
Vol.:(0123456789)

SN Applied Sciences (2021) 3:100 | https://doi.org/10.1007/s42452-020-04075-1

Research Article

A hybrid approach based on artificial neural network and cuckoo 
algorithm for optimization of the main cutting force during turning 
of Si brass alloys

Morteza Adineh1  · Hamid Doostmohammadi1

Received: 3 August 2020 / Accepted: 23 December 2020 / Published online: 11 January 2021 
© The Author(s) 2021  OPEN

Abstract
As an innovative approach in this study, artificial neural network and cuckoo algorithm have been applied to estimate 
and optimize the main cutting forces of various Si brass alloys during turning operation due to economic reasons. Accord-
ingly, the chemical composition (Cu, Zn and Si contents) and process parameters (cutting speed, feed rate and depth 
of cut) are simultaneously implemented as input variables and the main cutting force is adjusted as an output variable. 
Moreover, the genetic algorithm is used to determine the optimum condition of the input parameters to obtain the 
lowest amounts of the main cutting force. Coupling of the hybrid cuckoo algorithm with artificial neural network has 
resulted in decreasing the mean absolute percentage error of the optimum structure (6-10-7-1) from 9.025 to 1.59E–6%. 
The validation of the proposed model has been done by performing the new set of experimental tests. The measured 
and predicted main cutting forces are in good agreement. The Si brass alloys including Zn equivalent about 44.97 wt% 
has the lowest main cutting force due to the formation of the Widmanstäetten morphologies in the microstructure. The 
outcome of this study may be useful for machining industry of the free-cutting Si brasses.
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1 Introduction

Brass alloys containing of around 2 wt% lead (Pb) have 
extensive applications in engineering usages due to their 
excellent machinability. From one hand, the presence of 
Pb encourages the formation of microscopic chip breaker 
as well as induces the internal lubricant properties to the 
alloys and from the other hand, due to toxic effect of Pb 
restricted the usage of such alloys, significantly. Conse-
quently, proposing of Pb free brass alloys is hot issue for 
research and process development [1–3].

Silicon (Si) is one of the most common elements for 
substitution of Pb in brass named as Si brass alloys. Si is 
a cheap and abundant element [4] and has significant 
potential for recycling. The addition of Si to brass can 

promote the creation of discontinuous chips [5], aid flu-
idity [6] and improve the strength, wear resistance and 
dezincification resistance [7].These outstanding charac-
teristics of Si caused to evolve the Si brass alloys as good 
candidates for substitution of Pb containing brasses.

Schultheiss et al. [3], by evaluating the machinabil-
ity of the Pb containing brass compared to Si alloyed 
brass, concluded that the cutting forces for Si brass was 
higher due to the greater yield and tensile strengths and 
hardness of this alloy. The same result was reported by 
Nobel et al. [5] however; they found that in comparison 
to leadless brasses, the machinability based on cutting 
forces could be improved by addition of Si. Oishi [7] pro-
posed that satisfactory machinability could be obtained 
by addition of 2–4 wt% Si. Formation of brittle phases 
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was reported to be a major cause of the machinability 
improvement. Adineh et al. [8] represented that not only 
the presence of brittle phases but also the morphology 
and hardness of the phases involved had significant role 
on decreasing the main cutting force of Si brass alloys.

The role of Si on the main cutting force of the turn-
ing operation is very important since this parameter 
has a major role on the energy consumption during the 
machining process. Therefore, there is a need for formu-
lating and predicting the main cutting force versus the 
chemical composition of Si brass alloys as well as the 
machining parameters (including cutting speed (CS), 
feed rate (FR), and depth of cut (DoC)).

This paper is organized as follows: In Sect. 2, the prin-
ciple of ANN and COA has been explained. In Sect. 3, the 
methods of production of samples by casting method, 
the machining condition and the way of measuring 
and collecting data have been proposed. In Sect. 4, the 
results of the ANN simulation, employment of COA to 
improve the accuracy of the ANN, optimum condition 
introduced by genetic algorithm and validation of the 
model by experimental tests are studied. In Sect. 5, we 
discuss the results of the research as well as the influence 
of each input parameters on the main cutting force.

