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Abstract
Hydrocotyle sibthorpioides Lam. is a popular medicinal plant of Assam having several ethnomedicinal values. The present 
study investigated the metallic content, phytochemical contents, α-amylase, and α-glucosidase enzymes inhibitory prop-
erty of H. sibthorpioides using in-vitro and in-silico methods. Heavy metal contents were analyzed using Atomic Absorp-
tion Spectroscopy. GC–MS was used to analyze the phytochemical compounds of the plant. Enzyme inhibition study 
was carried out by Spectrophotometry methods. The drug-likeness and toxicity properties of the phytocompounds were 
studied using SwissADME and ADMETlab databases. Docking and molecular visualizations were performed in AutoDock 
vina and Discovery studio tools. The study found that the extract of H. sibthorpioides contains a negligible amount of toxic 
elements. GC–MS analysis detected four compounds from the methanolic extract of the plant. Biochemical study showed 
considerable α-amylase and α-glucosidase enzyme inhibitory property of the crude extract of H. sibthorpioides. The  IC50 of 
the plant extracts were found to be 1.27 mg/ml and 430.39 µg/ml for α-amylase and α-glucosidase enzymes, respectively. 
All four compounds were predicted to have potential drug-likeness properties with high cell membrane permeability, 
intestinal absorption, and less toxic effects. The docking study also showed strong binding affinities between the plant 
compounds and enzymes. Plant compound C2 showed an almost similar binding affinity with the α-amylase enzyme as 
compared to standard acarbose. The present study, thus, suggests the antihyperglycemic property of H. sibthorpioides 
and can be a potential source of antidiabetic drug candidates.
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1 Introduction

Type-2 diabetes (T2D) is a metabolic disorder character-
ized by high blood glucose leading to several complica-
tions including cardiovascular and kidney-related diseases 
[1, 2]. According to the WHO report, about 422 million 
people worldwide have diabetes and about 1.6 million 
deaths were directly or indirectly caused by diabetes in 
2016, making it the seventh leading cause of death glob-
ally [3]. There are several control measures to T2D includ-
ing dietary changes, exercise, and medications. In recent 
years, there is a growing interest in the dietary and plant-
based therapeutic approaches to maintain normal blood 

glucose levels [4]. Inhibition of carbohydrate metaboliz-
ing enzymes is one of the most important chemothera-
peutic targets of diabetes treatment. α-Amylase and 
α-glucosidase enzymes are two of the major carbohydrate 
metabolizing enzymes inhibition of which slows down the 
carbohydrate digestion and reduces the rate of glucose 
absorption, and thus decreases the postprandial plasma 
glucose level [5].

Plants have been the source of medicines since 
ancient times. Several modern drugs of present-day 
use are either directly or indirectly derived from plant 
sources. Phytomedicines or plant-derived compounds 
are safer, cheaper, easily available, and sometimes more 
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effective than synthetic drugs. Ethnobotanical and phar-
macological studies revealed the antidiabetic property 
of many plants [6, 7]. There are several ethnomedicinal 
knowledge attached to this plant and are used in the 
treatment of a wide range of diseases such as cough, 
jaundice, dysentery, fever, throat pain, and edema as well 
as brain tonic [8]. Pharmacological studies have reported 
antifungal, antibacterial, hepatoprotective, antiprolifera-
tive, and tumor growth inhibitory activity of H. sibthorpi-
oides [9, 10]. Several phytochemicals such as quercetin, 
quercetin 3-galactoside, isorhamnetin, quercetin 3-O-β-
d-(6-caffeoylgalactoside), stigmasterol, daucosterol, gen-
istein, and daidzein were reported from the plant [11, 
12]. In Assam, H. sibthorpioides is traditionally used to 
cure stomach-ache, blood dysentery, fever, skin disease, 
and body ache. The plant is also traditionally used to 
cure rheumatism, menstrual and digestive problems, 
and helminth infestations [13, 14]. In our recent survey 
study, we found that the tribal community of Kokrajhar 
district of Assam uses H. sibthorpioides to cure hyper-
glycemia [15]. Despite its rich ethnomedicinal values, 
there is no scientific validation of the plant. Therefore, 
the present study was carried out to validate the antihy-
perglycemic property of H. sibthorpioides using in-vitro 
and in-silico methods.

