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Abstract
Floods are one of the major concerns in the world today. The lower reaches of the river coming from the western side of 
West Bengal are often affected by floods. Thereby estimation and prediction of flood susceptibility in the light of climate 
change have become an urgent need for flood mitigation and is also the objective of this study. The historical floods 
(1978–2018) of the monsoon-dominated lower Dwarkeswar River, as well as the possibility of future floods (2020–2075), 
were investigated applying peak flow daily data. The possibilities of future flow and floods were estimated using rainfall 
data from MIROC5 of CMIP5 Global Circulation Model (GCM). Besides, four extreme value distribution functions like log-
normal (LN), Log-Pearson Type III (LPT-3), Gumbel’s extreme value distribution (EV-I) and extreme value distribution-III 
(EV-III) were applied with different recurrence interval periods to estimate its probability of occurrences. The flood sus-
ceptibility maps were analyzed in HEC-RAS Rain-on-grid model and validated with Receiver Operating Characteristic 
(ROC) curve. The result shows that Log-Pearson-Type-III can be very helpful to deal with flood frequency analysis with 
minimum value in Kolmogorov–Smirnov (K–S = 0.11676), Anderson–Darling (A–D = 0.55361) and Chi-squared test (0.909) 
and highest peak discharge 101.9, 844.9, 1322.5, 1946.2, 2387.9 and 2684.3 cubic metres can be observed for 1.5, 5, 10, 
25, 50 and 75 years of return period. Weibull’s method of flood susceptibility mapping is more helpful for assessing the 
vulnerable areas with the highest area under curve value of 0.885. All the applied models of flood susceptibility, as well 
as the GCM model, are showing an increasing tendency of annual peak discharge and flood vulnerability. Therefore, this 
study can assist the planners to take the necessary preventive measures to combat floods.
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1 Introduction

Floods in different parts of the world seem to be a major 
problem as storms and floods killed more than a million 
people between 1980 and 2012 [1, 2]. Between June and 
July 2019, several parts of the world are experiencing 
record-breaking floods, making it a global catastrophe. 
A major portion of the world’s populations resides in the 
flood plains and they are indirectly or directly depend-
ent on the flood plains, thereby human encroachment, 

modification of river and degradation of the ecosystem has 
become unavoidable results [2]. Along with this, floods are 
possibly the most frequent, devastating and widespread 
event, responsible for the huge loss of life and economy 
[3]. Hwang et al. [4] have found that due to global warm-
ing, over the past 25 or 30 years of twentieth-century wit-
nessing numerous unprecedented floods globally which 
have increases the damage rate in a spectacular way [5]. 
The Centre for Research on the Epidemiology of Disasters 
reports that 2156 number of floods have occurred in the 
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previous 30 years, which has resulted in the deaths of 206, 
303 lives, loss of 386 billion US dollars and has affected 
nearly 2.6 billion people [6]. In the case of tropical rivers 
of South Asia, floods are a frequent event [3, 7]. In the case 
of India, there is no exemption in these circumstances 
[8]. The Central Water Commission of India reported that 
every year 32 million population are suffered from floods 
due to nearly 7.21 million hectares of land inundation [9]. 
Along with this, the devastating floods in Mumbai (2005), 
Uttarakhand (June 2013), Jammu and Kashmir (September 
2014) are one of the few examples of devastating floods 
in India. West Bengal, which is primarily an agrarian state 
with high population density in the low-lying alluvial plain, 
is facing a catastrophic flood problem. The Irrigation and 
Waterways Department of Govt. of West Bengal (IWD) in 
their several reports stated that 42 per cent of the state is 
susceptible to flood. Whereas, Several studies have argued 
that approximately twenty million 55.8% of the state is sus-
ceptible to floods [10–12]. Chapman and Rudra [13] and 
Kadam and Sen [14] have concluded in the year of 2000, 20 
million people were affected that during that flood. There-
fore, flood risk assessment and flood management are very 
much essential to understand the flood-prone areas and 
to take suitable measurements [15].

Several models like support vector machine [16], 
weights-of-evidence [16], machine learning [17, 18], ana-
lytical hierarchy processes [19], bivariate and multivari-
ate statistical models [20–22] were used to address the 
future flood susceptibility of an area. Furthermore, satellite 
images, such as Japanese Earth Resources Satellite 1 (JERS-
1), Landsat, Environmental Satellite (ENVISAT), European 
Remote Sensing Satellite 2 (ERS-2), and Sentinel data are 
generally used to estimate river discharge [23] and flood-
affected area [24, 25]. Along with this, the occurrence of 
extreme weather events rises with global climate change 
[26, 27] which is also a possible reason behind extreme 
hydrological events like droughts and floods [27, 28]. There 
are numerous studies which have applied the GCM data 
to estimates future flood susceptibility [17, 29–32]. But, 
most of them have focused mainly on the spatial patterns 
of flood susceptibility, where they have ignored the flood 
frequency analysis.

On the other hand, flood frequency analysis is very 
much important for reducing the impact of the flood by 
taking appropriate policies [33]. However, it is quite hard 
to forecast the flood using inadequate past observations 
on gauge height, river discharge, unpredictable rainfall, 
etc. [34, 35]. Human encroachment in the flood plain sys-
tem made this situation very difficult [36]. Bai [27] stated 
that the flood frequency analysis (FFA) is generally applied 
to predict the flood magnitude and frequency where long 
historical records are available. Nevertheless, FFA through 
quantitative manner is still accepted as the benchmark 

technique for prediction of a flood [37]. Several studies 
have been done on this aspect based on diverse kinds of 
data, e.g., past data and paleo-flood accounts from all over 
the globe [5]. Among the several methods for the FFA, the 
probabilistic method is usually used in flood hydrology 
[38]. Studies on the FFA is mainly based on certain popu-
lar probability frequency distribution functions, such as 
Extreme Value distribution (EV), Gumbel’s Extreme Value 
distribution (GEV), Log-Pearson Type III, log-normal (LN), 
etc.[3]. Careful investigation on these methods has shown 
that suitability of frequency distribution functions varies 
with variation in a geographical area, such as GEV in Britain 
[39], LN distribution in China [40] and LPT-3 distribution in 
the USA [41, 42]. Beside, these analyses can provide only 
some statistical values, where spatial aspect of flood is 
absent.

The main objective of this study is to evaluate historical 
and future flood frequency analysis and flood prone area 
mapping based log-normal, Log-Pearson Type III (LPT-3), 
Gumbel’s extreme value distribution (EV-I) and extreme 
value distribution-III (EV-III) models and HEC RAS soft-
ware. In this study, a monsoon-dominated lower reaches 
of the Dwarkeswar River at Arambag Station, Hooghly in 
West Bengal, India, has been selected to fulfil our objec-
tives, where flooding is a common phenomenon in this 
lower part of the river due to poor drainage conditions 
[43–45]. Historical accounts by the IWD and studies from 
Mandal and Das et al. [35, 46] shown that the study area 
has been suffering from frequent floods. In addition, the 
HEC RAS software was used to estimate river discharge 
based on GCM-based daily rainfall data, elevation data, 
land use and land cover data and compares the selected 
flood models with it to create flood risk maps and it will 
be very helpful for policymakers in spatial assessment 
for future risks. As physical modelling is one of the most 
reliable and accepted methods for studying flood hazard 
[47]. Several hydrological simulating software and mod-
els, such as SWAT, HEC-HMS, and HEC-RAS, were used to 
understand the flood probability [27, 47, 48]. Minh et al. 
[49] have stated that such kinds of hydrological models 
are very useful to predict the flood frequency where long 
term records of hydrological data are not available. As 
well as Sivapalan, Sivapalan et al., Du et al., Zhang et al. 
and Huang et al. [50–54] have argued that these models 
are also very important to estimate flood with changing 
land use and climate. Flood models are mainly two types 
such as 1D and 2D. As the 1D model has a major limitation 
regarding lateral flow therefore 2D are frequently used for 
flood routing [55, 56].
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2  Study area

Dwarkeswar River, which is also known as Dhalkishore [57], 
which is one of the major rivers in the western region of 
West Bengal. The drainage area of this river is bounded 
by 23°32′00ʺN to 23°40′25ʺN latitude and 86°31′08ʺE 
to 87°47′58ʺE longitude (Fig.  1), covering an area of 
4356.6 km2. The Dwarkeswar River originates from the 
Tilboni hill of Chhotanagpur Plateau in Puruliya district. 
Several minor tributaries like Arkasha, Berai, Shankari, 
Beko Nala, DangraNala, Kumari Nala, Futuari Nala, Dud-
hbhaiya Nala joined with this main Dwarkeswar River and 
ultimately the Dwarkeswar River meet with Shilabati near 
Ghatal, Paschim Medinipur district. The lower part of the 
Dwarkeswar River is associated with Holocene Sediment 
[57, 58].

The shape of the drainage basin is elongated, and it 
is sixth-order drainage network and the average bifur-
cation ratio is 3 [57]. The highest width of the drainage 
basin is 40.80 km and the maximum length of the basin 
is 159.84  km. The entire length of the mainstream is 
228.65 km. The lower part of the river basin is suffering 
from frequent flooding. In this study area, two gauge sta-
tions, such as Arambag and Shakepur, can be found in the 
lower part of the river. Among which Shakepur is suffer-
ing from severe data gaps. Therefore, the Arambag sta-
tion (11.43 m from MSL) has been taken into our study, 
where according to Irrigation and Waterways Department 
Government of West Bengal, India [59], 17.23 and 17.43 m 

are representing the danger level and the extreme danger 
level. The catchment of the Dwarkeswar is associated with 
the monsoon type of climate. The mean yearly precipita-
tion ranges from 1400 to 1500 mm [60] and most of the 
rainfall occurred during the peak monsoon time (Fig. 2a). 
The population density of this area varies from 1500 to 
2000 person per  km2 [61]. This area is mainly associated 
with agricultural activity (Fig. 1). Records from 1978 to 
2018 shows that in the last 30 years river gauge height of 
Dwarkeswar river has crossed the extreme danger level 
for seven times near the Arambag station [62] (Fig. 2b). 
Therefore, approximately in every 6th year, gauge height 
of this river crosses the extreme danger level.

3  Database and methodology

In this study to fulfil our objectives, first of all we have 
collected daily rainfall data, elevation data, land use and 
land cover data and daily river flow data for the period of 
10 August 2016 to 27 August 2016 and incorporated in 
HEC-RAS 5.0.7. A rating curve was estimated with the help 
of observed data and HEC-RAS 5.0.7. After that observed 
historical gauge height data of the Dwarkeswar River near 
Arambag Town, Hooghly District, West Bengal, was col-
lected for the period of 1978 to 2018 and annual peak dis-
charge for the same period was computed with the help 
of rating curve. Besides, MIROC5 GCM daily rainfall data 
for the period of 1978 to 2018 (historical data) and 2020 
to 2095 (to simulate future scenario) were collected from 

Fig. 1  Location map of the study area
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GCM (Table 1) and simulated in the HEC-RAS 5.0.7 to esti-
mate Annual peak discharge (APD) for the respective peri-
ods. Afterward, statistical bias correction of the simulated 
annual peak discharge data from the MIROC5 GCM daily 
rainfall has been done using computed annual peak dis-
charge data from the observed gauge height data for the 
same period. At last, flood frequency analysis of historical 
and future discharge and gauge height and flood-prone 
areas concerning different recurrence interval have been 
determined (Fig. 3) to determine present and future flood 
susceptibility of the lower part of the Dwarkeswar River.