2  Background

2.1  Artificial neural network (ANN)

ANN, i.e., a machine learning technique, uses from 
past practical data (input values and output values) 
like human neurons to determine the complex inter-
action between the practical parameters. ANN learns 
from inputs and target data in a nonlinear parallel algo-
rithm named feed forward-back propagation [9]. Input 
layer, one or higher hidden layers, output layer and 
a lot of nodes are the main components of this algo-
rithm (Fig. 1). Data processing in ANN are carried out in 
neurons or nodes which are connecting each other by 
weights (wi) and bias (b). Every neuron multiplies the 
input data using its relevant connecting weights and at 
follows sums the threshold acting as bias. The weight 
of each parameter is adjusted by considering its signifi-
cance. Activation function is responsible for summation 
of the results within each layer and transfer to the next 
layer neurons [10, 11] as following (Eq. 1).
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There are various activation functions for connecting 

of the ANN components including Tansig, Logsig and 
Pureline as shown in Eqs. 2–4.

Generally, a backward propagation (BP) strategy 
employs for training of proposed feed forward networks 
[13]. This strategy estimates the weights at the start of 
the process in a random way. Then, the estimated output 
compares to the datum and the error sends back to the 
initial layer. By consideration of the error as a criterion, 
the weights are adjusted to minimize the error [9].

ANNs have attracted extensive attention in various 
aspects of casting and machining sciences for optimi-
zation and predicting of materials properties as well as 
materials behavior by excellent precision. Manjunath 
Patel et al. [14] utilized BP algorithm tuned neural net-
work for modeling of squeeze casting process. The input 
data were pressure duration, squeeze pressure and pour-
ing and die temperatures. Surface roughness and tensile 
strength were adopted as the output data. The results 
showed the capability of the model to make precise pre-
diction. The combined method of genetic algorithm (GA) 
and BP neural network was also used effectively in mold 

(2)Tansig(x) = (exp (x) − exp (−x))∕(exp (x) + exp (−x))

(3)Logsig(x) = 1∕(1 + exp (−x))

(4)Pureline(x) = x

Fig. 1  Typically representation of the ANN components [9]
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breakout prediction in slab continuous casting by He 
and Zhang [15]. Arafat et al. [16] could model the energy 
consumption and surface roughness of the bovine horns 
versus process parameters of the face milling with high 
accuracy prediction by using ANN. Considering the sig-
nificance and complexity of the casting and machining 
of the brass, it is necessary to employ the advanced tech-
niques for comprehensive analysis as well as determina-
tion of the optimum condition for minimization of the 
main cutting force during the turning of Si brass alloys.

2.2  Cuckoo optimization algorithm (COA)

COA, i.e., a powerful strategy for simulation of non-linear 
issues, is inspired from specific breeding and egg laying 
of typical cuckoo species. Female types of cuckoos put 
their eggs in the nest of some chosen host birds due to 
the similarity between the colours and patterns of those 
species. After hatching the egg, the cuckoo chicks throw 
out the eggs and chicks of the host bird. Usually, 10% of 
the host birds distinguish the presence of strange eggs 
and throw them out of the nest. The suitability of the area 
for survival of the cuckoos is determined by the rate of the 
raised eggs. The surviving chicks of the cuckoo instinctly 
repeat the same trend at future [17, 18]. When the surviv-
ing chicks become a mature, they start to form communi-
ties which have their own habitat to live. It is necessary to 
note that the most appropriate region is determined as 
a distinction of cuckoos for migration. In this algorithm, 
each egg in the nest and a cuckoo egg are representa-
tives for a not-so-good solution and a new potentially bet-
ter solution, respectively [17, 18]. The convergence takes 
place to a state that just one cuckoo society remains [19]. 
The employment of COA as hybrid approach by ANN is 
considered as advanced technique for simulation of lot of 
engineering process [19–21].

