storage combined system, this paper 
proposes a dynamic economic dispatch model considering AC optimal power flow based on Conditional Value-at-Risk 
( CVaR ). Since the proposed model is hard to solve, we use the big-M method and second-order cone description tech-
nique to transform it into a trackable mixed-integer second-order conic programming (MISOCP) model. By comparing 
the dispatching cost of the IEEE 30-bus system and the IEEE 118-bus system at different confidence levels, it is indicated 
that CVaR method can adequately estimate dispatching risk and assist decision-makers in making reasonable dispatch-
ing schedules according to their risk tolerance. Meanwhile, the optimal operational energy storage capacity and initial/
final energy storage state can be determined by analyzing the dispatching cost risk under different storage capacities 
and initial/final states.

Keywords  Conditional value-at-risk · Dynamic economic dispatch · Energy storage system · Wind uncertainty

List of symbols
Sb	� Set of all buses
SG	� Set of all thermal power units
SR	� Set of all reactive power equipment
SE	� Set of all energy storage system
T 	� Set of times, t ∈ T  , the time interval is Δt
M	� A large positive constant
PWi,t/

∼

PWi,t	� Prediction/Actual active output of the i  th 
wind power at t

vci/vco/vr	� Cut-in/Cut-out/Rated speed of wind power
Pr	� The rated active output of wind power
�G	� The total operating cost of the whole dis-

patching period T
PGi,t/QRi,t	� Planned active/reactive power output of 

the i  th thermal power unit at t
ΔPGi,t/ΔQRi,t	� Adjustment active/reactive power output 

of the i  th thermal power unit at t

Ci,t	� The generation cost function of the i  th 
thermal power unit at t

cT	� Unit power adjustment cost of the thermal 
power unit

�ES	� Loss cost of energy storage equipment 
corresponding to unit charge and dis-
charge quantity

Pch,t,i/Pdis,t,s	� The charging/discharging active power of 
the i  th energy storage equipment at t

uch,t,i/udis,t,i	� When the energy storage is charged, uch,t,i 
is 1, and vice, udis,t,i is 1

PDi,t/QDi,t	� Active/Reactive power demand at bus i  at 
t

ei,t/fi,t	� The real/imaginary parts of the planned 
voltage at bus i  at t

∼
ei,t/

∼

f i,t	� The real/imaginary parts of the actual volt-
age at bus i  at t
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Pmin
Gi

/Pmax
Gi

	� The lower/upper limit of the active power 
output of the i  th thermal power unit

Qmin
Ri

/Qmax
Ri

	� The lower/upper limit of reactive power of 
the i  th reactive power equipment

Vmin
i

/Vmax
i

	� The lower/upper limit of the voltage at bus 
i

Pmin
Gi

/
Pmax
Gi

	� Ramping down/ramping up of the  ith  
thermal power unit

PES,i	� The total capacity of the i  th energy stor-
age equipment

�min/�max	� The minimum/maximum capacity ratio of 
the energy storage equipment

�min/�max	� The minimum/maximum permissible 
charge–discharge ratio of the energy stor-
age equipment

�ch,i/�dis,i	� The charging/discharging efficiency of the 
i  th energy storage equipment

1  Introduction

With the shortage of traditional fossil energy supply, wind 
power, photovoltaic and other renewable energy have 
been developed and applied on a large scale. Renewable 
energy power generation has been achieved significant 
economic and environmental benefits in addressing 
energy shortages and climate change. However, due to 
the nature of intermittency and fluctuation of renewable 
power output, grid-connected renewable energy has 
impacted the power system’s optimal operation, especially 
on preparing the reasonable power generation schedules 
by the dispatching decision-makers [1]. The main methods 
to cope with the random fluctuation of wind power and 
improve wind power’s absorption capacity are improving 
wind power’s prediction accuracy and configuring exten-
sive capacity energy storage system along with the wind 
farms [2, 3].