3.1  Rain‑on‑grid model

Rain-on-grid model of the HEC-RAS-v5.07 has been 
applied in this work to forecast the river discharge and 
gauge height data for Arambag station using daily rainfall 
data, elevation data and LULC data. In this HEC-RAS-v5.07 
version, Rain-on-grid model is able to predict the river dis-
charge, gauge height and flood affected area [63].

3.1.1  Rating curve development

A rating curve can be defined as “a relationship between 
two stream or river variables, usually its discharge  (m3 s−1) 
and a related variable such as water stage (depth of water 
above a local datum)” [64]. It is generally used to forecast 
a variable which is hard to determine constantly or in 
extreme events. Stage data of the river is much more sig-
nificant than the discharge for flood forecasting and plan-
ning evacuation in flood-prone areas, [65]. In this study, a 
rating curve was estimated using daily rainfall data from 
10 rain gauge stations (Arambag, Bankura, Champadanga, 
Durgapur, Ghatal, Indus, Panchet, Simulia, Sonamukhi and 
Tusuma) for the August 2016 flood (10th August 2016 to 
27th August 2016) was collected from IWD (Table 1 and 
Fig. 4a). After that average daily rainfall of the basin was 
determined using thesian polygon in Arc GIS 10.3 and 
weighted daily rainfall was estimated. Beside, land use 
and land cover data and geology of the study area (Fig. 4b 
and c) were collected from NRSC Bhuban [66] to estimate 
Manning roughness value following Chow [67] (Table 2). 
ALSO PALSAR digital elevation model and fifteen channel 

Fig. 2  a Average monthly rainfall; b distribution of gauge height of Dwarkeswar River near Arambag (1978–2018)

Table 1  Data and maps used for this study

Types of Data Source

Daily observed rainfall Irrigation and Waterways Department, Government of West Bengal (https ://www.wbiwd 
.gov.in/)

Daily rainfall data from CIMIP5 (GCM-MIROC5) 
(Historical 1978–2018 and 2020–2100 for RCPs)

Atmosphere and Ocean Research Institute (The University of Tokyo); National Institute 
for Environmental Studies; and Japan Agency for Marine-Earth Science and Technol-
ogy (http://amate rasu.ees.hokud ai.ac.jp/~fswik i/pub/wiki.cgi?page=CMIP5 )

River gauge height (1978–2018) Arambag, Irrigation and Waterways Department, Government of West Bengal (https ://
www.wbiwd .gov.in/)

Digital Elevation Model ALOS PALSAR (12.5 m) https ://www.asf.alask a.edu/sar-data/palsa r/terra in-corre cted-rtc/
Topographical Maps (1:50,000) Survey of India (http://soina kshe.uk.gov.in/)
Geological Maps Geological Survey of India (https ://www.gsi.gov.in/)
Flood map (2016) ISRO, Geovisualization (https ://bhuva n-app1.nrsc.gov.in/disas ter/disas ter.php?id=flood 

&csrfp Id=5e6t1 nxwmy A8PMX nRoqp wNh9G o2abj OzMe-DE-IIgLO Ty39Z YitLS a7SV5 
t00Rc IfLT_wjKna FHIXb gtGfL sVA==)

https://www.wbiwd.gov.in/
https://www.wbiwd.gov.in/
http://amaterasu.ees.hokudai.ac.jp/~fswiki/pub/wiki.cgi?page=CMIP5
https://www.wbiwd.gov.in/
https://www.wbiwd.gov.in/
https://www.asf.alaska.edu/sar-data/palsar/terrain-corrected-rtc/
http://soinakshe.uk.gov.in/
https://www.gsi.gov.in/
https://bhuvan-app1.nrsc.gov.in/disaster/disaster.php?id=flood&csrfpId=5e6t1nxwmyA8PMXnRoqpwNh9Go2abjOzMe-DE-IIgLOTy39ZYitLSa7SV5t00RcIfLT_wjKnaFHIXbgtGfLsVA==
https://bhuvan-app1.nrsc.gov.in/disaster/disaster.php?id=flood&csrfpId=5e6t1nxwmyA8PMXnRoqpwNh9Go2abjOzMe-DE-IIgLOTy39ZYitLSa7SV5t00RcIfLT_wjKnaFHIXbgtGfLsVA==
https://bhuvan-app1.nrsc.gov.in/disaster/disaster.php?id=flood&csrfpId=5e6t1nxwmyA8PMXnRoqpwNh9Go2abjOzMe-DE-IIgLOTy39ZYitLSa7SV5t00RcIfLT_wjKnaFHIXbgtGfLsVA==
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cross-sections by Dumpy-level survey were used to modify 
the terrain model. In this study, 12.5 m staggered grid with 
rectangular computational cell (Mesh) was used to make 
similar to the modified DEM. After incorporating all the 
required data, one hour time interval was applied to run 
the model. The Couranr–Friedrichs–Lewy condition time 
step was determined and applied to stabilize the model. In 
this version, it can resolve the 2D diffusive wave equations 
or the full 2D Saint Venant equations were followed con-
sidering depth of the water, specific flow, surface eleva-
tion, gravity acceleration, Manning roughness coefficients, 
density of the water, effective shear stress and Coriolis 
force [63]. It has been initially found that Saint Venant 
equations and 2D diffusive wave provided a similar result, 
but 2D diffusive wave was much quicker. Therefore, 2D dif-
fusive wave option was applied for the analysis.

3.1.2  Model validation

Evaluation of the model is one of the significant aspects 
of any kind of study associated with the application of the 
model. Gauge height data was evaluated through statis-
tical measures and evaluation of inundation area for the 
2016 flood event to make it more reliable.

3.1.2.1 Nash–Sutcliffe coefficient Statistical accuracy of 
the rating curve or the stage information was assessed 
with the help of Nash–Sutcliffe coefficient (NS) [68]. 
Here, simulated gauge heights data were compared with 
observed gauge heights to develop NS value. NS value of 
1 is recognizes as ideal effectiveness of the model, while 
NS value below 0 represents that the average value of the 
measured data would have been suitable forecaster than 
the applied model [65].

3.1.2.2 Receiver operating characteristic curve Beside 
this NS test, the simulation of the 2016 flood area by the 
model was evaluated with the help of receiver operating 
characteristic curve (ROC) with the area under curve (AUC) 
value using ISRO flood database extracted from Geo-visu-
alization for the respective period and (Table 1). The ROC 
curve was used to compare the flood-affected area by this 
particular event. The ROC is a significant and extensively 
applied diagnostic methods in spatial modelling and the 
Geosciences [69, 70]. It is one of the benchmark methods 
to establish the performance of the model or models [70]. 
It is represented by plotting the values of sensitivity and 
1-specificity on the abscissa and ordinate correspondingly 
[69–72]. The prediction of the event’s non-occurrence and 
occurrence is being quantified quantitatively applying 

Fig. 3  Methodological flow chart of the study
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the area under curve (AUC) [70]. In this way performances 
of the suggested model have been highlighted, where 
the value ranges from 0.1 to 1. AUC value was used to cat-
egorize the precision of the event predictive models as 
follows: poor accuracy (0.5–0.6); moderate accuracy (0.6–
0.7); good accuracy (0.7–0.8); very good accuracy (0.8–0.9) 
and outstanding accuracy (0.9–1) [73].

3.2  Flood frequency analysis

Flood frequency analysis (FFA) deals with the runoff data 
measured at a particular station or site across a river [74]. 
FFA method is used to fit a probability distribution func-
tion to the recorded maximum discharge to estimate the 
future flood events in respect to its return period and 
probability [75]. There are several probability distribution 
functions available to determine the chance of extreme 
floods [76]. In this study annual maximum series of peak 
discharge/height have been used to understand the flood 
probability analysis. The Institution of Engineers Australia 
(IEA) [77] stated that the annual maximum series are inde-
pendent, easily extracted and it conforms the theoretical 
frequency distribution. Extreme value distribution and its 
probability functions are a significant aspect of hydrologi-
cal studies. According to Chow (1959 and 2010) Extreme 
Value Type I distributions are generally modelled for storm 
rainfall events, and this model can be used for river flow 
also. In this study, flood FFA have been done following four 
methods of extreme value distribution; such as Gumbel’s 
method (Extreme Value-I) and Weibull’s method (Extreme 
Value-III), log-normal and Log-Pearson-Type-3 were 

Fig. 4  a Rainfall stations and their spatial coverage developed through the application of thiessen in Arc GIS software; b Land use and Land 
Cover and c geology of the study area

Table 2  Land use and land cover of the study area and its respec-
tive Manning ‘n’ values

Sl. No Land use/Land cover Manning ‘n’ Area in  km2

1 Agricultural land 0.035 2691.18
2 Forest 0.10 509.22
3 Degraded forest 0.055 60.54
4 Shrub 0.035 125.70
5 River 0.04 55.22
6 Water body 0.07 25.52
7 Built-up area 0.0404 889.35
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employed for yearly peak discharge (Qmax) and stage data 
to assess the competence of selected techniques for flood 
analysis. EasyFit and MS Excel software have been used to 
get several parameters, probability density functions f(x) 
and cumulative distribution functions F(X).

3.2.1  Gumbel’s method of the extreme value function

Gumbel’s method of the extreme value distribution func-
tion, was introduced by Gumbel in 1941[78], is also known 
as extreme value type I distribution. Gumbel realized that 
the annual peak flooded data are nothing but the extreme 
values in different year’s observations [74]. It is based on 
the argument that distribution of an extreme event is 
unlimited and hence the most suitable distribution for 
fitting to the extreme value data is of the double expo-
nential type [74], and it is used to replica the allocation of 
the minimum or maximum number of samples of different 
distributions [79]. According to S.K. Pal it is widely used 
in estimation of natural phenomena like storm rainfall, 
peak discharge, low flows and other similar events [74]. 
Gumbel’s method is the GEV type I (EVI) distribution and 
is useful for smaller data sizes. Though, if the sample size 
increases above 50, it will demonstrate a superior perfor-
mance [80]. Furthermore, Cunnane in 2010 represents that 
distributions with two parameters (EV1) is associated with 
lesser standard error, but higher bias than more than two 
parameter distributions particularly in a little data set [80].