2  Materials and methods

2.1  Plant material

The aerial part of Hydrocotyle sibthorpioides Lam. (Family 
Apiaceae) was collected from the Tinali area of Kokrajhar 
district, Assam. The plant sample was identified in the 
Department of Botany, Bodoland University (specimen 
voucher number BUBH2018019). After collection, sample 
plants were washed properly and dried completely in a 
hot-air oven at 50 °C.

2.2  Preparation of plant extract

The dried plant was ground into the powdered form 
using a mechanical grinder. Plant powder was soaked 
into 80% methanol for 72 h and filtered using Whatman 
filter paper no. 1. The process was repeated three times 
and the filtrate obtained was evaporated in a rotary 
evaporator. After complete evaporation, dry, solid H. 
sibthorpioides methanolic extract (HSME) obtained was 
stored at -20ºC till further use. The process of crude 
extract was carried out as per the method described in 
our earlier publication [16].

2.3  Heavy metal analysis

Seven elements such as lead (Pb), chromium (Cr), Nickel 
(Ni), cadmium (Cd), copper (Cu), zinc (Zn), and manganese 
(Mn) were analyzed using atomic absorption spectroscopy 
(AAS, Shimadzu AA-7000). Briefly, 1 g dry plant powder was 
digested with conc.  HNO3, at 90 °C for 45 min. The tempera-
ture is then increased up to 100˚C and boiled for 6–7 h by 
addition of 5 ml  HNO3 till complete digestion of the plant. 
The process was continued until the extract is colourless. 
The solution was filtered by Whatman filter no.1 and diluted 
to 100 ml of distilled water. The elemental content of plant 
extract was detected following Zheljazkov and Nielson [17]. 
The limit of detection and quantification was 0.002–5.0 ppm.

2.4  GC–MS analysis

The phytochemical composition of the aerial part of H. 
sibthorpioides was analyzed by GC–MS system (Perkin Elmer 
(USA) make GCMS instrument, Model: Clarus 680 GC &amp; 
Clarus 600C MS comprising a liquid auto-sampler). The 
Software used in the system was TurboMass Ver. 5.4.2. The 
capillary column used was ‘Elite-5MS’ having dimensions—
length-60 m, ID-0.25 mm, and film thickness-0.25 µm, and 
the stationary phase is 5% diphenyl 95% dimethylpolysilox-
ane. Helium (99.99%) was used as carrier gas (i.e., mobile 
phase) at a flow rate of 1 ml/min. An injection volume of 
2 µl was employed in splitless mode. Injector and ion-source 
temperatures were 280 °C and 180 °C, respectively. The oven 
temperature was programmed at 60 °C (for 1 min), with an 
increasing rate of 7 °C/min to 200 °C (hold for 3 min) then 
again increased at rate of 10 °C/min to 300 °C (hold for 
5 min). The total run time was ~ 39 min. The solvent delay 
was kept for 8 min. MS Protocol Mass Spectra was taken in 
Electron Impact positive (EI+) mode at 70 eV. A solvent delay 
of 8 min was there for MS scan. Mass range i.e., m/z range is 
50–600 amu.

Identification of Peaks: Interpretation of the peaks that 
appeared in the GC Chromatogram were done by library 
search of the mass spectrum of the corresponding peaks 
using the database software of National Institute Standard 
and Technology-2008 (NIST-2008). The mass spectrums of 
the unknown components were compared with the spec-
trum known components of the NIST library and the com-
pounds were identified with name, molecular weight, and 
empirical formula.
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2.5  Enzyme inhibition study

2.5.1  Inhibition of α‑amylase activity

The inhibition of α-amylase enzyme activity of HSME was 
carried out following Kwon et al. [18] with little modifica-
tion. The crude plant extract was dissolved in 5% dimethyl 
sulfoxide (DMSO). Different concentrations of HSME and 
reference inhibitor (acarbose) were mixed with 200 µl of 
α-amylase enzyme (0.5 mg/ml). The assay mixture was 
incubated at 25 °C for 10 min. Next, 0.5 ml 1% starch solu-
tion was added and re-incubated for another 20 min at 
37ºC. After the incubation, 0.5 ml DNS reagent was added 
to stop the reaction and the assay mixture boiled for 5 min. 
The reaction mixture was then diluted after adding 5 ml 
distilled water, and the absorbance (Abs) was measured at 
540 nm in UV/VIS double beam spectrophotometer. The 
control samples were prepared without any plant extracts/
compounds.