The energy storage system has a fast-bidirectional 
regulation capability. When a wind farm equips with 
energy storage systems with a specific capacity, the wind 
farm has some regulation capacity to assist the peak 
shaving, frequency modulation, smooth output power, 
and control of the power’s slope ramping rate grid. The 
wind power can actively participate in the power grid 
dispatch, improving the wind power absorption capacity 
and system operation economy [4, 5]. In [6], researchers 
examined transmission and energy storage interaction 
in high penetration of wind power. They proved that the 
location and capacity of energy storage configuration 
were essential to reduce generation cost. A two-stage 
stochastic optimization framework was proposed to 
determine the optimal size of energy storage in a hybrid 

wind-diesel system, and an efficient scenario reduction 
method was also proposed to reduce the computational 
burden [7]. By comparing the power generation perfor-
mance of an independent wind or solar power plant with 
that of integrated wind, solar, and storage (IWSE) power 
plant, the researchers demonstrated that IWSE could 
provide lower generation costs, especially for systems 
with higher wind or solar power generation [8]. In [9], 
with the aid of energy storage technology, a general 
method for calculating the hybrid wind-solar power gen-
eration system’s optimal capacity was proposed.

The above research used energy storage technology 
to solve the uncertainties well. Still, the risk tolerance 
of the system needs to be considered. At present, the 
standard risk measurement methods are utility func-
tions, mean–variance, Value at Risk ( VaR ), and Condi-
tional Value-at-Risk ( CVaR ) [10]. Because the monoto-
nicity, sub-additivity, translation invariance, and positive 
homogeneity of CVaR meet the requirements of uniform 
risk measurement, it has attracted many scholars [11]. In 
[12], the researchers introduced the theory of CVaR and 
confidence method to describe the virtual power plant 
(VPP) operating uncertainty. A VPP routine scheduling 
optimization model was built to maximizing income. A 
novel approach was presented in [13] for look-ahead dis-
patch (LAD) considering large-scale wind power integra-
tion. An index designated the Conditional Value-at-Risk 
of wind power ( CVaR −WP ) was introduced to evaluate 
the risk of wind power adjustments. According to this 
model, the base points, participation factors, and flexible 
capacity of automatic generation control units were co-
optimized. Based on the theory of CVaR , an optimal bid-
ding formula for risk aversion of demand-side resource 
aggregator was proposed for various flexible demand-
side resources [14].

In this paper, based on the operation cost of the wind-
storage combined system, CVaR method is used to deal 
with the possible risks caused by uncertainty. Based on 
CVaR , we establish a dynamic economic dispatch model 
of the wind-storage combined system, which has con-
sidered AC optimal power flow. The scheduling strategy 
and risk assessment of the wind-storage combined dis-
patching system are studied using a revised IEEE 30-bus 
system and a revised IEEE 118-bus system.

In the remaining part of this paper, we describe the 
wind-storage combined system’s operation cost in Sec-
tion 2 In Section 3 CVaR theory is introduced, then a 
dynamic economic dispatch model of the wind-storage 
combined system based on CVaR is proposed. Mean-
while, the model is transformed into a trackable MISOCP 
model. Case studies and numerical results are shown 
in Section 4, and finally, in Section 5, we conclude our 
research.
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2 � Operation cost of wind‑storage combined 
system considering wind power 
uncertainty

2.1 � Uncertainty of wind power output

When large-scale wind power connecting to the grid, 
the power system needs a new dispatching mode to 
deal with the uncertainty caused by wind power predic-
tion errors. For medium and long-term planning and 
operation scheduling problems, Weibull distribution 
is often used to describe the average distribution of 
wind speed. However, this method does not consider 
the coupling between adjacent periods. In the view of 
the short-term day-ahead dynamic economic dispatch 
problem studied in this paper, to approach the actual 
situation as close as possible, the short-term forecast 
value of wind speed is used to predict wind farms’ out-
put. Therefore, it is necessary to study the error distribu-
tion of wind speed prediction.

The relationship between wind power and wind 
speed can be expressed by:

Generally, the difference between the predicted 
−
v 

and actual v values of wind speed is defined as the pre-
diction error Δv of wind speed, satisfied v =

−
v +Δv . The 

result shows that the prediction error of wind speed 
can be regarded as a random variable which obeys the 
normal distribution with the mean value of 0 and the 
standard deviation of �v [15]. Then the probability of the 
actual wind speed can be expressed as

And its distribution function is:

Therefore, the distribution form of wind farm output 
can be obtained when the wind speed forecast value for 
the next T  hours is obtained, and the standard deviation 
can be obtained using statistical methods.