3.2.2  Weibull’s method of extreme value distribution

Weibull’s method of extreme value distribution is widely 
used method for flood frequency analysis [81–83]. Weibull 
in 1939 introduced this equation for the analysis of flood 
magnitude for the corresponding return periods [81]. 
The technique in plotting the distribution is to rank the 
data [74]. This method probability distribution is associ-
ated with shape and scale parameters and other types of 
probability distributions; especially, it imposed within the 
Rayleigh distribution and the exponential distribution [84]. 
The appearance of the density function of this method 
adjusts significantly with the changes in the value of shape 
parameter [84]. Here, the probability of an event (P) is the 
rank of the flood discharge for a particular distribution and 
number of observation (N) and the frequency of occur-
rence (f) which is known as the percentage of probability 
distribution.

3.2.3  Log‑Normal distribution of extreme value

Log-normal distribution is very significant in the expla-
nation of natural phenomena [85]. It is an uninterrupted 
probability distribution model of a random distribution 

and its logarithm value is normally distributed [85, 86]. 
The typical uses of this distribution model are observed 
in representation of failure rates, fatigue failure, and other 
phenomena involving a large range of data. [87].

3.2.4  Extreme value distribution using Log‑Pearson‑Type‑3

Log-Pearson-Type-3 (LTP-III) is considered as the standard 
method for hydrological frequency analysis [74]. LPT-III 
distribution of extreme value was developed by Pearson 
[88]. In this case, the estimated flow (Xt) of a corresponding 
stage can be determined by the logarithm of the calcu-
lated flood. LPT-III, is nothing but a Pearson Type 3 distri-
bution, and this type of distribution is also known as the 
Gamma distribution [89, 90], is complex having probability 
density function with scale, shape and location parameters 
(for further details [90]). It is a skew distribution so that 
the distribution has a limited range in the left in which 
direction, the probability curve gets truncated and below 
a certain value of the variate the probability is zero [74].

3.2.5  Selection of best fit model

To determine reliable and particular techniques and 
thereby forecast of flood incident for a particular distri-
bution, it is important to determine appropriate func-
tion through test statistics. A single test cannot give a 
decisive result [83], therefore in this study, we have used 
Kolmogorov–Smirnov (K–S), Anderson–Darling (A–D), 
and Chi-square (X2) tests based on cumulative distribu-
tion functions F(X) or probability density functions (X) to 
determine the best fit model function at 5% level of sig-
nificance. Details of the test statistics can be found in the 
work of Solaiman [91]. Along with this D-index test was 
conducted to validate the best result [92]. The lowest value 
of D-index represents the excellent function distribution 
for estimation of annual maximum flow corresponding to 
its return period.

3.3  CMIP5 model and climate change scenarios

The CMIP5 data of MIROC5 model have been used in 
this study for the two specific periods, e.g., historical and 
future period which was downloaded from the Earth Sys-
tem Grid Federation (https ://esgf-node.llnl.gov/searc h/
cmip5 /). It is based on IPCC’s latest phase of Representa-
tive Concentration Pathways (RCP) scenarios for climate 
change projections [93] under different levels of radiative 
forcing that is RCP 2.0, 4.5, 6.0 and 8.5. RCP 8.5 represent-
ing the extremely high amount of climate-changing force 
was considered. RCP 6.0, 4.5 and 2.0 represent a decreas-
ing amount of climate change forcing [94]. Sharmila 
et al., Singh et al. and Sanap et al. [95–97] have found 

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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that MIROC5 GCM can be used in the Indian scenario to 
simulate rainfall. Thereby, daily rainfall data from CMIP5 
(GCM-MIROC5) has been used in this study for two specific 
periods such as historical (1978–2018) and future (differ-
ent RCPs 2020–2100). R Studio (Version 3.1.3) has been 
used for statistical downscaling of the daily rainfall data 
into text format through the spatial location of the desired 
weather station [98]. First of all, historical daily rainfall data 
run into HEC-RAS model and annual maximum discharge 
and stage height of Arambag has been extracted for the 
two specific periods. After that historical data has been 
compared with the estimated discharge data from gauge 
height to reduce the biases in the GCM data (Fig. 3).

3.4  Estimation of the flood‑affected area and its 
mapping

The flood-prone area has been determined from the ALO-
SPALSAR digital elevation model (12.5 m) with geographic 
projection. It has been found that ALOSPALSAR DEM is 
more reliable than other types of freely available DEM [71]. 
In this study, DEM has been processed following standard 
procedure and after that, it was used for flood-prone area 
estimation. The calculation for demarcating flood-affected 
area was done following Bandyopadhyay et al. [3]. Extrac-
tion of the flood-affected area has been used for 25, 50 and 
75 year return period for all models as well as for all the 
RCPs. Flood affected area was validated using 2016 flood. 
Gauge height and flood-affected area for the 2016 flood 
using Gumbel Max, Log-Pearson 3, Lognormal and Weibull 
were estimated (Fig. 3) and validated with the actual flood 
cover area using ROC.

4  Result and analysis

4.1  Flow simulation and rating curve

The rating curve was developed using the rain-on-
grid model in HEC-RAS for August 2016. The difference 
between the observed gauge height and simulated 
gauge height is quite low (Fig. 5a). There are some devia-
tions among the observed and simulated gauge heights 
especially for lower peaks. This may be possibly because 
of presence of several anthropogenic activities like extrac-
tion of river water for irrigation. As we are more interested 
on the peak gauge height, in this case this has shown 
similar results as observed gauge heights. Apart from this 
extracted rating curve has been associated with a loop for-
mation, which is very much significant outcome by this 
model. Simulated rating curve also shown that during the 
August 2016 flood, maximum 1260 m3 s−1 discharge has 
been predicted (Fig. 5b and Table 3). An average error in 
the predicted gauge height of the river at Arambag sta-
tion showed that minimum error of 0.002 m, observed 
on 8/12/2016 and maximum error was 1.872 m found 
on 8/23/16. Average error in predicting the actual gauge 
height of the river was 0.673 m. The difference between 
the observed peak gauge height and simulated peak 
gauge height was very low (0.05 m). Pearson correlation 
among the observed and simulated gauge height is sig-
nificantly high (0.903, Table 4) and explained 81% of the 
variable. Standard error between observed and simulated 
gauge heights was 0.828 m so the standard uncertainty 
is quite low. Beside, NS value of 0.71 also support that 

Fig. 5  a Observed and simulated gauge height for the Dwarkeswar River during August 2016 flood; b Estimated rating curve of Dwarkeswar 
River near Arambag

Table 3  Statistical parameters 
of observed and simulated 
gauge height

Data Type Minimum Observed on Maximum Observed on Mean SD CV

Gauge Height (m) 11.53 8/27/2016 18.53 8/22/2016 12.68 1.577 2.485
Simulated gauge height (m) 11.43 8/27/2016 18.39 8/23/2016 13.26 1.576 2.483
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HEC-RAS 5.0.7 rain-on-grid model can be able to replicate 
the gauge height successfully (Fig. 5a).

Along with this above statistical evaluation of simulated 
and observed gauge height, inundation caused by the 
same flood (Fig. 6a, b and c) was also validated (Fig. 3). In 
this study simulated flooded area by the model was evalu-
ated with the ISRO flood database extracted from Geo-vis-
ualization for the respective period (Table 1) and Receiver 
Operating Characteristic curve (ROC) with the area under 
curve (AUC) value with 0.798 (Fig. 6c) indicates the good 
quality of the model (Table 5). So, the rating curve of this 

river for the Arambag Station can be considered for the 
estimation of river discharge during floods.

4.2  Statistical character of APD of the study area

Arambag station of Dwarkeswar River records only the 
depth of the river or the flood height. Therefore, based on 
the rating curve (Fig. 5b), we have estimated the annual 

Table 4  Relationships among observed and simulated data of 
Arambag station during flood 2016 August

Statistic Observation

Pearson Correlation 0.903**
Sig. (2-tailed) 0.000
Total number of observation (N) 18

Fig. 6  a Flood affected area of lower part of the Dwarkeswar River 
in August 2016 (NRSC BHUBAN); b Simulated flood affected area 
of the lower Dwarkeswar River extracted from HEC RAS; c Receiver 

Operating Characteristic curve developed from the actual flooded 
area and estimated flooded area

Table 5  Receiver Operating Characteristic curve and its significance 
level

a Under the nonparametric assumption
b Null hypothesis: true area = 0.5

Area Under the Curve

Area Std.  Errora Asymptotic Sig.b Asymptotic 99% Confidence 
Interval

Lower Bound Upper Bound

0.798 0.008 0.000 0.777 0.819
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peak discharge of the Arambag station (Fig.  7a) with 
the help of gauge height data available for the period 
of 1978 to 2019 (Fig. 7b). It has shown that APD data of 
this study are independent (Fig. 7a). The statistical attrib-
utes have been described in Table 6. Results are showing 
that the highest amount of APD was observed in 1978 
with 1440.73 m3 s−1. Minimum discharge of 5.59 m3 s−1 
was found in the year of 2014. It was also found that the 
river is characterized by a high standard deviation of 
431.64 m3 s−1 due to dependency on the monsoon rain-
fall and the uncertainty of the monsoon. The ranked esti-
mated discharge data shows that maximum numbers of 
APD are below the average discharge of 462.35 m3 s−1. 
Apart from this, the variation of APD above the mean dis-
charge is greater than those below the average (Fig. 7c). 
As well as Fig. 7b has also shows that the gauge height 
of the Dwarkeswer River near Arambag has crossed the 
EDL seven times from 1978 to 2018. The value of mean 

deviation varies from − 1.058 to 2.26 m. Trend analysis 
of the APD is indicating a negative trend in the annual 
peak estimated discharge (Fig. 7a) probably due to the 
constructions of several minor dams, particularly for irri-
gation purposes [99]. The ratios between annual peak dis-
charge and long term average discharge suggest that the 
peak discharges at Arambag station is unpredictable and 
variable in nature. The peak discharge (Qmax) for the 1978 
event was 3.12 times greater than the mean annual peak 
discharge (Qm) at Arambag station (Fig. 7d).