The COA has been implemented for estimating the 
crack depth and location in cantilever Euler–Bernoulli 
beams by Moezi et al. [20]. It is also used for simultaneous 
optimization of maximum material removal rate and mini-
mum surface roughness during electro chemical machin-
ing process [21]. The results of confirmatory experiments 
verified the suitability of this method. COA was success-
fully implemented for optimization of the production time 
in the multi-pass milling process and hybridization of this 
approach was encouraged for further improvement [22]. 
The ANN–COA flowchart is represented schematically in 
Fig. 2.

To the best of our knowledge, optimization and deter-
mination of the influence of effective parameters on brass 
goods alloys preparation by casting, i.e., Cu (wt%), Zn 
(wt%) and Si (wt%), cutting speed (CS), feed rate (FR) and 
depth of cut (DoC) on the main cutting force of turning 

operation have not been investigated, yet. Accordingly, as 
an innovative approach in this study, a hybrid ANN–COA 
strategy is employed for modeling and optimization of the 
main cutting force during the turning of Si brass alloys by 
simultaneous implementation of chemical composition 
and process parameters as inputs variables. In this study, 
the COA algorithm was implemented in order to optimize 
the weight and bias of the optimum network structure 
obtained by ANN.

The main contribution of the proposed model are: 
(1) The feasibility of the study of ANN, ANN–COA and 
ANN–COA–GA simulation in modeling of machining 
behavior by consideration of the most effecting practical 
parameters, (2) Comparison of ANN, ANN–COA models 
with each other, (3) Investigating the effect of Cu, Zn and 
Si contents, CS, FR and DoC on the main cutting force, (4) 
Integrating the best model with GA simulation to opti-
mize the main cutting force, (5) Verifying the predicted 
optimum value.

Fig. 2  The schematic representation of the ANN–COA flowchart 
[20, 23]
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3  Experimental procedures

The methodology of this study is briefly shown in Fig. 3. 
Preparations of cast samples were done by adding differ-
ent amounts of high purity Si to  Cu65Zn35 and  Cu70Zn30 
base brasses. The melting process was performed in an 
electric furnace and then the melts were poured in the 
cylindrical sand moulds with the height and diameter of 
200 and 30 mm. The chemical composition of the Si brass 
alloys were determined by mass spectroscopy analysis 
and shown in Table 1.

The main cutting force was measured by a piezo-
electric dynamometer KISTLER 9257B. The tests were 
done using DNMG 150608-PM inserts with the grade of 
YBC351 (indexed based on ISO 1832) under the dry con-
ditions and the rake angle of 0º. To enhance the accuracy 
of the analysis, the main cutting force of every cutting 
condition was measured three times and the average 
values were used as input during the training and test-
ing networks.

In this study, the content of Cu, Zn and Si as well as 
the CS, FR and DoC were considered as the input vari-
ables while; the main cutting force was selected as out-
put variable. The ranges of the input parameters were 
selected based on the results obtained in literatures [8, 

24]. From 92 repeatable experimental data sets, 69 tests 
were selected for training and 23 for testing the network 
in a random way. Table 2 abbreviates the statistical infor-
mation of experimental data. All data must be normal-
ized in the range of [0.1–1] using Eq. 5.

In which, Xmax and Xmin are maximum and minimum 
values of the variable X [12].

Levenberg–Marquardt (LM) strategy on the basis of 
multilayer feed forward back propagation was employed 
for the determination of weights and biases during the 
training of the network. The ANN simulation was carried 
out by Toolbox of Matlab V7.12. Evaluations of various 
networks were carried out by consideration of mean 
absolute percentage error (MAPE) as criteria (Eq. 6). The 
best ANN architecture was determined as the structure 
with the lower MAPE.
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Fig. 3  The brief methodology 
used for simulating of the main 
cutting force

Table 1  Chemical composition of the various Si brass alloys casted 
in present study

Sample no. Cu (wt%) Zn (wt%) Si (wt%) Zinc 
equivalent 
(wt%)

1 65.48 34.52 0.00 34.52
2 66.17 33.00 0.83 38.40
3 65.06 33.07 1.87 44.30
4 64.78 32.94 2.28 46.20
5 64.42 31.96 3.62 51.40
6 70.42 29.58 0.00 29.58
7 70.18 29.05 0.77 34.37
8 68.88 29.94 1.18 37.73
9 68.83 29.21 1.96 41.49
10 69.19 27.33 3.48 47.30