(1)PWt =

⎧⎪⎨⎪⎩

0

k1v + k2v

Pr

v ≤ vci , v > vco
vci < v < vr
vr ≤ v ≤ vco

(2)fv(v) =
1√
2��v

exp

⎡⎢⎢⎢⎣
−

�
v−

−
v
�2

2�2
v

⎤⎥⎥⎥⎦

(3)DWt(v) = �

(
v−

−
v

�v

)

2.2 � Mathematical description of system operation 
cost

The influence of wind power’s uncertainty on the eco-
nomic dispatch problem is mainly about the balance of 
electric power. A wind-storage combined system helps 
deal with the impact of wind power uncertainty in power 
balance by charging in or discharging from the energy 
storage system according to the wind power error.

Since the capacity cost of the energy storage equip-
ment is usually very high, it is impossible to configure the 
excessive capacity of energy storage to avoid all the wind 
power prediction errors. When the prediction error is too 
large for the energy storage system to meet the active 
power shortage, the power generation of thermal power 
units also need to be adjusted. Thus, thermal power units 
incur additional adjustment costs.

The total operating cost of the whole dispatching 
period T  can be expressed as

where the first item of (4) on the right side is the operation 
cost of the thermal power unit, including the operation 
cost under scheduling output and power adjustment cost; 
the second item is the charging and discharging cost of 
the energy storage system.

3 � Dynamic economic dispatching 
optimization model for wind‑storage 
combined system based on CVaR

Because of the uncertainty of wind power output and 
energy storage capacity limitation, operators face certain 
risks when deciding the dispatch schedules for power sys-
tems. The CVaR theory is applied to establish a dynamic 
economic dispatching optimization model to describe 
dispatching risk costs.

3.1 � Mathematical description of CVaR

CVaR is an improved risk analysis method proposed by 
Rockafeller and Uryasev extended from VaR [16, 17], which 
effectively overcomes the deficiency of VaR method in 
describing the degree of loss and its sub-additivity when 
adverse situations occur. CVaR is defined as the average 
loss value of a portfolio in a given period when the risk 
loss of the portfolio is higher than that of VaR at a given 
confidence level. It can be expressed by a mathematical 
formula as follows:

(4)

�G =

T�
t=1

⎧⎪⎨⎪⎩

SG�
i=1

�
Ci,t

�
PGi,t

�
+ cT ×

��ΔPGi,t ��
�
+

SE�
i=1

�ES
�
uch,t,iPch,t,i + udis,t,iPdis,t,i

��
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where f (X , �) is the loss function of the portfolio X  , and � 
is a continuous random variable which may affect the loss 
function; E

[
f (X , 𝜉)|f (X , 𝜉) > VaR𝛽

]
 denotes the expectation 

of f (X , �) under the condition of f (X , 𝜉) > VaR𝛽.
Let the probability density of the random variable � be 

p(�) , then the distribution function of the loss function 
f (X , �) is:

For a given confidence level � , the VaR of the portfolio 
X is:

The corresponding CVaR is expressed as:

According to the above formulas, if the probability den-
sity function p(�) is known, VaR� can be obtained, and then 
CVaR� can be obtained as well.

The continuous CVaR can be calculated using (8). How-
ever, the calculation of CVaR cannot be satisfied with the 
condition of continuity in many cases. Therefore, it is nec-
essary to deduce the calculation method of discrete CVaR.

The discrete points in each probability scenario are used 
to replace the integral in (8). The calculation formula of dis-
crete CVaR is as follows:

where N denotes the total number of discrete segments 
and Prn is the probability of occurrence of paragraph n.

According to [16], the following optimization problem is 
constructed to obtain the values of CVaR� and VaR�:

The minimum value of the objective function f (X , z) is 
CVaR� , and the corresponding value of z is VaR�.