4.3  Flood frequency analysis of the study area

4.3.1  Historical flood frequency analysis of the study area 
(1978–2018)

FFA by four types of probability distribution methods 
have been applied on the APD data of the lower part of 

Fig. 7  Hydrological characteristics of the lower Dwarkeswar River 
system. a Annual peak discharge of Dwarkeswar River and its trend. 
b Distribution of annual peak gauge height of Dwarkeswar River. 
Danger level (DL) is indicated by the dotted line, which is the maxi-
mum limit of safe level for the lower part of the Dwarkeswar River 
(LDR). The vulnerable for LDR is represented by the upper continu-

ous line indicates the extreme danger level (EDL). c Departure of 
yearly maximum discharge from average discharge for 41  years 
(1978–2018). d Temporal variation of Qmax/Qm ratio, where 
Qmax = APD and Qm = long-term average peak discharge. (Aram-
bag Station)

Table 6  Descriptive statistics of APD of Dwarkeswar River near Arambag station (1978 to 2018) ( Source: Calculated by authors)

Mean 
 (m3 s−1)

Standard 
Error  (m3 s−1)

Median 
 (m3 s−1)

Mode 
 (m3 s−1)

Standard 
Deviation 
 (m3 s−1)

Kurtosis Skewness Range 
 (m3 s−1)

Minimum 
 (m3 s−1)

Maximum 
 (m3 s−1)

462.35 67.41 291.41 703.30 431.64 − 0.50 0.81 1435.14 5.59 1440.73
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Dwarkeswar River at Arambag station from 1978 to 2018. 
The four functions of yearly peak discharge taking random 
variable are expressed with its cumulative distribution 
function and probability density function [100] (Fig. 8 a, 
b and c).

Maximum likelihood estimation was considered in the 
study to estimate the parameters (Table 7) in the subse-
quent models as it presents population parameters with 
minimum mean error [100]. In this analysis, EsyFit software 
(available at http://www.mathw ave.com) was applied to 
calculate the cumulative distribution functions, probability 
density functions and parameters.

On the semi-log graph, estimated rank APD data was 
plotted against the return period and it is a skewed curve 
toward the end of the graph (Fig.  9a). After Weibull’s 

method, recurrence interval (T) of the lowest yearly maxi-
mum discharge for 2014 (5.53 m3 s−1) is 1.02 years with 
a probability of 97.62% and the highest APD of the year 
1978 (1440.73 m3 s−1) is 42 years with a probability of 
2.38%. Figure 9a and b also shows that the ranked dis-
charged data in Gumbel’s method is near to a straight line 
than the Weibull’s method. Figure 9c indicates that the 
recurrence interval of extreme APD in Weibull’s method 
is greater than the Gumbel’s method which is also found 
in the comparative analysis of per cent probability for its 
discharge (Fig. 9d). Along with this, it is also clear that 
Gumbel’s probability distribution (EV-I) method is more 
appropriate than EV-III because of the linear relationship 
in EV-I.

Fig. 8  a Probability density function for yearly maximum discharge 
(APD) of the Dwarkeswar River applying Gumbel, Weibull, Lognor-
mal and Log-Pearson 3 distributions; b Cumulative distribution 

functions of APD using the same models; c Distribution of probabil-
ity difference of APD of Dwarkeswar River near Arambag station

Table 7  Estimated statistical 
parameters for the four 
distributions

Serial No Distribution Parameters

X s a b m g

1 Gumbel Max 257.83 203.93
2 Log-Pearson 3 4.8403 − 0.71886 8.5896
3 Lognormal 1.5594 5.1101
4 Weibull 0.71557 332.56

http://www.mathwave.com
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Frequency factor (K) has been used to APD data 
observed at Arambag on other types of approaches includ-
ing Gumbel, log-normal and Log-Pearson-Type-III. From 
Gumbel’s probability distribution (EV-I), it was observed 
that a flood with the discharge of 949.04 m3 s−1, which 
is representing a major flood has a recurrence interval of 
6.77 years with a probability of 14.77%, whereas the proba-
bility of the same discharge by Log-Pearson 3, Weibull and 
Lognormal methods (Figs. 8a and b, 9d) are much higher 
than Gumbel’s probability distribution such as 18.60, 18.94 
and 18.3%, respectively. Probability distribution curves 
of Log-Pearson 3 and Weibull shows higher degree of 
similarity throughout the distribution (Figs. 8a and b, 9d). 
Beside, Lognormal probability distribution curve is show-
ing lower probability than the others in discharge less 
than 500 m3 s−1 and higher probability in respect higher 
discharge (more than 1000 m3 s−1) (Fig. 8a and b). The 
probability curve of the Gumbel’s method is represent-
ing opposite to the log-normal probability distribution 
(Figs. 8a and b, 9d). Along with this probability distribution 
by the Gumbel’s method is showing the highest probabil-
ity than other distributions in lower discharge ranges from 
100 to 400 m3 s−1 and lowest probability in respect higher 
discharge above 650 m3 s−1 (Figs. 8a and b, 9d). All the 

probability distribution curves are showing similar prob-
ability in APD below 50  m3s−1 and 450–650  m3s−1 (Figs. 8a 
and b, 9d). The floods concerning different return period’s 
1.5, 5, 10, 25, 50 and 75 have been estimated using Gum-
bel, log-normal and Log-Pearson-Type-III to understand 
the predicted discharges as well as the vulnerability of the 
LDR in respect to Arambag hydrologic station (Fig. 10). The 
estimated flood magnitude of 5 and 75-year return period 
is computed as 823.1 and 1884.0 m3 s−1, respectively, by 

Fig. 9  a Weibull’s return period concerning APD (1978–2018) for 
the Dwarkeswar River. b Gumbels’s probability plot demonstrating 
selected return period and yearly maximum discharge (1978–2018) 
for the Dwarkeswar River. c Comparison between Weibull’s and 

Gumbels’s frequency distribution of APD lower part of Dwarkeswar 
River. d Comparison between Weibull’s and Gumbels’s per cent 
probability distribution of APD lower part of Dwarkeswar River

Fig. 10  Comparative representation of APD and its return periods 
by the Log-Pearson 3, Weibull, Lognormal, Gumbel
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Gumbel’s method, whereas Log Pearson Type 3 shows the 
APD of 844.9 and 2684.3 m3 s−1 for 5 and 75 year return 
period with probability of 13.59 and 5.15%, respectively, 
which is much higher than the other methods (Fig. 10). So, 
from the different methods of FFA, this became ambigu-
ous, which requires some assessment on uncertainty, so 
that proper inundation map can be prepared. Therefore, 
the GOF test for the four methods has been computed 
(Table 8). The result (Table 8) indicates that Log Pearson 
Type 3 distribution appears to be the best fit among the 
four methods.

4.3.2  Climate change and future FFA of the study area 
(2020–2100)

Apart from the statistical models, we have used MIROC5 
GCM data for FFA of this region in the upcoming years. 
The bias-corrected APD for the different future scenarios 
(RCP 2.6, 4.5, 6.0 and 8.5) have been calculated (Fig. 11). It 
is obvious from the Fig. 11 that there are a few small dis-
similarities observed between the quantities of discharge 
among the observed discharge and corrected GCM dis-
charge for different recurrence interval (Fig. 11). After that, 
the biases in future discharge with different RCP scenarios, 
such as RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 has been 
eliminated.

Annual peak discharge data predicted for the differ-
ent future scenario of RCP 2.6, 4.5, 6.0 and 8.5 for the 
period of 2020 to 2100 (Fig. 12a) indicates that highest 
daily discharge reach to 1651.2, 1725.24, 1760.06 and 
1798.28 m3 s−1 at Arambag station. Minimum discharges 
of 67.76, 60.01, 79.60 and 78.94 m3 s−1 were estimated for 
RCP 2.6, 4.5, 6.0 and 8.5, respectively (Table 9). Average 
APD for the respective RCPs were 501.3, 553.3, 631.6 and 
638.2 m3 s−1, respectively. Standard deviations of pre-
dicted discharge for RCP 2.6, 4.5, 6.0 and 8.5 were also very 
high and they are 463.20, 503.50, 493.99 and 514.66 m3 s−1, 
respectively (Table 9). The distribution of APD (Fig. 12a) 
shows that maximum discharges were 3.6, 3.7, 3.8 and 
3.9 times higher than current average discharge of 
462.35 m3 s−1 for RCP 2.6, 4.5, 6.0 and 8.5, respectively 
(Table 6 and Fig. 12b).

Distribution of APD of the Dwarkeswar River at Aram-
bag station for the period of 2020 to 2100 with different 
RCPs indicate that APD increases with degree of climate 
change forcing factor increases (Table 9 and Figs. 12a, b, 
13 and 14a). Frequency distribution of APD with different 
RCPs showed that number of APD of below 300 m3 s−1 
decrease with increasing climate forcing (from RCP 2.6 
to RCP 8.5). On the other hand, number of APD above 
300  m3  s−1 increased with increasing climate forcing 

Table 8  Model validation and 
its summaries for the selected 
models fitted to Dwarkeswar 
River discharge data (Qmax)

Sl. No Distribution Kolmogorov–Smirnov 
(K–S)

Anderson–Darling 
(A–D)

Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Log-Pearson 3 0.11676 1 0.55361 1 0.90928 1
2 Weibull 0.12944 3 0.62092 2 1.0871 2
3 Lognormal 0.17679 4 1.3655 4 2.5696 3
4 Gumbel 0.12065 2 0.73351 3 3.9589 4

Fig. 11  a Estimated observed annual peak discharge (APD), uncorrected APD from MIROC5 and b bias-corrected APD from the same GCM 
model
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(Table 9 and Fig. 13), especially APD between 600 and 
900 m3 s−1 (Table 9 and Fig. 13).

4.4  Comparative assessment of the historical 
and future flood frequency

The results of compound APD are increasing in an approxi-
mately straight line on the semi-log graph paper (Fig. 14a 
and b). In this Fig. 14b, it is also clear that Log Pearson 
Type-III is increasingly rapidly with increasing return 
period in comparison to other. Compound results from 
Table 10 and Fig. 14a and b showed that probability dis-
tribution models have predicted higher amount of APD in 
lower recurrence interval. APD for the recurrence interval 
of 1.5 years increased from 101.9 to 184.8 m3 s−1 (in RCP 
8.5), which is nearly 181.4% of the estimated APD by Log 

Pearson Type 3 (Table 10). Although, estimated APD for the 
return period of 1.5 years by Gumbel and Weibull prob-
ability distributions methods were very high compared 
to Log Pearson Type 3 and different RCP based future 

Table 9  Descriptive statistics of predicted river discharge of the 
Dwarkeswar River near Arambag Station for the period of 2020 to 
2100

Parameters RCP 2.6 RCP 4.6 RCP 6.0 RCP 8.5

Minimum  (m3 s−1) 67.8 60.0 79.6 78.9
Maximum  (m3 s−1) 1651.2 1725.2 1760.1 1798.3
Range  (m3 s−1) 1583.4 1665.2 1680.5 1719.3
Mean  (m3 s−1) 501.3 553.3 631.6 638.2
Standard Deviation 

 (m3 s−1)
463.201 503.5028 493.9885 514.6643

Fig. 12  Distribution of APD 
(a) and Temporal variation 
of Qmax/Qm ratio (b) of the 
Dwarkeswar River at Arambag 
Station for the period of 2020 
to 2100 in different RCPs such 
as, 2.6, 4.5, 6.0 and 8.5

Fig. 13  Frequency distribu-
tion of APD of the Dwarkeswar 
River at Arambag Station for 
the period of 2020 to 2100 
with RCP 2.6, 4.5, 6.0 and 
8.5 and observed discharge 
(1978–2009)
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discharges. Similarly, APD with 5 and 10 years of return 
period increased from 844.9 m3 s−1 (Log Pearson Type 3) to 
1184.3 m3 s−1 (RCP 8.5) and 1322.5–1487.2 m3 s−1, respec-
tively (Table 10 and Fig. 14a and b). Increase of APD for 5 
and 10 years of return period compare to Log Pearson Type 
3 were 140.2 and 112.5%, respectively. On the other hand, 
APD of 25, 50 75 years of recurrence interval were showing 
reduction of APD in respect to Log Pearson Type 3. This 

may be due to prediction of higher amount of APD by the 
Log Pearson Type 3 probability distribution method. RCP 
scenarios show the higher amount of APD in shorter recur-
rence interval, which is indicating the impact of climate 
change. Figure 14 a and b shows that RCP 8.5 is showing 
the higher amount of flood compared to other types of 
scenarios by the MIROC5 GCM model, whereas, RCP 2.6 
showing the lower value (Table 10).