The percent inhibition of α-amylase activity was calcu-
lated using the following formula:

Abs control means absorbance of assay mixture without 
extract and acarbose.

Abs sample means absorbance of assay mixture with 
extract or acarbose.

2.5.2  Inhibition of α‑glucosidase activity

α-Glucosidase inhibition assay was carried out following 
the method of Elya et al. [19]. The plant extract was dis-
solved in 5% DMSO and α-glucosidase in 100 mM sodium 
phosphate buffer, pH6.9. Different concentrations of 
HSME and acarbose were mixed with 50 µl α-glucosidase 
(0.5 µg/ml) and incubated for 10 min at 37 °C. Next, 100 µl 
of 5 mM p-nitrophenyl-α-D-glucopyranoside was added 
and incubated for another 20  min at 37  °C. The reac-
tion was stopped by adding 2 ml of 0.1 M  Na2CO3. The 
α-glucosidase activity was determined by measuring the 
absorbance at 405 nm using a UV/VIS spectrophotome-
ter. Inhibition (%) of α-glucosidase activity was calculated 
using Eq. (1).

2.6  Analysis of drug‑likeness and ADMET profile

The phytochemicals of H. sibthorpioides identified by GC–MS 
analysis were verified for the drug-likeness properties using 
SwissADME [20] and PubChem database. The drug-likeness 
property of compounds was evaluated based on Lipinski’s 

(1)Inhibition (%) =
(Abs control − Abs sample)

Abs control
× 100

rule [21]. Similarly, in-silico absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) properties of identified 
compounds were predicted using ADMETlab [22].

2.7  Molecular docking

2.7.1  Preparation of ligands and enzymes

GC–MS reported compounds of H. sibthorpioides were 
retrieved from the PubChem database. Acarbose was used 
as a reference inhibitor. The crystal structure of α-amylase 
(PDB: 2QV4) and α-glucosidase (maltase) (PDB: 2QMJ) 
enzymes were downloaded from the PDB database (http://
www.rcsb.org/pdb). Downloaded protein structures were 
cleaned by removing the attached ligands, hetatms, and 
water molecules. Acarbose was the main co-crystallised 
ligand with both α-amylase and α-glucosidase enzyme 3D 
protein structures. Polar hydrogen and energy were added 
to the cleaned protein structures using AutoDock Tools. The 
amino acid residues attached to the co-crystallised ligand in 
the active pocket (site) of protein structures were selected 
for docking. The active pocket amino acid residues were 
Trp-59, Gln-63, Gly-104, Asn-105, Val-106, Val-107, Thr-163, 
Arg-195, Asp-197, His-201, Glu-233, His-299, and Asp-300 
for α-amylase and Asp-203, Asp-327, Arg-526, Asp-542 and 
His-600 for α-glucosidase enzyme.

2.7.2  Docking

After the ligands (plant compounds and acarbose) and the 
target enzymes were prepared, docking was performed in 
AutoDock Vina [23]. The grid parameters for docking were 
set as x, y, z size coordinate and grid box centre coordinate 
i.e., 10.749, 48.629, 21.111, and 56, 66, 60 for α-amylase 
enzymes and − 23.755, − 5.19, − 11.162, and 40, 50, 42, for 
α-glucosidase enzyme, respectively. The docking was carried 
out by keeping the default exhaustiveness i.e., 8. Docking 
output was visualized in Discovery Studio.

2.8  Statistical analysis

All the results were expressed as means of three experi-
ments ± standard deviation (SD), n = 3. Statistical difference 
between the extract and reference compound was tested 
by one-way analysis of variance (ANOVA, P ≤ 0.05 level) and 
graphical presentations were prepared in Excel and Origin 
Pro.

http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
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3  Results

3.1  Heavy metal analysis

Metallic analysis of H. sibthorpioides showed a negligible 
quantity of heavy metals. Out of the seven important 
heavy metals (Cd, Mn, Cr, Zn, Pb, Ni, and Cu) analyzed; 
Cd was not detected in the analysis. Zn was found to be 
the highest in concentration (0.971 ppm) followed by 
Ni (0.0472 ppm), Cr (0.0459 ppm), Mn (0.0405 ppm), Cu 
(0.0229 ppm), and Pb (0.0228 ppm), respectively.