Table 2  Statistical information of the dataset

Parameters Maximum Minimum Average Standard 
deviation

Input variable
Cu content (wt%) 70.42 64.42 67.34 2.28
Zn content (wt%) 34.52 27.33 31.05 2.21
Si content (wt%) 3.62 0 1.60 1.24
Cutting speed 

(m min−1)
94.2 33.4 81.48 21.14

Feed rate (mm  rev−1) 0.2 0.08 0.12 0.03
Depth of cut (mm) 1 0.25 0.53 0.16
Output variable
Main cutting force 

(N)
157 40 86.45 0.16
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In which, L indicates the test data number, d(t) and p(t) 
are real and model prediction values, respectively [12].

Tansig, logsig and pureline were tested for activation 
functions of hidden layer in different ANN structures. For 
all ANN structures, the pureline was used as an activation 
function of the output layer.

Table 3 abbreviates the preset parameters of the COA 
algorithm for optimization of the weight and bias of the 
optimum network structures.

The sensitivity tests were carried out for optimized net-
work of ANN–COA to investigate the relative importance 
of each input parameters. In this method, constant rates 
of variation (+ 5, − 5, + 10 and − 10) were chosen for every 
input data one at a time to calculate the change in outputs 
by Eq. 7.

In this equation, Si (%) and N are the sensitivity level 
and the number of data which were employed for testing 
the network.

LEICA DMLM light optical microscope and X-ray diffrac-
tion (XRD, Xpert) was utilized for phase characterization. 
The Brinell hardness method was used under the load of 
62.5 kN for 60 s to compare the hardness of samples.

4  Results

Figure 4 depicts the dataset box plot for the inputs data. As 
shown, the median of Cu content, Zn content, CS, FR and 
DoC are in the box center showing that the distributions 
of these input data are symmetric. While, the median of 
the Si content skews to the lower amounts indicating that 
the values of the lower Si contents are closer together than 
the higher values. Also, there are not any outliers data for 
all variables.

Over than 100 ANN architectures were studied to deter-
mine the best structure including the higher regression 
as well as lower MAPE. Table 4, typically represents the 

(7)

Si(%) = 1∕N

N
∑

j=1

(% change in output/% change in input)j ∗ 100

Table 3  Preset parameters of the COA strategy used in this work

Property Value

Number of initial population 150
Maximum number of cuckoo 50
Maximum number of eggs 9
Minimum number of eggs 2
Control parameter of egg laying 1
Knn cluster number 2

Fig. 4  The description of inputs dataset in box plot
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characteristics of some of these networks with acceptable 
performance. Figure 5 compares the MAPE and regression 
of these structures. The entire designed networks had six 
input neurons and one output neuron. The network num-
ber 33 with 6-10-7-1 structure and activation functions 
tansig between the hidden layers showed the best ability 

to predict the data. Accordingly, network 33 had relatively 
high MAPE about 9.025% during testing step. Moreover, 
the MAEP during the training step changed between 
3.759% and 5.075.

To enhance the accuracy of ANN proposed network, a 
hybrid ANN–COA strategy was employed. This approach 
caused the MAPE of the ANN network to decrease from 
9.025 to 1.59E−6%. The MAPE of the ANN–COA network 
changed between 1.52E−8 and 1.37E−10 during the train-
ing step. The results of a regression analysis between the 
experimental and ANN–COA predicted data are indicated 
in Fig. 6. Accordingly, ANN–COA could improve the regres-
sion from 0.9942 to 0.999 for training data and 0.9307 to 
0.999 for testing data. These results indicated the out-
standing prediction capability of the ANN–COA in present 
work. The ANN has shown a good capability for predict-
ing the main cutting force versus process parameters in 
Ref. [16]. However; the results of this study indicated that 
for predicting the main cutting force versus both pro-
cess parameters and chemical composition, the hybrid 
ANN–COA should be used.