Fig. 14  a Frequency distribution of APD in different scenarios (RCP 2.6, 4.5, 6.0 and 8.5) and b is compound representations of APD and its 
return periods by the Log-Pearson 3, Weibull, Lognormal, Gumbel and by future RCP 2.6, 4.5, 6.0 and 8.5 (MIROC5)

Table 10  Return period and its respective estimated discharge and estimated gauge height in respect to different return period

Data Type Return 
Period 
(years)

Gumbel (m) Weabull (m) Log-normal (m) Log Pear-
son Type 3 
(m)

RCP 2.6 (m) RCP 4.5 (m) RCP 6.0 (m) RCP 8.5 (m)

Gauge height 
(m)

1.5 15.17 15.09 14.44 14.29 14.46 14.43 14.85 14.94
5 17.29 17.21 16.86 17.35 16.92 17.19 17.88 18.07
10 17.92 17.95 17.55 18.33 17.63 17.86 18.12 18.61
25 18.57 18.74 18.38 19.31 18.37 18.60 18.67 18.93
50 18.99 19.24 18.98 19.88 18.62 18.70 18.74 19.00
75 19.22 19.51 19.32 20.22 18.69 18.78 18.95 19.18

Annual Peak 
Discharge 
 (m3s−1)

1.5 221.5 196.7 117.4 101.9 119.7 117.2 171.3 184.8
5 823.1 777.1 658.0 844.9 679.2 783.1 1085.3 1184.3
10 1106.3 1111.3 932.2 1322.5 967.3 1078.6 1208.8 1487.2
25 1464.2 1553.0 1351.5 1946.2 1344.4 1480.2 1524.6 1686.2
50 1729.7 1887.2 1717.9 2387.9 1492.7 1539.9 1562.8 1731.7
75 1884.0 2082.7 1954.0 2684.3 1534.5 1592.8 1700.0 1858.3

Table 11  ROC curve test 
values ( Source: Calculated by 
authors)

a Under the nonparametric assumption
b Null hypothesis: true area = 0.5

Area Under the Curve

Test Result Variable(s) Area Std.  Errora Asymptotic Sig.b Asymptotic 95% Confidence 
Interval

Lower Bound Upper Bound

Gumbel 0.884 0.006 0.000 0.872 0.895
Weibull 0.885 0.006 0.000 0.874 0.896
Log-normal 0.880 0.006 0.000 0.869 0.892
Log-Pearson type 3 0.884 0.005 0.000 0.874 0.895
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4.5  Flood‑affected area of the study area

Flood affected area was determined based on gauge 
height at the Arambag station for 2016 flood. The area 
under curve value for Gumbel, Weibull, Lognormal and 
Log-Pearson-Type-3 were 0.884, 0.885, 0.88 and 0.884, 
respectively (Table 11 and Fig. 15a and b). The result shows 
that Weabull is the best-fitted model in the flood-affected 
area estimation (Fig. 15a and b). Although, Gumbel Max, 
Log-Pearson 3 are quite similar in respect to flood affected 
area estimation (Table 11).

It was found that most of the frequently inundated area 
belongs to the low-lying areas. In this case, Log Pearson 
Type 3 is showing the highest amount of flood height 
(Fig. 16). The higher amount of flood height was found for 
the Log Pearson Type 3, Weibull, Gumbel and log-normal 
distribution in the higher return period (> 10 years) and 
thereby inundating much greater area in the longer return 
period (Table 10 and Fig. 16). In the case of, the future sce-
nario, the higher gauge height was found for the lower 
return period (less than 10 years) (Table 9 and Fig. 16). 
Thereby indicating the higher amount of area will be inun-
dation in the future period. These low-lying depression 
areas of the lower part of the Dwarkeswar River are usually 
suffered from the floods (Fig. 17) particularly after meet-
ing with its tributary like Amodar though embankment 

breaching (locally known as Bali Hana). Apart from this 
Irrigation and Waterways Department [59] indicated that 
these areas are characterized by poor drainage condi-
tions which are causing frequent flooding in these areas. 
Bandyopadhyay et al. [99] argued that flood in the east-
flowing rivers of West Bengal are mainly due to degrada-
tion of channel capacity, human encroachment and tidal 
surge are the primary reason behind the occurrences of 
the flood. Biswas et al. [101] argued that human encroach-
ments, artificial levee construction along with tidal and flu-
vial forces are responsible for frequently occurrences of the 
flood, whereas Das and Bandyopadhya [102] found that a 
huge amount of monsoon rainfall, catchment size and its 
shape, as well as land use, are one of the basic reasons 
behind the frequent flood in Dwarkeswar River. Das et al. 
[35, 103] also stated that huge amounts of rainfall within 
a small period, as well as human encroachment on a natu-
ral flood plain, are the reason behind this frequent flood. 
During the field survey with local aged people stated that 
improper design of bridge near Bandor obstructing the 
river flow as well as elevating the height of embankment 
resulted in the increases of inundation period in this area. 
Along with this increasing population number and its den-
sity causing increases of flood risk in this area.

Fig. 15  a Flood affected area by Gumbel Max, Log-Pearson 3, Lognormal and Weibull in respect to 2016 flood and b ROC curve for flood 
affected area by Gumbel Max, Log-Pearson 3, Lognormal and Weibull in respect to 2016 flood
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Fig. 16  Flood affected the area of the lower part of Dwarkeswar River based on Gumbel, Weabull, log-normal, Log-Pearson Type-III and dif-
ferent RCPs of MIROC5 GCM data

Fig. 17  Flood field photograph showing flood conditions of the Dwarkeswar River around Arambag Town
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4.6  Risk analysis of the study area

It was found that  lower part of the Dwarkeswar River 
basin is associated with frequent flooding (Fig. 17), where 
187.91 km2 of the land area is associated with the very 
high-frequency flood with 10 years of return period and 
here the major portion of the inundated area belongs to 
the agricultural land, covering 166.83 km2 (Figs. 16, 17 and 
Table 12). A total of 93 villages with 23,996 households, 
106,984 population and 13,272 cultivators come into this 
very high flood susceptibility category. In case of the flood 
with 25 years of the return period, it can inundate 301 vil-
lages covering 382.90 km2 areas where agricultural land 
and settlement areas are 344, 22.33 km2, respectively. 
These types of floods can create serious threats to the 
1,217,345 households, 6,227,447 populations and 579,161 
main and marginal cultivators (Fig. 16 and Table 12). The 
floods with 50  years of return periods may inundate 
716.45 km2 area characterized by 643.74 km2 agricultural 
land, 51.04 km2 settled area, 1.24 km2 vegetative lands, 
20.13 km2 water bodies and 0.31 km2 fallow land (Fig. 16 
and Table 12). Such type of moderate floods may affect 
585 villages, 1,889,409 households, 9,624,973 population 
and 895,367 main and marginal cultivators (Fig. 16 and 
Table 12). Low flood susceptibility category associated 
with 75 years of return periods can affect 980 km2 areas. 
Although the flood susceptibility is low but it occurs due 
to very high flood conditions in the river. Cumulatively 
it may inundate 881.96 km2 agricultural land, 75.52 km2 
settled area, 21.08 km2 water bodies and 1.43 km2 veg-
etations (Fig. 16) which may affect 3,111,321 households, 
15,876,395 population including 1,470,976 main and 
marginal cultivators (Table 12). Rest of the area is asso-
ciated with very low flood susceptibility with more than 
75 years of the return period, caused by extremely high 
flood conditions and may inundate 1439.4 km2 area char-
acterized by 1287.46 km2 agricultural land, 126.68 km2 set-
tled area, 1.60 km2 vegetation, 0.31 km2 fallow land and 

23.35 km2 of water bodies (Table 12). These kinds of floods 
may affect 897 villages, 3,683,643 households, 18,826,856 
populations and 1,741,989 main and marginal cultivators 
(Table 12).

In this situation, this study can provide the people and 
policymaker to take preventive measures. Das et al. [103] 
stated that living with a flood may be a suitable way to 
cope up with the flood. However, community participa-
tion, development of early flood warning system, evacua-
tion of population nearer to the river and good coordina-
tion among different government agencies are very much 
crucial to mitigate the flood. Along with Das and Bandyo-
padhya [102] have suggested some possible measures by 
which the impact of a flood can be minimized over a long 
period to attain sustainable development in this region.