3.2  GC–MS analysis

GC–MS analysis of the methanolic crude extracts of the 
H. sibthorpioides detected four compounds namely Pro-
panoic acid, 3-nitro-, methyl ester (C1), 5-hepten-3-one, 
5-ethyl-4-methyl-(C2), 1-cyclohexyl-2-methyl-2-propanol 
(C3), and 2-methyl-5-(1-adamantyl)pentan-2-ol (C4). The 
GC–MS intensities of H. sibthorpioides extract are pre-
sented in Fig. 1. The retention time, mol. weight, peak area, 
and other GC–MS profiles of the identified compounds are 
presented in Table 1. The 2D structures of the identified 
compounds are shown in Fig. 2.

Fig. 1  GC–MS chromatogram of methanolic extract of Hydrocotyle sibthorpioides 
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3.3  Enzyme inhibition assays

The α-amylase and α-glucosidase enzyme inhibitory activ-
ity of HSME are presented in Fig. 3. The methanolic crude 
extract of the plant showed concentration-dependent 
inhibition in both the enzyme activities. The crude extracts 
of H. sibthorpioides showed stronger inhibitory activity 
against α-glucosidase enzyme compared to α-amylase. 
However, statistical analysis (P ≤ 0.05 level) showed no 
significant difference in the enzyme inhibition proper-
ties of plant extracts and reference chemical, acarbose. In 

case of α-amylase enzyme activity, HMSE showed slightly 
better inhibitory activity compared to the reference com-
pound, acarbose. At the plant concentration of 5 mg/ml, 
the inhibition of α-amylase was found to be 96.12 ± 3.86% 
and 90.73 ± 5.19% for HSME and acarbose, respectively 
(Fig. 3a). The α-Glucosidase enzyme, on the other hand, 
showed 73.91 ± 3.57% and 96.21 ± 3.29% inhibition at 
1 mg/ml of HSME and acarbose, respectively (Fig. 3b). The 
 IC50 values for α-amylase was found to be 1.27 mg/ml and 
1.72 mg/ml for the plant extract and acarbose, respec-
tively. Similarly, the  IC50 value of α-glucosidase enzyme 

Table 1  GC–MS properties of 
compounds identified from 
Hydrocotyle sibthorpioides 

MW molecular weight, MF molecular formula

Sl. No Name of the compounds Retention time MW (g/mol) Height (%) MF

1 Propanoic acid, 3-nitro-, methyl ester 28.277 133.1 2.760 C4H7NO4

2 5-hepten-3-one, 5-ethyl-4-methyl- 30.873 154 2.686 C10H18O
3 1-cyclohexyl-2-methyl-2-propanol 31.043 156 29.752 C10H20O
4 2-methyl-5-(1-adamantyl)pentan-2-ol 31.333 236 2.289 C16H28O

Fig. 2  Structures of the GC–MS identified compounds from the aerial part of Hydrocotyle sibthorpioides 

Fig. 3  Activity of α-amylase and α-glucosidase enzymes on exposed to plant extract (HSME) and acarbose (AC). a Inhibition of α-amylase 
enzyme and b inhibition of α-glucosidase enzyme. Values were expressed as mean ± SD, n = 3, P ≤ 0.05 level
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inhibition was found to be 430.39 µg/ml and 304.14 µg/
ml for HSME and acarbose, respectively.

3.4  Analysis of drug‑likeness and ADMET profile

The drug-likeness properties of the identified compounds 
of HSME are shown in Table 2. According to Lipinski’s rule, 

compound C2 violated the rule in one parameter (LogP) 
while the other compounds showed no violation. The ref-
erence compound, acarbose, however, violated the rule 
in all the four parameters. The TPSA of all the compounds 
were less than 100 Å2. The in-silico pharmacological prop-
erties and toxicity profile (ADMET) of the identified com-
pounds are represented in Fig. 4. ADMET study showed 

Table 2  Drug-likeness 
properties of Hydrocotyle 
sibthorpioides phytochemicals

HBD hydrogen bond donor, HBA hydrogen bond acceptor, TPSA topological polar surface area

*LogP negative value means hydrophilic compound

Compounds PubChem CID Mol. Weight 
(< 500 Da)

LogP (< 5) HBD (< 5) HBA (< 10) TPSA (Å2) Lipinski 
viola-
tion

Acarbose 41,774 645.6 − 8.5 14 19 321 4
C1 547,825 133.1 − 0.1 0 4 72.1 1
C2 5,365,028 154 3 0 1 17.1 0
C3 138,531 156 3.3 1 1 20.2 0
C4 548,069 236 4.9 1 1 20.2 0