3.2 � Dynamic economic dispatch model based 
on CVaR

Wind power prediction error ΔPWt  is  defined 
asΔPWt =

∼

PWt − PWt  .  Assuming that there are m 

(5)CVaR𝛽(X ) = E
[
f (X , 𝜉)|f (X , 𝜉) > VaR𝛽

]

(6)�(X , �) = � f (X ,�)≤�
p(�)d�

(7)VaR� = min{� ∈ R|�(X , �) ≥ �}

(8)
CVaR𝛽 = E

[
f (X , 𝜉)|f (X , 𝜉) > VaR𝛽

]
= 𝛼 +

1

1 − 𝛽 ∫ 𝜉

max{f (X , 𝜉) − 𝛼, 0}p(𝜉)d𝜉

(9)

CVaR𝛽 = E
[
f (X , 𝜉)|f (X , 𝜉) > VaR𝛽

]
= 𝛼 +

1

1 − 𝛽

N∑
n=1

Prn
[
f (X , 𝜉) − 𝛼

]+

(10)
[
f (X , �) − �

]+
= max{f (X , �) − �, 0}

(11)minf (X , z) = z +
1

1 − �

N∑
n=1

Prn
[
f (X , �) − z

]+

possible scenarios for wind power prediction errorsΔPWt

,ΔPWt ∈
{
ΔPWt,1,ΔPWt,2,⋯ ,ΔPWt,m

}
 . The probability of 

occurrence of the scenario ΔPWt,i isPr
{
ΔPWt = ΔPWt,i

}
= pi

,pi ≥ 0,
∑m

i=1
pi = 1 . Let p =

(
p1, p2,⋯ , pm

)T
 denote the 

probability vector of wind power prediction error.
CVaR is adopted as its measurement standard con-

sidering the aversion of system operation cost to wind 
power prediction error. Under CVaR , the decision mak-
er’s goal is to find the optimal scheduled power gen-
eration to minimize CVaR�

(
PGi,t

)
 . Therefore, the equiva-

lent description of the optimization problem can be as 
follows:

Subject to the following constraints (Eqs. 13–32):

(1)	 AC Power flow equation constraints.
	   The system needs to meet the active and reactive 

power balance at any instant. 

(2)	 Constrain of the limitation of the generations and 
node voltage

(3)	 Ramping constraints of thermal power units

(12)Minimize CVaR�
�
PGi,t

�
= � +

1

1−�

∑m

i=1
pi
�
�G,i − �

�+

(13)

PGi,t + PWi,t −
∑
j∈Sb

[
ei,t

(
ej,tGij − fj,tBij

)
+ fi,t

(
fj,tGij + ej,tBij

)]
= PDi,t , i ∈ Sb

(14)

QRi,t −
∑
j∈Sb

[
fi,t
(
ej,tGij − fj,tBij

)
− ei,t

(
fj,tGij + ej,tBij

)]
= QDi,t , i ∈ Sb

(15)

PGi,t + ΔPGi,t + PWi,t + ΔPWi,t − uch,t,iPch,t,i + udis,t,iPdis,t,i

−
∑

j∈Sb

�∼
ei,t

�∼
ej,tGij −

∼

f j,tBij

�
+

∼

f i,t

�∼

f j,tGij +
∼
ej,tBij

��
= PDi,t , i ∈ Sb

(16)

QRi,t + ΔQRi,t −
∑
j∈Sb

[∼
f i,t

(∼
ej,tGij −

∼

f j,tBij

)
−

∼
ei,t

(∼

f j,tGij +
∼
ej,tBij

)]
= QDi,t , i ∈ Sb

(17)Pmin
Gi

≤ PGi,t ≤ Pmax
Gi

, i ∈ SG

(18)Qmin
Ri

≤ QRi,t ≤ Qmax
Ri

, i ∈ SR

(19)Pmin
Gi

≤ PGi,t + ΔPGi,t ≤ Pmax
Gi

, i ∈ SG

(20)Qmin
Ri

≤ QRi,t + ΔQRi,t ≤ Qmax
Ri

, i ∈ SR

(21)
(
Vmin
i

)2 ≤ e2
i,t
+ f 2

i,t
≤ (

Vmax
i

)2
, i ∈ Sb

(22)
(
Vmin
i

)2 ≤ ∼
e
2

i,t
+

∼

f
2

i,t
≤ (

Vmax
i

)2
, i ∈ Sb
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(4)	 Energy storage constraints

3.3 � Conversion of discrete variables

Because (4), (15), and (28) contain the production of 0–1 
decision variables and continuous decision variables, it is 
difficult to solve the model directly. This model is trans-
formed into mix-integer nonlinear programming (MINLP) 
problem using the big-M method [18] with adding aux-
iliary variables.