5  Conclusion

Flood monitoring and assessment are very crucial for 
attaining sustainable development. The FFA was con-
ducted in the lower Dwarkeswar River basin at Arambag 
station. This study analyzed four probability distributions 
such as Gumbel’s method (Extreme Value-I) and Weibull’s 
method (Extreme Value-III), log-normal and Log-Pearson-
Type-3 based on 1978 to 2018, as well as future flood-
related possibilities concerning RCP 2.6, 4.5, 6.0 and 8.5 
for the period of 2020 to 2100. The study concludes that 
statistically, Log-Pearson-Type-III is very helpful in dealing 
with FFA of the study area, whereas Weibull’s method is 
very helpful for assessing the vulnerable areas. Log Pear-
son Type 3 depicts that flood values are very high such as 
844.9, 1322.5, 1946.2 m3 s−1 and 2387.9 and 2684.3 m3 s−1 
for 5, 10, 25, 50 and 75 years of return periods, respectively. 
As well as gauge height may also increase to 17.35, 18.33, 
19.31, 19.88 and 20.22 m for the respective years. MIROC5 
GCM model also concludes that APD in case of RCP 8.5 
scenario with recurrence interval of 1.5, 5 and 10 years 

Table 12  Return period wise 
land use and land cover area 
under flood susceptibility 
and its respective number of 
villages, population, cultivator 
and number of households 
susceptible to floods in respect 
to different return periods 
(LPT-3) ( Source: Data compiled 
by authors from Census of 
India, 2011 [102])

Flood Susceptibility with 
Return Period (Years)

Very High (10) High (25) Moderate (50) Low (75) Very Low (> 75)

Vegetation  (km2) 0.53 0.89 1.24 1.43 1.6
Agricultural Land  (km2) 166.83 344 643.74 881.96 1287.46
Settled Area  (km2) 9.51 22.33 51.04 75.52 126.68
Fallow Land  (km2) 0 0.19 0.31 0.31 0.31
Water Bodies  (km2) 11.05 15.49 20.13 21.08 23.35
Total Area  (km2) 187.91 382.9 716.45 980.3 1439.4
Number of Village 93 301 585 878 897
Total Households 23,996 1,217,345 1,889,409 3,111,321 3,683,643
Total Population 106,984 6,227,447 9,624,973 15,876,395 18,826,856
Number of Cultivators 13,272 579,161 895,367 1,470,976 1,741,989
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increases to 184.8 m3 s−1 (181.4%), 1184.3 m3 s−1 (140.2%) 
and 1487.2 m3 s−1 (112.5%), respectively, in respect to 
Log Pearson Type 3. All models show that there is an 
increase in the occurrences of floods for short and long 
term recurrence interval. Flood affected area may increase 
from 187.91 km2 in 10 years of return period to 1439.4 km2 
area with 75 years of return period which is more than 7.5 
times, where 897 number of villages, 3,683,643 number of 
households, 18,826,856 population and 1,741,989 cultiva-
tors may affected. Agricultural lands are the most vulner-
able area and 1287.46 km2 may face inundation problem 
by floods with 75 years of return period. Along with this, 
it must be remembered that flooding is an inseparable 
part of fluvial processes, but, it became a hazard when 
human encroachment took place in the playing zone of 
the river. Instead of emphasis on short term measures like 
construction of new embankment and elevating embank-
ment long term measures like relocation of embankment 
away from the active channel considering the predicted 
channel capacity and floodplain connectivity; renovation 
of palaeo-channels; flood frequency analysis based flood-
prone mapping considering climate change; crops, animal 
and human lives insurance and real-time monitoring of 
rainfall, river gauge height and simulated flow analysis to 
forecast the inundation area and its duration can be con-
sidered to assist the planner and local people from flood 
hazards. Therefore, we need to shift our mindset as well as 
flood management policy for the long term sustainable 
development of this area.

Acknowledgements We are very much thankful to The University of 
Burdwan for providing infrastructural support. We would also very 
grateful to our funding agency, the University Grants Commission 
for providing funds for this research (University Grants Commission, 
No. F.15-6(DEC.2013) and 21595/(NET-DEC.2013)).

Compliance with ethical standards 

Conflict of interest There is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

References

 1. WMO (2014) 2014 Atlas of Mortality and Economic Losses from 
Weather, Climate and Water Extremes

 2. WMO (2018) 2018 Annual Report: WMO for the Twenty-first 
Century

 3. Bandyopadhyay S, Ghosh PK, Jana NC, Sinha S (2016) Prob-
ability of flooding and vulnerability assessment in the Ajay 
River, Eastern India: implications for mitigation. Environ Earth 
Sci 75:578. https ://doi.org/10.1007/s1266 5-016-5297-y

 4. Hwang W, MIN H, Abstracts SH-AFM (2018) U Effects of con-
tinuous and intermittent flooding on greenhouse gas emission 
from rice paddy field under RCP-8.5 scenario in South Korea 
estimated by DNDC model. In: adsabs.harvard.edu

 5. Baker VB (2006) Palaeoflood hydrology in a global context. 
CATENA 66:161–168

 6. Guha-Sapir D, Hargitt D, Hoyois P (2004) Thirty Years of Natural 
Disasters 1974–2003: The Numbers

 7. Mirza MMQ (2011) Climate change, flooding in South Asia 
and implications. Reg Environ Change 11:95–107. https ://doi.
org/10.1007/s1011 3-010-0184-7

 8. Sinha R, Bapalu GV, Singh LK, Rath B (2008) Flood risk analy-
sis in the Kosi river basin, north Bihar using multi-parametric 
approach of Analytical Hierarchy Process (AHP). J Indian Soc 
Remote Sens 36:335–349. https ://doi.org/10.1007/s1252 
4-008-0034-y

 9. Kale VS (2014) Is flooding in South Asia getting worse and 
more frequent? Singap J Trop Geogr 35:161–178. https ://doi.
org/10.1111/sjtg.12060 

 10. Kale VS (2003) The spatio-temporal aspects of monsoon floods 
in India: implications for flood hazard management. Disaster 
Manag Univ Press Hyderabad, pp 22–47

 11. Kale VS (2003) Geomorphic effects of monsoon floods on Indian 
rivers. Nat Hazards 28:65–84. https ://doi.org/10.1023/A:10211 
21815 395

 12. Nath SK, Roy D, Kumar K, Thingbaijam S (2008) Disaster mitiga-
tion and management for West Bengal, India: an appraisal. Curr 
Sci 94:858–864

 13. Chapman GP, Rudra K (2007) Water as foe, water as friend: les-
sons from Bengal’s millennium flood. J South Asian Dev 2:19–
49. https ://doi.org/10.1177/09731 74106 00200 102

 14. Kadam P, Sen D (2012) Flood inundation simulation in Ajoy 
River using MIKE-FLOOD. ISH J Hydraul Eng 18:129–141. https 
://doi.org/10.1080/09715 010.2012.69544 9

 15. Hagen E, Lu XX (2011) Let us create flood hazard maps for 
developing countries. Nat Hazards 58:841–843. https ://doi.
org/10.1007/s1106 9-011-9750-7

 16. Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility 
mapping using a novel ensemble weights-of-evidence and 
support vector machine models in GIS. J Hydrol 512:332–343. 
https ://doi.org/10.1016/j.jhydr ol.2014.03.008

 17. Roy P, Chandra Pal S, Chakrabortty R et al (2020) Threats of 
climate and land use change on future flood susceptibility. J 
Clean Prod. https ://doi.org/10.1016/j.jclep ro.2020.12275 7

 18. Janizadeh S, Avand M, Jaafari A et al (2019) Prediction success 
of machine learning methods for flash flood susceptibility 
mapping in the Tafresh watershed. Iran Sustain. https ://doi.
org/10.3390/su111 95426 

 19. Wang Y, Li Z, Tang Z, Zeng G (2011) A GIS-based spatial multi-
criteria approach for flood risk assessment in the Dongting 
Lake Region, Hunan, Central China. Water Resour Manag 
25:3465–3484. https ://doi.org/10.1007/s1126 9-011-9866-2

 20. Tehrany MS, Lee MJ, Pradhan B et al (2014) Flood suscepti-
bility mapping using integrated bivariate and multivariate 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12665-016-5297-y
https://doi.org/10.1007/s10113-010-0184-7
https://doi.org/10.1007/s10113-010-0184-7
https://doi.org/10.1007/s12524-008-0034-y
https://doi.org/10.1007/s12524-008-0034-y
https://doi.org/10.1111/sjtg.12060
https://doi.org/10.1111/sjtg.12060
https://doi.org/10.1023/A:1021121815395
https://doi.org/10.1023/A:1021121815395
https://doi.org/10.1177/097317410600200102
https://doi.org/10.1080/09715010.2012.695449
https://doi.org/10.1080/09715010.2012.695449
https://doi.org/10.1007/s11069-011-9750-7
https://doi.org/10.1007/s11069-011-9750-7
https://doi.org/10.1016/j.jhydrol.2014.03.008
https://doi.org/10.1016/j.jclepro.2020.122757
https://doi.org/10.3390/su11195426
https://doi.org/10.3390/su11195426
https://doi.org/10.1007/s11269-011-9866-2


Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:31 | https://doi.org/10.1007/s42452-020-04104-z

statistical models. Environ Earth Sci 72:4001–4015. https ://doi.
org/10.1007/s1266 5-014-3289-3

 21. Bui DT, Khosravi K, Shahabi H et al (2019) Flood spatial mod-
eling in Northern Iran using remote sensing and GIS: a com-
parison between evidential belief functions and its ensemble 
with a multivariate logistic regression model. Remote Sens. 
https ://doi.org/10.3390/rs111 31589 

 22. Al-Juaidi AEM, Nassar AM, Al-Juaidi OEM (2018) Evaluation 
of flood susceptibility mapping using logistic regression and 
GIS conditioning factors. Arab J Geosci 11:765. https ://doi.
org/10.1007/s1251 7-018-4095-0

 23. Sun W, Ishidaira H, Bastola S, Yu J (2015) Estimating daily time 
series of stream flow using hydrological model calibrated 
based on satellite observations of river water surface width: 
toward real world applications. Environ Res 139:36–45. https 
://doi.org/10.1016/j.envre s.2015.01.002

 24. Pulvirenti L, Chini M, Marzano FS, et al (2012) Detection of 
floods and heavy rain using Cosmo-SkyMed data: the event in 
Northwestern Italy of November 2011. In: International Geosci-
ence and Remote Sensing Symposium (IGARSS), pp 3026–3029

 25. Pradhan B, Hagemann U, Shafapour Tehrany M, Prechtel N 
(2014) An easy to use ArcMap based texture analysis program 
for extraction of flooded areas from TerraSAR-X satellite image. 
Comput Geosci 63:34–43. https ://doi.org/10.1016/j.cageo 
.2013.10.011

 26. Becker A, Grünewald A (2003) Flood risk in central Europe. Sci-
ence 300:1099

 27. Bai Y, Zhang Z, Zhao W (2019) Assessing the impact of climate 
change on flood events using HEC-HMS and CMIP5. Water Air 
Soil Pollut. https ://doi.org/10.1007/s1127 0-019-4159-0

 28. Meenu R, Rehana S, Mujumdar PP (2013) Assessment of hydro-
logic impacts of climate change in Tunga-Bhadra river basin, 
India with HEC-HMS and SDSM. Hydrol Process 27:1572–1589. 
https ://doi.org/10.1002/hyp.9220

 29. Ward PJ, Jongman B, Aerts JCJH et al (2017) A global framework 
for future costs and benefits of river-flood protection in urban 
areas. Nat Clim Change 7:642–646. https ://doi.org/10.1038/
nclim ate33 50

 30. Shadmehri Toosi A, Doulabian S, Ghasemi Tousi E et al (2020) 
Large-scale flood hazard assessment under climate change: 
a case study. Ecol Eng. https ://doi.org/10.1016/j.ecole 
ng.2020.10576 5

 31. Alfieri L, Bisselink B, Dottori F et al (2017) Global projections 
of river flood risk in a warmer world. Earth’s Future 5:171–182. 
https ://doi.org/10.1002/2016E F0004 85

 32. Silva AT, Portela MM (2018) Using climate-flood links and CMIP5 
projections to assess flood design levels under climate change 
scenarios: a case study in Southern Brazil. Water Resour Manag 
32:4879–4893. https ://doi.org/10.1007/s1126 9-018-2058-6