Fig. 4  Heat map of ADMET 
properties of Hydrocotyle 
sibthorpioides phytochemicals 
and reference acarbose (AC). 
*Range: high, > 8 h; moder-
ate, > 3 h to < 8 h; low, < 3 h. 
**Range: High, > 15 ml/min/
kg; moderate, > 5 ml/min/kg 
to < 15 ml/min/kg; low, < 5 ml/
min/kg
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that the identified compounds have moderate to high GI 
absorption properties with high blood–brain permeability. 
Acarbose, on the other hand, showed low GI absorption 
and permeability through the blood–brain barrier. All four 
compounds were found to have low metabolism meaning 
that the compounds are less metabolized before reaching 
the target site. However, C2 showed high interaction with 
the cytochrome-P450 enzyme system, both as substrate 
and inhibitor. In terms of toxicity risk, all the compounds 
showed a low toxicity profile while the reference acarbose 
showed high liver injury property. The  LC50 for acute oral 
toxicity of the plant compounds C1, C2, C3, and C4 are 
predicted to be 1880.3, 2824, 1970.8, and 4547.516 mg/
kg body weight, respectively. While the reference inhibitor, 
acarbose was found to be 5874.47 mg/kg.

3.5  Molecular docking

The binding energies of all the four compounds and the 
enzymes are shown in Table 3. The identified compounds 
of H. sibthorpioides showed different binding affinities with 
the α-amylase and α-glucosidase enzymes. Of the four 
compounds, C2 showed the strongest binding affinity with 
binding energy − 7.1 and − 6.3 kcal/mol for α-amylase and 
α-glucosidase enzymes, respectively. The reference inhibi-
tor, acarbose showed a slightly higher binding affinity 
− 7.9 ± 0.22 kcal/mol and − 7.4 kcal/mol for α-amylase and 
α-glucosidase enzymes, respectively. Like enzyme inhibi-
tion study, identified phytocompounds showed stronger 
inhibitory property against α-amylase enzyme. The 2D 
display of binding interactions between the C2, acarbose, 
and the enzymes are shown in Fig. 5. Docking studies 
revealed that the reference chemical, acarbose inter-
acted with 22 and 17 amino acid residues of α-amylase 
and α-glucosidase enzymes, respectively. Four amino acid 
residues of α-amylase, Gln63, Asn105, Thr163, and His299 
and five amino acid residues of α-glucosidase, Met331, 
Tyr301, Gly302, Arg334, and Asp607 showed hydrogen 
bonding with acarbose (Fig. 5a, c). A total of 13 amino acid 
residues of both α-amylase and α-glucosidase were found 
to be interacting with C2 of H. sibthorpioides methanolic 
extract. Van der Waals interactions were found to be the 
major binding interactions between the enzymes and 

the compound C2. Of the 13 amino acid residues, seven 
amino acid residues of α-amylase, His299, Arg195, Asp197, 
Leu162, Thr163, Leu165, and Gln63 made Van der Waals 
interactions with C2. Two amino acid residues, Glu233, 
Asp300 made hydrogen bonding with the compound, 
while TrpA58, TyrA62, made Pi-Alkyl and Ala198 made 
alkyl interactions with the compound C2. However, Trp59 
is found to be interacting with Pi-sigma bond as well as pi-
alkyl bond with C2 compound of H. sibthorpioides (Fig. 5b). 
Similarly, six amino acid residues of α-glucosidase, Asp327, 
Met444, Asp542, Asp203, Phe450, and Arg526 formed 
van der Waals interactions with C2 while Trp406, Tyr299, 
Phe575, and Trp441 formed Pi-Alkyl and Ile364, Ile328 
made Alkyl interactions with C2. Amino acid residue, 
Asp443 is found to be interacting through hydrogen bond-
ing with the compound (Fig. 5d). 