Introduce Xch,t,i and Xdis,t,i to satisfy:

Then (4) can be transformed into

and (15), (28) can be transformed into

(23)PGi,dΔt ≤ PGi,t − PGi,t−1, i ∈ SG

(24)PGi,t − PGi,t−1 ≤ PGi,uΔt, i ∈ SG

(25)PGi,dΔt ≤ PGi,t + ΔPGi,t − PGi,t−1 − ΔPGi,t−1, i ∈ SG

(26)PGi,t + ΔPGi,t − PGi,t−1 − ΔPGi,t−1 ≤ PGi,uΔt, i ∈ SG

(27)�minPES,i ≤ PES,t,i ≤ �maxPES,i , i ∈ SE

(28)PES,t,i = PES,t−1,i + uch,t,iPch,t,i − udis,t,iPdis,t,i , i ∈ SE

(29)
�minPES,i

(
1∕�ch,i

)
uch,t,i ≤ Pch,t,i ≤ �maxPES,i

(
1∕�ch,i

)
uch,t,i , i ∈ SE

(30)
�minPES,i�dis,iudis,t,i ≤ Pdis,t,i ≤ �maxPES,i�dis,iudis,t,i , i ∈ SE

(31)uch,t,i + udis,t,i = 1, i ∈ SE

(32)PES,1,i = PES,T ,i , i ∈ SE

(33)Xch,t,i = uch,t,iPch,t,i

(34)Xdis,t,i = udis,t,iPdis,t,i

(35)

�G =

T∑
t=1

{
SG∑
i=1

[
Ci,t

(
PGi,t

)
+ cT ×

||ΔPGi,t||
]
+

SE∑
i=1

�ES
(
Xch,t,i + Xdis,t,i

)}

(36)

s.t.

⎧⎪⎨⎪⎩

−M
�
1 − uch,t,i

�
+ Pch,t,i ≤ Xch,t,i ≤ �

1 − uch,t,i
�
+ Pch,t,i

−Much,t,i ≤ Xch,t,i ≤ Much,t,i
−M

�
1 − udis,t,i

�
+ Pdis,t,i ≤ Xdis,t,i ≤ �

1 − udis,t,i
�
+ Pdis,t,i

−Mudis,t,i ≤ Xdis,t,i ≤ Mudis,t,i

So far, the dynamic economic dispatch model based on 
CVaR is MINLP as:

The nonlinearity of AC power flow constraints in (39) 
makes the MINLP is still challenging to solve.

3.4 � Second‑order cone description of optimization 
model

By using the second-order cone description technique [19], 
the MINLP (39) can be transformed into a second-order cone 
programming (SOCP) model, which can be solved efficiently.

System (39) is a nonconvex quadratic optimization prob-
lem. However, quite significantly, all the nonlinearity and 
non-convexity comes from one of the following three forms 
involved in AC power flow constraints:

1)	 e2
i
+ f 2

i
= ||Vi||2,

2)	 eiej + fi fj =
||Vi|||||Vj

|||cos
(
�i − �j

)
,

3)	 eifj − fiej = −||Vi|||||Vj
|||sin

(
�i − �j

)
.

To capture this nonlinearity, variables cii , cij and sij for each 
bus i  and each transmission line (i, j) as cii = e2

i
+ f 2

i
 , 

cij = eiej + fi fj , and sij = eifj − fiej . These variables satisfy the 
relation c2

ij
+ s2

ij
= ciicjj . By replacing the variables, (13)–(14) 

and (21) can be transformed as follows:

Similarly, (15), (37), and (22) can be transformed as 
follows:

(37)

PGi,t + ΔPGi,t + PWi,t + ΔPWi,t − Xch,t,i + Xdis,t,i − PDi,t

=
∑

j∈Sb

�∼
ei,t

�∼
ej,tGij −

∼

f j,tBij

�
+

∼

f i,t

�∼

f j,tGij +
∼
ej,tBij

��
, i ∈ Sb

(38)PES,t,i = PES,t−1,i + Xch,t,i − Xdis,t,i , i ∈ SE

(39)

{
(12)

s.t.(13) − (14), (16) − (27), (29) − (38)

(40)PGi,t + PWi,t − PDi,t = Giicii +
∑
j∈Sb

(
Gijcij − Bijsij

)
, i ∈ Sb

(41)QRi,t − QDi,t = −Biicii +
∑
j∈Sb

(
−Bijcij − Gijsij

)
, i ∈ Sb

(42)
(
Vmin
i

)2 ≤ cii ≤ (
Vmax
i

)2
, i ∈ Sb

(43)cij = cji , sij = −sji

(44)c2
ij
+ s2

ij
= ciicjj
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To sum up, (39) is transformed into a mixed-integer sec-
ond-order conic programming (MISOCP) model as follows:

This MISOCP model can be solved by GUROBI [20] 
efficiently.