 33. Kidson R, Richards KS (2005) Flood frequency analysis: assump-
tions and alternatives. Prog Phys Geogr Earth Environ 29:392–
410. https ://doi.org/10.1191/03091 33305 pp454 ra

 34. Das AB (2015) Flood risk reduction of Rupnarayana River, 
towards disaster management? A case study at Bandar of 
Ghatal Block in Gangetic Delta. J Geogr Nat Disasters 5:1–6. 
https ://doi.org/10.4172/2167-0587.10001 35

 35. Das B, Pal SC, Malik S (2018) Assessment of flood hazard in a 
riverine tract between Damodar and Dwarkeswar River, Hugli 
District, West Bengal, India. Spat Inf Res 26:91–101. https ://doi.
org/10.1007/s4132 4-017-0157-8

 36. Archer DR, Parkin G, Fowler HJ (2017) Assessing long term flash 
flooding frequency using historical information. Hydrol Res 
48:1–16. https ://doi.org/10.2166/nh.2016.031

 37. Ahn K-H, Palmer R (2016) Regional flood frequency analysis 
using spatial proximity and basin characteristics. In: World 

Environmental and Water Resources Congress 2016. American 
Society of Civil Engineers, Reston, VA, pp 329–338

 38. Helsel DR, Hirsch RM (2002) Statistical methods in water 
resources. Techniques of Water Resource Investigations. US 
Geol Surv Book, vol 4, p 522 (Chapter A3)

 39. Chow VT, Maidment DR, Mays LW (2010) Applied hydrology. 
Tata McGraw Hill Education Private Limited, New Delhi

 40. Singh VP, Strupczewski WG (2002) On the status of flood fre-
quency analysis. Hydrol Process 16:3737–3740. https ://doi.
org/10.1002/hyp.5083

 41. Benson MA (1968) Uniform flood-frequency estimating meth-
ods for federal agencies. Water Resour Res 4:891–908. https ://
doi.org/10.1029/WR004 i005p 00891 

 42. Wallis JR, Wood EF (1985) Relative accuracy of Log Pearson 
III procedures. J Hydraul Eng 111:1043–1056. https ://doi.
org/10.1061/(ASCE)0733-9429(1985)111:7(1043)

 43. DoIW-GoWB (2014) Annual Flood Report, 2013: Irrigation and 
Waterways Directorate Govt. of West Bengal, India. Kolkata

 44. DoIW-GoWB (2015) Annual Flood Report, 2014: Irrigation and 
Waterways Directorate Govt. of West Bengal, India. Kolkata

 45. DoIW-GoWB (2016) Annual Flood Report, 2015: Irrigation and 
Waterways Directorate Govt. of West Bengal, India. Kolkata

 46. Mandal S (2015) Environmental impact assessment of flood 
in Darakeswar Mundeswari Interfluve in Hugli District West 
Bengal

 47. Farooq M, Shafique M, Khattak MS (2019) Flood hazard assess-
ment and mapping of River Swat using HEC-RAS 2D model 
and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat 
Hazards. https ://doi.org/10.1007/s1106 9-019-03638 -9

 48. Khattak MS, Anwar F, Saeed TU et al (2016) Floodplain map-
ping using HEC-RAS and ArcGIS: a case study of Kabul River. 
Arab J Sci Eng 41:1375–1390. https ://doi.org/10.1007/s1336 
9-015-1915-3

 49. Minh PT, Tuyet BT, Thao TTT, Hang LTT (2018) Application of 
ensemble Kalman filter in WRF model to forecast rainfall on 
monsoon onset period in South Vietnam. Vietnam J Earth Sci 
40:367–394. https ://doi.org/10.15625 /0866-7187/40/4/13134 

 50. Sivapalan M, Takeuchi K, Franks SW et al (2003) IAHS decade 
on predictions in Ungauged Basins (PUB), 2003–2012: shaping 
an exciting future for the hydrological sciences. Hydrol Sci J 
48:857–880. https ://doi.org/10.1623/hysj.48.6.857.51421 

 51. Sivapalan M (2003) Prediction in ungauged basins: a grand 
challenge for theoretical hydrology. Hydrol Process 17:3163–
3170. https ://doi.org/10.1002/hyp.5155

 52. Zhang S, Wang T, Zhao B (2014) Calculation and visualization 
of flood inundation based on a topographic triangle net-
work. J Hydrol 509:406–415. https ://doi.org/10.1016/j.jhydr 
ol.2013.11.060

 53. Du J, Qian L, Rui H et al (2012) Assessing the effects of urbani-
zation on annual runoff and flood events using an integrated 
hydrological modeling system for Qinhuai River basin, China. 
J Hydrol 464–465:127–139. https ://doi.org/10.1016/j.jhydr 
ol.2012.06.057

 54. Huang X, Liu J, Zhang Z et al (2019) Assess river embank-
ment impact on hydrologic alterations and floodplain veg-
etation. Ecol Indic 97:372–379. https ://doi.org/10.1016/j.ecoli 
nd.2018.10.039

 55. Horritt MS, Bates PD (2002) Evaluation of 1-D and 2-D models 
for predicting river flood inundation. J Hydrol 268:87–99

 56. Zhang Y, Xia J, She D (2019) Spatiotemporal variation and 
statistical characteristic of extreme precipitation in the mid-
dle reaches of the Yellow River Basin during 1960–2013. Theor 
Appl Climatol 135:391–408. https ://doi.org/10.1007/s0070 
4-018-2371-2

 57. SOI (1978) Topographical Map from Survey of India, Govern-
ment of India. Kolkata, India

https://doi.org/10.1007/s12665-014-3289-3
https://doi.org/10.1007/s12665-014-3289-3
https://doi.org/10.3390/rs11131589
https://doi.org/10.1007/s12517-018-4095-0
https://doi.org/10.1007/s12517-018-4095-0
https://doi.org/10.1016/j.envres.2015.01.002
https://doi.org/10.1016/j.envres.2015.01.002
https://doi.org/10.1016/j.cageo.2013.10.011
https://doi.org/10.1016/j.cageo.2013.10.011
https://doi.org/10.1007/s11270-019-4159-0
https://doi.org/10.1002/hyp.9220
https://doi.org/10.1038/nclimate3350
https://doi.org/10.1038/nclimate3350
https://doi.org/10.1016/j.ecoleng.2020.105765
https://doi.org/10.1016/j.ecoleng.2020.105765
https://doi.org/10.1002/2016EF000485
https://doi.org/10.1007/s11269-018-2058-6
https://doi.org/10.1191/0309133305pp454ra
https://doi.org/10.4172/2167-0587.1000135
https://doi.org/10.1007/s41324-017-0157-8
https://doi.org/10.1007/s41324-017-0157-8
https://doi.org/10.2166/nh.2016.031
https://doi.org/10.1002/hyp.5083
https://doi.org/10.1002/hyp.5083
https://doi.org/10.1029/WR004i005p00891
https://doi.org/10.1029/WR004i005p00891
https://doi.org/10.1061/(ASCE)0733-9429(1985)111:7(1043)
https://doi.org/10.1061/(ASCE)0733-9429(1985)111:7(1043)
https://doi.org/10.1007/s11069-019-03638-9
https://doi.org/10.1007/s13369-015-1915-3
https://doi.org/10.1007/s13369-015-1915-3
https://doi.org/10.15625/0866-7187/40/4/13134
https://doi.org/10.1623/hysj.48.6.857.51421
https://doi.org/10.1002/hyp.5155
https://doi.org/10.1016/j.jhydrol.2013.11.060
https://doi.org/10.1016/j.jhydrol.2013.11.060
https://doi.org/10.1016/j.jhydrol.2012.06.057
https://doi.org/10.1016/j.jhydrol.2012.06.057
https://doi.org/10.1016/j.ecolind.2018.10.039
https://doi.org/10.1016/j.ecolind.2018.10.039
https://doi.org/10.1007/s00704-018-2371-2
https://doi.org/10.1007/s00704-018-2371-2


Vol.:(0123456789)

SN Applied Sciences (2021) 3:31 | https://doi.org/10.1007/s42452-020-04104-z Research Article

 58. GSI (1999) Geology and Mineral Resources of the States of 
India, Pt. 1: West Bengall, Miscl. Publication, India

 59. Irrigation and Waterways Directorate Govt. of West Bengal 
(2016) Annual Flood Report, 2016, Kolkata

 60. IMD (2018) Indian Metereological Department. http://www.
imd.gov.in/Welco me To IMD/Welcome.php

 61. Census of India (2011) District Primary Census Hand Book, 
Burdwan, West Bengal

 62. IWD (2019) Irrigation and Waterways Department, Govt. of 
West Bengal, India. In: Gov. West Bengal, India. https ://wbiwd 
.gov.in/index .php/appli catio ns/daily repor t

 63. Malik S, Pal SC (2020) Application of 2D numerical simula-
tion for rating curve development and inundation area 
mapping: a case study of monsoon dominated Dwarkeswar 
River. Int J River Basin Manag. https ://doi.org/10.1080/15715 
124.2020.17384 47

 64. Willis IC (2011) Rating curve. In: Singh VP, Singh P, Haritashya 
UK (eds) Encyclopedia of snow, ice and glaciers. Encyclopedia 
of earth sciences series. Springer, Dordrecht

 65. Barbetta S, Moramarco T, Perumal M (2017) A Muskingum-
based methodology for river discharge estimation and rating 
curve development under significant lateral inflow condi-
tions. J Hydrol 554:216–232. https ://doi.org/10.1016/j.jhydr 
ol.2017.09.022

 66. ISRO (2019) Bhuban, Indian Geo-Platform of ISRO. https ://
bhuva n-app1.nrsc.gov.in/thema tic/thema tic/index .php. 
Accessed 21 Dec 2019

 67. Chow VT (1959) Open channel hydraulics. McGraw-Hill, New 
York

 68. Rahman A, Zulkarnain M, Dinand A (2006) Digital surface model 
(DSM) construction and flood hazard simulation for Develop-
ment Plans in Naga City, Philippines. GIS Dev, pp 1–15

 69. Ko FWY, Lo FLC (2018) From landslide susceptibility to land-
slide frequency: A territory-wide study in Hong Kong. Eng Geol 
242:12–22. https ://doi.org/10.1016/j.engge o.2018.05.001

 70. Chen W, Zhang S, Li R, Shahabi H (2018) Performance evalu-
ation of the GIS-based data mining techniques of best-first 
decision tree, random forest, and naïve Bayes tree for landslide 
susceptibility modeling. Sci Total Environ 644:1006–1018. https 
://doi.org/10.1016/j.scito tenv.2018.06.389