The experimental and predicted results of the main cut-
ting force as well as the calculated errors for training and 
testing data are presented in Tables 5 and 6, respectively.

Table 4  Typically representation of ANN architectures with accept-
able performances

Network number ANN structure Activation function

0 3 logsig
1 3 tansig
2 5 logsig
3 5 tansig
4 7 logsig
5 7 tansig
6 3, 5 logsig, logsig
7 3, 5 tansig, tansig
8 5, 5 logsig, logsig
9 5, 5 tansig, tansig
10 7, 5 logsig, logsig
11 7, 5 tansig, tansig
12 10, 5 logsig, logsig
13 10, 5 tansig, tansig
14 15, 5 logsig, logsig
15 15, 5 tansig, tansig
16 3, 3 logsig, logsig
17 3, 3 tansig, tansig
18 5, 3 logsig, logsig
19 5, 3 tansig, tansig
20 7, 3 logsig, logsig
21 7, 3 tansig, tansig
22 10, 3 logsig, logsig
23 10, 3 tansig, tansig
24 15, 3 logsig, logsig
25 15, 3 tansig, tansig
26 3, 7 logsig, logsig
27 3, 7 tansig, tansig
28 5, 7 logsig, logsig
29 5, 7 tansig, tansig
30 7, 7 logsig, logsig
31 7, 7 tansig, tansig
32 10, 7 logsig, logsig
33 10, 7 tansig, tansig
34 15, 7 logsig, logsig
35 15, 7 tansig, tansig

Fig. 5  Typically comparison of regression and MAPE for the most 
appropriate networks
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The results of the sensitivity analysis for the main cut-
ting force versus input variables are shown in Fig. 7. Nega-
tive values represent that the main cutting force decrease 
with increasing of the value of the input variable and vice 
verca. According to Fig. 7, by consideration of the opera-
tional parameters, FR and DoC with positive effect are the 
main effective parameters while, by consideration of the 
chemical composition, Si content of the alloy by negative 
effect is the most effective parameter on the main cutting 
force.

To explain the results of sensitivity analysis, optical 
microscope and XRD analysis were employed. Typi-
cally, Figs. 8 and 9 show the optical microscope images 
and XRD spectra of samples 6, 9 and 10, respectively. 
As shown in Figs. 8a and 9a, the base alloy was com-
posed of large grains of α phase, i.e., a solid solution with 
FCC structure [25, 26]. As shown in Figs. 8b and 9b, the 
addition of Si (1.96 wt%) to the base alloy (sample 9), 
encouraged the formation of brittle intermetallic phase 
including β′ (CuZn) [24, 25]. The presence of higher Si 
content (3.48 wt%) facilitated the formation of another  
intermetallic compound  (Cu5Zn8) [24] beside the β’ 
phase (Figs. 8c, 9c).

The effect of Si content on the average diameter of 
the grains (ADG) and brinell hardness of the  Cu70Zn30 
base brass are shown in Figs. 10 and 11, respectively. Fig-
ure 10 confirmed that the presence of Si up to 3.48 wt% 
decreased the ADG of the base alloy from 300 to 11 µm. 
While, the same changes in Si content increased the hard-
ness of the base brass from 35 to 218 HB (Fig. 11). In sum-
mary, higher Si content of the  Cu70Zn30 base brass from 
one hand encouraged the formation of finer grains and 
from the other hand facilitated the formation of brittle 

intermetallic compounds, i.e., β’ and  [8]. Accordingly, Si 
content had notable effect on the mechanical behavior 
and microstructure of the base brass.

Genetic algorithm (GA) was used to determine the opti-
mum condition of the input parameters for obtaining the 
minimum amounts of the main cutting force by using the 
ANN–COA model. According to the results of GA, combi-
nation of input variable as Cu = 68.5 wt%, Zn = 28.78 wt%, 
Si = 2.72 wt%, CS = 86.78 m min−1, FR = 0.18 mm  rev−1 and 
DoC = 0.66 mm enable the main cutting force to decrease 
as minimum as possible. Validation of the proposed opti-
mum condition was carried out by introducing of various 
practical parameters to optimum ANN-COA-GA model and 
estimating the related error as shown in Table 7.