4 � Numerical results

The numerical results on a revised IEEE 30-bus system and 
a revised IEEE 118-bus system are present. The revised IEEE 
30-bus system has 5 units, 41 lines, and 2 wind farms with 
each capacity of 100 MW at node #10 and #15, respec-
tively. The revised IEEE 118-bus system has 54 units and 
186 lines, and 4 wind farms with each capacity of 160 MW 
at node #21, #64, #87, and #105, respectively. For each 
wind farm, one energy storage equipment is installed as a 
wind-storage combined system, and the capacity of each 
energy storage is set to 30% of the wind farm’s capacity. 
The network data of the test system is extracted from MAT-
POWER 5.1. The revised IEEE 30-bus system’s unit data is 
from [21], and the revised IEEE 118-bus system is from [1]. 

(45)

PGi,t + ΔPGi,t + PWi,t + ΔPWi,t − Xch,t,i + Xdis,t,i − PDi,t

= Gii

∼
cii +

∑
j∈Sb

(
Gij

∼
cij − Bij

∼
sij

)
, i ∈ Sb

(46)

QRi,t + ΔQRi,t − QDi,t = −Bii
∼
cii +

∑
j∈Sb

(
−Bij

∼
cij − Gij

∼
sij

)
, i ∈ Sb

(47)
(
Vmin
i

)2 ≤ ∼
cii ≤ (

Vmax
i

)2
, i ∈ Sb

(48)
∼
cij =

∼
cji ,

∼
sij = −

∼
sji

(49)
∼
c
2

ij
+

∼
s
2

ij
=

∼
cii

∼
cjj

(50)

⎧⎪⎨⎪⎩

(12)

s.t.(17) − (21), (23) − (27),

(29) − (36), (38), (40) − (49)

The maximum ramping rate per minute of each thermal 
power unit is set at 1% of the maximum output of the unit 
and cT is 74.3 $/MW. Detailed parameters of the wind farm 
and energy storage system list in Table 1

Figures 1 and 2 show the load values and the wind 
speed prediction values of each farm of the IEEE 30- bus 
system and IEEE 118-bus system, respectively. Assume 
that the power prediction errors of wind farms obey the 
normal distribution of �=10%� . The dispatching period 
is T = 24 , and the time interval is Δt = 1h . The number 
of initial uncertain scenes obtained by the Monte Carlo 
simulation is 1000. For reducing the computational burden 
and improve the computational speed, the simultaneous 
backward reduction method described in [22] is used to 
reduce the number of scenarios to 10.

Table 1   Parameters of The Wind Farm and Energy Storage System

Parameter Value Parameter Value

v
ci

3.5 m/s v
r

13.5 m/s
v
co

25 m/s �
ES

22.8$/MW
�min 0.05 �max 0.09
�min 0.05 �max 0.18
�
ch

90% �
dis

90%

Fig. 1   Load and wind speed prediction data for the revised IEEE 
30-bus system

Fig. 2   Load and wind speed prediction data for the revised IEEE 
118-bus system
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All simulations are done with a personal computer with 
3.4-GHz CPU and 8 GB of RAM. The proposed method 
is implemented in MATLAB R2017a by using YALMIP 
R20181012 [23] package as s modeling software and 
GUROBI 7.0 [20] as a solver.

The formulation analysis in this section is divided into 
three parts. Section 4.1 shows that CVaR method is useful 
in estimating the risk of dispatch cost by analyzing the 
influence of confidence level on scheduling results, and 
decision-makers can make different dispatch schedules 
according to their risk tolerance. Section 4.2 determines 
the optimal energy storage capacity for operation by ana-
lyzing the impact of energy storage capacity on schedul-
ing results. Moreover, the optimal initial energy storage 
state is given in section 4.3 by analyzing the relationship 
between the initial energy storage state and scheduling 
results.