4  Discussion

H. sibthorpioides is an important medicinal plant of Assam. 
Despite its rich medicinal values, only a few research pub-
lications establish its pharmacological properties. In the 
present study, we analyzed the heavy metal content, 
bioactive compounds, and α-amylase and α-glucosidase 
enzymes inhibitory property of the plant. We also car-
ried out in-silico pharmacokinetics and docking analysis 
with the GC–MS reported compounds. The present study 
reveals that the aerial part of H. sibthorpioides contains 
a negligible amount of toxic elements as per the WHO 
permissible level [24]. In a similar kind of study, Xiao and 
Xiang [25] studied five trace elements of H. sibthorpi-
oides and the content was found in the decreasing order 
Fe > Mn > Zn > Cu > Se. GC–MS analysis identified four com-
pounds from the methanolic crude extract of aerial parts 
of H. sibthorpioides. Similarly, UPLC–ESI–MS/MS analysis 
by Kumari et al. [26] reported the major phenolic con-
tent of the plant as catechin, epicatechin, quercetin, and 
chlorogenic acid. However, we did not find any literature 
regarding the pharmacological properties of the identified 
compounds.

The study of pharmacological properties and toxic-
ity is an important prerequisite in the present-day drug 

Table 3  Best docking poses 
and binding affinities of 
identified plant compounds 
with α-amylase and 
α-glucosidase enzymes

Docking carried out for three replicates, (n = 3)

Phytocompound α-Amylase (kcal/mol) α-Glucosidase (kcal/mol)

Acarbose − 7.8 − 8.2 − 7.7 − 7.2 − 7.7 − 7
1-Cyclohexyl-2-methyl − 5.7 − 5.7 − 5.7 − 5.5 − 5.5 − 5.5
2-Methyl-5-(1-adamantyl)pentan − 7.1 − 7.1 − 7.0 − 6.3 − 5.9 − 6.1
5-Hepten-3-one − 5.1 − 5.1 − 5.0 − 5.0 − 5.0 − 5.2
Propanoic acid − 4.5 − 4.4 − 4.3 − 4.7 − 4.9 − 4.7
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discovery pipeline. Along with certain physicochemical 
properties such as molecular mass and size, a drug candi-
date must also satisfy other properties such as less toxicity, 
high permeability through the cell membrane, and easy 
excretion from the body without further deposition [27]. 
In this regard, Lipinski’s rule is an important rule which 
predicts the in-silico drug-likeness of a compound. Accord-
ing to the rule, a molecule is not considered orally active 
if it violates two or more of the four rules [28]. From our 
study, it has been found that all the four compounds iden-
tified by GC–MS possess drug-likeness properties. Topo-
logical Polar Surface Area is an important property of a 
compound that determines the permeability of a molecule 
through the cell membrane. The upper limit of TPSA for 
a molecule to enter through the cell membrane and the 
brain is about 140 Å2 and 90 Å2, respectively [29, 30]. By 
adopting the in-silico approaches, the cost and the time 
factor may be minimized as compared to standard exper-
imental approaches [31]. ADMET analysis showed that 
the identified compounds have low to moderate ADMET 
characteristics. Because of its small size and lipophilic 
property, all the compounds are predicted to be easily 
absorbed by the GI tract and have high permeability and 

distribution. ADMET study of the H. sibthorpioides com-
pounds also showed low toxicity property of the com-
pounds suggesting the potentiality of a lead therapeutic 
compound. According to Lei et al. [32] compounds hav-
ing LD50 1–50 mg/kg, 51–500 mg/kg, and 501–5000 mg/
kg are categorized as high, moderate, and low toxicity 
properties, respectively. Al the four compounds identified 
from H. sibthorpioides were found to have IC50 more than 
600 mg/kg body weight suggesting a low risk of toxicity 
in the host body.

α-Amylase and α-glucosidase enzymes are two of 
the most important enzymes of chemotherapeutic 
drug targets in T2D management and antidiabetic drug 
designing. The blood-glucose levels can be managed by 
inhibiting the enzymatic properties of α-amylase and 
α-glucosidase enzymes. Several medicinal plants are 
known to have α-amylase and α-glucosidase enzyme 
inhibitory properties [33, 34]. The present study revealed 
that the methanolic crude extract of H. sibthorpioides pos-
sesses strong inhibitory property against α-amylase and 
α-glucosidase enzymes. Compared to reference acarbose, 
the crude extract showed better inhibitory activity against 
α-amylase enzyme. Different solvent extract of Carica 