 71. Shahabi H, Hashim M (2015) Landslide susceptibility mapping 
using GIS-based statistical models and Remote sensing data in 
tropical environment. Sci Rep 5:9899. https ://doi.org/10.1038/
srep0 9899

 72. Shahabi H, Hashim M, Bin AB (2015) Remote sensing and GIS-
based landslide susceptibility mapping using frequency ratio, 
logistic regression, and fuzzy logic methods at the central 
Zab basin. Iran Environ Earth Sci 73:8647–8668. https ://doi.
org/10.1007/s1266 5-015-4028-0

 73. Arnone E, Francipane A, Noto LV (2012) Landslide susceptibil-
ity mapping : a comparison of logistic regression and neural 
networks methods in a small Sicilian catchment. In: I0th inter-
national conference on hydroinformatics, Hamburg, Germany, 
pp 1–8

 74. Pal SK (1998) Statistics for geoscientists: techniques and appli-
cations, 1st edn. Concept Publishing Company, New Delhi

 75. Kamal V, Mukherjee S, Singh P et al (2017) Flood frequency 
analysis of Ganga river at Haridwar and Garhmukteshwar. 
Appl Water Sci 7:1979–1986. https ://doi.org/10.1007/s1320 
1-016-0378-3

 76. Kale VS, Mishra S, Enzel Y et al (1993) Flood geomorphology of 
the Indian peninsular rivers. J Appl Hydrol 4:49–55

 77. Institution of Engineers A (IEA) (1998) Australian rainfall and 
runoff: a guide to flood estimation, volume I. Institution of 
Engineers, Australia, Barton, Australian Capital Territory

 78. Gumbel EJ (1941) The return period of flood flows. Ann Math 
Stat 12:163–190. https ://doi.org/10.1214/aoms/11777 31747 

 79. Millington N, Das S, Simonovic S (2011) The comparison of GEV, 
Log-Pearson Type 3 and Gumbel Distributions in the Upper 
Thames River Watershed under Global Climate Models

 80. Cunnane C (1989) Statistical distributions for flood frequency 
analysis by C. Cunnane. WMO Oper Hydrol Rep 33:581–582

 81. Weibull W (1939) A statistical theory of strength of materials. 
IVB-Hand

 82. Romali NS, Yusop Z, Ismail AZ (2018) Application of HEC-RAS 
and Arc GIS for floodplain mapping in Segamat town Malaysia. 
Int J Geomate 15:7–13. https ://doi.org/10.21660 /2018.47.3656

 83. Cunnane C (1978) Unbiased plotting positions: a review. 
J Hydrol 37:205–222. https ://doi.org/10.1016/0022-
1694(78)90017 -3

 84. MathWorks (2020) Rayleigh distribution. In: MATLAB Artif. 
Intell. https ://au.mathw orks.com/help/stats /rayle igh-distr ibuti 
on.html. Accessed 27 Nov 2020

 85. Limpert E, Stahel W, Abbt M (2001) Lognormal distributions 
across the sciences: keys and clues. Bioscience 51:341–352. 
https ://doi.org/10.1641/0006-3568(2001)051[0341:LNDAT 
S]2.0.CO;2

 86. Crow EL, Shimizu K (1988) Lognormal distributions, theory and 
applications, statistics: textbooks and monographs. Marcel 
Dekker Inc, New York

 87. Chang K-H (2015) Reliability analysis. In: e-Design: computer-
aided engineering design. Academic Press

 88. Pearson K (1933) Tables for statisticians and biometricians. J R 
Stat Soc 96:103. https ://doi.org/10.2307/23418 76

 89. Farooq M, Shafique M, Khattak MS (2018) Flood frequency 
analysis of river swat using Log Pearson type 3, Generalized 
Extreme Value, Normal, and Gumbel Max distribution methods. 
Arab J Geosci. https ://doi.org/10.1007/s1251 7-018-3553-z

 90. Griffis VW, Stedinger JR (2007) Log-Pearson Type 3 distribu-
tion and its application in flood frequency analysis. I: distri-
bution characteristics. J Hydrol Eng 12:482–491. https ://doi.
org/10.1061/(asce)1084-0699(2007)12:5(482)

 91. Solaiman TA (2011) Uncertainty estimation of extreme precipi-
tations under climate change : a non-parametric approach

 92. Chakraborty S, Bhattacharya SK, Banerjee M, Sen P (2011) Study 
of Holocene precipitation variation from the carbon isotopic 
composition of sediment organic matter from South Bengal 
Basin. Earth Sci India 4:39–48

 93. Jiang X, Rauscher SA, Ringler TD et al (2013) Projected future 
changes in vegetation in western north America in the twenty-
first century. J Clim 26:3671–3687. https ://doi.org/10.1175/
JCLI-D-12-00430 .1

 94. van Vuuren DP, Lowe J, Stehfest E et al (2011) How well do 
integrated assessment models simulate climate change? 
Clim Change 104:255–285. https ://doi.org/10.1007/s1058 
4-009-9764-2

 95. Sharmila S, Joseph S, Sahai AK et al (2015) Future projection 
of Indian summer monsoon variability under climate change 
scenario: an assessment from CMIP5 climate models. Glob 
Planet Change 124:62–78. https ://doi.org/10.1016/j.glopl 
acha.2014.11.004

 96. Singh R, Arya DS, Taxak AK, Vojinovic Z (2016) Potential impact 
of climate change on rainfall intensity-duration-frequency 
curves in Roorkee, India. Water Resour Manag 30:4603–4616. 
https ://doi.org/10.1007/s1126 9-016-1441-4

 97. Sanap SD, Pandithurai G, Manoj MG (2015) On the response of 
Indian summer monsoon to aerosol forcing in CMIP5 model 
simulations. Clim Dyn 45:2949–2961. https ://doi.org/10.1007/
s0038 2-015-2516-2

http://www.imd.gov.in/Welcome
http://www.imd.gov.in/Welcome
https://wbiwd.gov.in/index.php/applications/dailyreport
https://wbiwd.gov.in/index.php/applications/dailyreport
https://doi.org/10.1080/15715124.2020.1738447
https://doi.org/10.1080/15715124.2020.1738447
https://doi.org/10.1016/j.jhydrol.2017.09.022
https://doi.org/10.1016/j.jhydrol.2017.09.022
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://doi.org/10.1016/j.enggeo.2018.05.001
https://doi.org/10.1016/j.scitotenv.2018.06.389
https://doi.org/10.1016/j.scitotenv.2018.06.389
https://doi.org/10.1038/srep09899
https://doi.org/10.1038/srep09899
https://doi.org/10.1007/s12665-015-4028-0
https://doi.org/10.1007/s12665-015-4028-0
https://doi.org/10.1007/s13201-016-0378-3
https://doi.org/10.1007/s13201-016-0378-3
https://doi.org/10.1214/aoms/1177731747
https://doi.org/10.21660/2018.47.3656
https://doi.org/10.1016/0022-1694(78)90017-3
https://doi.org/10.1016/0022-1694(78)90017-3
https://au.mathworks.com/help/stats/rayleigh-distribution.html
https://au.mathworks.com/help/stats/rayleigh-distribution.html
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.2307/2341876
https://doi.org/10.1007/s12517-018-3553-z
https://doi.org/10.1061/(asce)1084-0699(2007)12:5(482)
https://doi.org/10.1061/(asce)1084-0699(2007)12:5(482)
https://doi.org/10.1175/JCLI-D-12-00430.1
https://doi.org/10.1175/JCLI-D-12-00430.1
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1016/j.gloplacha.2014.11.004
https://doi.org/10.1016/j.gloplacha.2014.11.004
https://doi.org/10.1007/s11269-016-1441-4
https://doi.org/10.1007/s00382-015-2516-2
https://doi.org/10.1007/s00382-015-2516-2


Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:31 | https://doi.org/10.1007/s42452-020-04104-z

 98. Willems P (2013) Multidecadal oscillatory behaviour of rainfall 
extremes in Europe. Clim Change 120:931–944. https ://doi.
org/10.1007/s1058 4-013-0837-x

 99. Bandyopadhyay S, Kar NS, Das S, Sen J (2014) River systems and 
water resources of West Bengal: a review. Geol Soc India Spec 
Publ 3:63–84. https ://doi.org/10.17491 /cgsi/0/v0i0/62893 

 100. Chow JYJ, Yang CH, Regan AC (2010) State-of-the art of freight 
forecast modeling: lessons learned and the road ahead. 
Transportation 37:1011–1030. https ://doi.org/10.1007/s1111 
6-010-9281-1

 101. Biswas SS, Pal R, Pramanik MK, Mondal B (2015) Assessment of 
anthropogenic factors and floods using remote sensing and 
GIS on lower regimes of Kangshabati-Rupnarayan River Basin, 
India. Int J Remote Sens GIS 4:77–86

 102. Das B, Bandyopadhya A (2015) Flood risk reduction of Rup-
narayana River, towards disaster management? A case study at 
Bandar of Ghatal Block in Gangetic Delta. J Geogr Nat Disasters 
5:1–6. https ://doi.org/10.4172/2167-0587.10001 35

 103. Das B, Pal SC, Malik S, Chakrabortty R (2019) Living with floods 
through geospatial approach: a case study of Arambag CD 
Block of Hugli District, West Bengal, India. SN Appl Sci 1:329. 
https ://doi.org/10.1007/s4245 2-019-0345-3

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10584-013-0837-x
https://doi.org/10.1007/s10584-013-0837-x
https://doi.org/10.17491/cgsi/0/v0i0/62893
https://doi.org/10.1007/s11116-010-9281-1
https://doi.org/10.1007/s11116-010-9281-1
https://doi.org/10.4172/2167-0587.1000135
https://doi.org/10.1007/s42452-019-0345-3

	Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India
	Abstract
	1 Introduction
	2 Study area
	3 Database and methodology
	3.1 Rain-on-grid model
	3.1.1 Rating curve development
	3.1.2 Model validation
	3.1.2.1 Nash–Sutcliffe coefficient 
	3.1.2.2 Receiver operating characteristic curve 


	3.2 Flood frequency analysis
	3.2.1 Gumbel’s method of the extreme value function
	3.2.2 Weibull’s method of extreme value distribution
	3.2.3 Log-Normal distribution of extreme value
	3.2.4 Extreme value distribution using Log-Pearson-Type-3
	3.2.5 Selection of best fit model

	3.3 CMIP5 model and climate change scenarios
	3.4 Estimation of the flood-affected area and its mapping

	4 Result and analysis
	4.1 Flow simulation and rating curve
	4.2 Statistical character of APD of the study area
	4.3 Flood frequency analysis of the study area
	4.3.1 Historical flood frequency analysis of the study area (1978–2018)
	4.3.2 Climate change and future FFA of the study area (2020–2100)

	4.4 Comparative assessment of the historical and future flood frequency
	4.5 Flood-affected area of the study area
	4.6 Risk analysis of the study area

	5 Conclusion
	Acknowledgements 
	References