4.1 � Confidence level’s impact on scheduling results 
and analysis

The confidence level � can reflect the level of risk aver-
sion of decision-makers. Note that the system (50) is a 
standard dynamic economic dispatch model when the 
objective function (12) is replaced with minimizing (4). 
To study the influence of � on the total dispatch cost 
risk value, � = 0.1,0.2,⋯ , 0.9 of the system (50) and the 
standard dynamic economic dispatch model are selected 
to be solved on the IEEE 30-bus system and IEEE 118-bus 
system, respectively. The VaR and CVaR values of the total 
dispatch cost at � = 0.1,0.2,⋯ , 0.9 with increasing step 0.1 
are shown in Figs. 3 and 5. The entire dispatch cost of the 
standard dynamic economic dispatch model is $92,567.52 
and $1,232,000, respectively, which are higher than that 
under � = 0.1,0.2,⋯ , 0.9 . Therefore, to a certain extent, 
it shows that the CVaR method can effectively reduce 
the economic loss of operation and reduce the waste of 
resources when errors occur in the predicted output value.

Figure 3 shows the relationship between the confi-
dence level and total dispatch cost risk value in the IEEE 
30-bus system. In detail, Table 2 shows the actual cost 
values and the energy storage cost under different � . 
Moreover, Fig.  4 illustrates the units’ schedule under 
� = 0.2 for the IEEE 30-bus system as an instant. With � 
increasing, the total dispatch cost is increasing too. The 
reason is that the degree of confidence level represents 
the degree of risk aversion of the decision-makers. In 
other words, the bigger the value of � , the more con-
servative the decision-makers make since they are will-
ing to avoid possible higher losses.

At any confidence level, CVaR value of the total dispatch 
cost is higher than the VaR value, because CVaR represents 
the potential average loss beyond the VaR value. Therefore, 

it is more appropriate to use CVaR method to describe the 
magnitude of risk. When � increases with the same step, 
both VaR and CVaR increase, but the rate of increase and 
their difference decrease gradually. The reason is due to 
the normal distribution of uncertainty prediction errors 
of wind speed. With the rise of � , the system’s potential 
risk gradually moves to the tail of the normal distribution, 
which leads to the increase of the expected dispatch cost, 
while their growth rates slow down.

Besides, the confidence level can also be used as a 
safety index for the system’s operation. The higher con-
fidence level indicates that the system requires higher 
security than that of a lower confidence level. The total 
dispatch cost of the system increases higher, while the 
system’s economy is getting worse.

Therefore, the decision-maker can determine the sys-
tem’s scheduling scheme according to his risk tolerance 
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Fig. 3   The relation curve between confidence level and total dis-
patch cost risk value for the revised IEEE 30-bus system

Table 2   Units power cost and energy storage equipment cost 
under different confident levels of the revised IEEE 30-bus system

� Units power cost/$ Energy storage 
equipment cost/$

0.1 71,084.94 20,465.28
0.2 72,765.41 18,956.31
0.3 74,412.92 17,421.86
0.4 76,116.37 15,837.35
0.5 78,685 13,396.17
0.6 80,858.84 11,301.54
0.7 82,402.83 9875.22
0.8 84,682.86 7694.23
0.9 86,416.83 6150.73
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using the proposed dynamic economic dispatch model 
based on CVaR.

Figure 5 shows the relationship between the confidence 
level and total dispatch cost risk value in the IEEE 118-bus 
system. The higher the confidence level � is, the bigger the 
dispatch cost risk value is. It is consistent with the results 
in the case of the IEEE 30-bus system mentioned above.

4.2 � Impact of operational energy storage capacity 
on scheduling results and analysis

The energy storage system sometimes cannot operate 
at full capacity because of overhaul or other operating 

conditions. Therefore, we need to consider the impact 
of different operational energy storage capacity on the 
scheduling results.

Under the condition of � = 0.3 and � = 0.7 , the opera-
tional energy storage capacity is set to 20%, 40%, 60%, 
and 80% of the total energy storage capacity, respectively. 
The simulation results show that the CVaR of total dispatch 
cost varies with the operational energy storage capacity 
involved in the operation at the IEEE 30-bus system and 
the IEEE 118-bus system, respectively, in Figs. 6 and 7.