Fig. 5  Docking poses and interactions between enzymes and phytocompounds, a α-amylase-acarbose, b α-amylase-C2, c α-glucosidase-
acarbose, and d α-glucosidase-C2
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papaya seed-extracts showed considerable α-amylase and 
α-glucosidase inhibitory property with  IC50 values rang-
ing from 76.96 to 94.63 mg/ml and 75.78 to 102.4 mg/
ml, respectively [35]. Similarly, Khaya senegalensis solvent 
extracts showed higher α-amylase and α-glucosidase 
inhibitory property compared to the standard compound, 
acarbose [36]. With no earlier pharmacological study 
regarding the antidiabetic property, the present study 
for the first time reveals H. sibthorpioides to be a potential 
source of antidiabetic agents. Molecular docking is another 
aspect of the drug designing approach which is a widely 
used, relatively fast, and economical computational tool 
which can be used for virtual screening of a large num-
ber of chemicals to screen probable drug candidates [37]. 
Molecular docking has been used by many researchers to 
verify the effectiveness of phytochemicals against many 
target proteins and enzymes [38, 39]. In the present study, 
compound C2 of H. sibthorpioides showed almost similar 
binding affinity to the α-amylase enzyme as compared 
to acarbose. Human pancreatic α-amylase is a 496 amino 
acid single polypeptide chain consisting of three structural 
domains—A, B, and C. Domain-A is the main catalytic unit 
of the protein with active site residues Asp197, Glu233, 
and Asp300 [40]. Of the 22 residues interacting with the 
acarbose, all the three catalytic residues of α-amylase were 
also found to be involved. Compound C2 of H. sibthorpi-
oides, however, involved two catalytic residues, Glu233, 
and Asp300, along with other interacting amino acid 
residues. Similarly, plant-derived phenolics such as cat-
echin, kaempferol, silibinin, and pelargonidin were found 
to made potent interactions with the Trp58, Trp59, Tyr62, 
Gln63, and Leu165 residues including the catalytic resi-
dues Asp197, Glu233, and Asp300 of α-amylase enzyme 
[41]. Ethyl-α-Dglucopyranoside, identified from Terminalia 
catappa leaf extracts showed van der waals interactions 
with amino acid residues, Leu328, Trp331, Thr329, Asn316, 
Arg318, Phe363, and Ala325 of α-amylase enzyme [42]. 
Similarly, the main catalytic domains of α-glucosidase- 
N-terminal domain consists of 868 residues with Trp441, 
Ile442, Asp443, Met444, Asn445, and Gln446 as the major 
catalytic amino acid residues [43]. The present study 
observed two conventional H-bond interactions between 
compound C2 and α-amylase enzyme. Similarly, com-
pound C2 showed a slightly weaker binding affinity with 
α-glucosidase enzyme compared to the reference chemi-
cal. Studies by Iheagwam et al. [42] also revealed that the 
reference drug acarbose showed better binding affinity to 
α-glucosidase enzyme compared to the T. catappa phyto-
compound, phytol, which involved van der Waals inter-
actions with Asp282, Asp616, Asp404, Asp443, Arg600, 
Ile441, Leu405, Leu650, and Ser676 amino acid residues. 
The purified fractions of Simarouba glauca and isolated 
phytocompound, Cyanidin-3-O-(2′galloyl)-galactoside 

exhibited stronger α-glucosidase enzyme inhibition both 
in in-vitro and in-silico study. The major interacting amino 
acids involved were His245, Pro309, Asp408, 349, Glu304, 
Arg439, Phe157, − 177, − 310, − 231, − 311, − 158, − 300, 
and Tyr313 for Cyanidin-3-O-(2′galloyl)-galactoside and 
Pro309, His239, − 279, Asp349, Ser156, Arg439, Thr215, 
Glu276, Asp214, Phe310, − 300, − 157, − 177, − 311, − 158, 
Tyr17, and Tyr313 for acarbose, respectively [44]. The bio-
logical properties of any plant extracts may be attributed 
to the phytochemicals present in the plant. Similarly, the 
molecular docking studies of the present study reflected 
the results of in-vitro enzyme inhibition study suggesting 
the inhibitory property of H. sibthorpioides against major 
enzymes linked to Type-2 Diabetes.

5  Conclusion

The search for phyto-based medicines and disease treat-
ment has gained momentum over the last few years. H. 
sibthorpioides Lam. is an important medicinal plant in 
Assam with rich ethnomedicinal values. The present study 
revealed the α-amylase and α-glucosidase enzymes inhibi-
tory property of H. sibthorpioides. Furthermore, molecu-
lar docking with identified phytocompounds showed a 
strong binding affinity with the proteins suggesting the 
possibility of the antidiabetic drug candidates. However, 
further investigation needs to be carried out to isolate and 
purify the active compounds of the plant so that the exact 
molecular mode of action can be understood.
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