Figure 6 shows how CVaR of total dispatch cost changes 
with the operational energy storage capacity, named 
as ration of total energy storage capacity, in the IEEE 
30-bus system. As the operating energy storage capacity 
increases, the CVaR of total dispatch cost decreases gradu-
ally at first and then tends to be stable. That is because 
the operational capacity is too small to meet wind pow-
er’s prediction error at first. As a result, the thermal power 
units must adjust their output to meet the unbalanced 
load caused by wind power’s prediction error. The power 
adjustment cost of the thermal power units are much 
higher than the charging and discharging cost of energy 
storage ( cT > 𝜆ES ). Therefore, the lower the capacity of 
energy storage in operation is, the higher CVaR of total 
dispatch cost is.

Figure 7 shows how CVaR of total dispatch cost changes 
with the ratio of total energy storage capacity in the 
revised IEEE 118-bus system. The changing trend of energy 
storage capacity with CVaR of total dispatch cost is the 
same as that of the revised IEEE 30-bus system.

As shown in Figs. 6 and 7, when the energy storage 
system’s operational capacity is more than 80% of the 

Fig. 4   Economic dispatch schedule under � = 0.2 for the revised 
IEEE 30-bus system
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Fig. 5   The relation curve between confidence level and total dis-
patch cost risk value for the revised IEEE 118-bus system
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total energy storage capacity, CVaR of total dispatch cost 
reaches the minimum values. Therefore, it is most appro-
priate to configure the energy storage capacity in opera-
tion no less than 80% of the total energy storage capacity.

Comparing CVaR of total dispatch cost in � = 0.3 and 
� = 0.7 , CVaR of total dispatch cost in � = 0.3 is always 
lower than that in � = 0.7 . It is consistent with the conclu-
sion in section 4.1 

4.3 � Impact of initial/final energy storage state 
on scheduling results and analysis

The operation of energy storage equipment often requires 
the same initial and final state. To study the impact of ini-
tial and final energy storage state on scheduling results, 
under the condition of � = 0.3 and � = 0.7 , the initial/final 
energy storage state is set to 40%, 50%, 60%, 70%, 80%, 
and 90% of the energy storage capacity, respectively. The 
simulation results show that the CVaR of total dispatch 
cost varies with the initial/final energy storage state at 
the revised IEEE 30-bus system and revised IEEE 118-bus 
system, respectively, as shown in Figs. 8, 9.

Figure 8 shows that CVaR s of total dispatch costs are 
almost flat when the initial/final energy storage states are 
between 40 and 60% of the total capacity. However, when 
the initial/final state of energy storage exceeds 60% of the 
total energy storage capacity, the CVaR of total dispatch 
cost increases sharply.

Figure 9 shows the relationship between the initial 
capacity of total capacity and CVaR of total dispatch cost 
in the 118-bus system. The general trend of change is 

consistent with that of the 30-bus system. Therefore, it 
is better to set the initial/final state of an energy storage 
system between 40 and 60% of the total energy storage 
capacity.

Similarly, comparing CVaR of total dispatch cost in 
� = 0.3 and � = 0.7 , the CVaR of total dispatch cost in 
� = 0.3 is always lower than that in � = 0.7 . It is consistent 
with the conclusion in section 4.1 too.
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Fig. 7   The relation curve between operational energy storage 
capacity and CVaR of total dispatch cost for the revised IEEE 118-
bus system
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state and CVaR of total dispatch cost for the revised IEEE 30-bus sys-
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5 � Conclusions

In this paper, we propose a dynamic economic dispatch 
model of the wind-storage combined system based on 
CVaR , which is hard to solve. We use the big-M method and 
second-order cone description technique to transform the 
original model into MISOCP. By comparing the dispatch 
costs of the IEEE 30-bus system and the IEEE 118-bus sys-
tem at different confidence levels under different cases, it 
is shown that CVaR method can adequately estimate the 
dispatching risk and help decision-makers to make rea-
sonable dispatch schedules according to their risk toler-
ance. Also, through the analysis of dispatch cost risk under 
different operational storage capacities and initial/final 
states, the lowest risk can be obtained when the storage 
capacity involved in the operation is not less than 80% 
of the total energy storage capacity, and the initial/final 
state is between 40 and 60% of the total energy storage 
capacity.
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