The zinc equivalent (ZE) factor is defined as Eq.  8. 
According to this equation, each alloying element has the 
coefficient with the effect similar to the addition of Zn. This 
method offered the coefficient of 10 for Si [27].

It was observed that the optimum proposed alloy by 
ANN-COA-GA model had the ZE equal to 44.97 wt%. This 
value was between the ZE of sample 3 (44.3 wt%) and 
sample 4 (46.2 wt%). Figure 12 typically shows the optical 
micrograph of samples 3 and 4. As shown, the α phase 
is distributed in continuous matrix of β’ phase. Moreover, 
Fig. 12c confirmed the presence of Widmanstäetten plates 
and needles geometry of the α phase.

The XRD patterns of the as cast and chip of the sample 
3 at CS = 94.2 m min−1, FR = 0.11 mm  rev−1 and DoC = 1 mm 
is shown in Fig. 13. Compared to as cast sample, the XRD 
peaks of the chip became broad and shifted to the lower 
2ϴ. This behavior was also observed in Ref. [28].

(8)ZE =
[%Zn +

∑

(%M × coeff )]100

[%Zn +
∑

(%M × coeff )]+%Cu]

Fig. 6  Regression analysis of 
ANN–COA for main cutting 
force a training data b testing 
data
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Table 5  Experimental data and predicted output from the ANN–COA network for training set

No. Cu content 
(wt%)

Zn content 
(wt%)

Si content 
(wt%)

Cutting speed 
(m min−1)

Feed rate 
(mm  rev−1)

Depth of 
cut (mm)

Main cutting force (N)

Measured Predicted Error

1 64.78 32.94 2.28 94.2 0.14 0.5 85 84.9999999998867 3.29E−11
2 64.42 31.96 3.62 94.2 0.11 0.5 91 91.0000000000484 2.81E−11
3 65.06 33.07 1.87 94.2 0.11 0.5 63 63.0000000001322 4.17E−10
4 64.78 32.94 2.28 94.2 0.11 0.25 45 45.0000000000944 2.68E−10
5 69.19 27.33 3.48 94.2 0.11 1 133 133.000000000012 4.02E−11
6 69.19 27.33 3.48 94.2 0.11 0.75 113.5 113.500000000024 1.84E−11
7 64.78 32.94 2.28 94.2 0.11 0.75 96 95.9999999999813 7.69E−11
8 65.48 34.52 0 94.2 0.14 0.5 99.6 99.6000000000305 4.17E−11
9 70.42 29.58 0 94.2 0.11 0.75 110 110.000000000039 1.42E−11
10 65.48 34.52 0 66.8 0.11 0.5 87 87.0000000000362 1.17E−10
11 68.88 29.94 1.18 94.2 0.11 0.5 76.6 76.6000000000446 5.53E−11
12 66.17 33 0.83 94.2 0.2 0.5 118 118.000000000025 8.54E−11
13 68.88 29.94 1.18 94.2 0.08 0.5 66.5 66.4999999999947 1.89E−10
14 66.17 33 0.83 47.1 0.11 0.5 87 87.0000000000785 9.8E−11
15 70.42 29.58 0 94.2 0.11 0.25 46 46.0000000000288 5.99E−10
16 64.78 32.94 2.28 94.2 0.11 0.5 67 66.999999999943 4.03E−10
17 64.42 31.96 3.62 94.2 0.11 0.75 126 126.00000000001 3.26E−11
18 68.83 29.21 1.96 66.8 0.11 0.5 81 81.0000000000551 7.33E−11
19 70.18 29.05 0.77 94.2 0.11 0.5 77 77.0000000000845 2.55E−11
20 68.88 29.94 1.18 94.2 0.11 1 138.5 138.500000000006 2.05E−11
21 68.83 29.21 1.96 94.2 0.11 0.5 79.5 79.5000000000181 1.12E−10
22 68.88 29.94 1.18 94.2 0.11 0.25 46 46.0000000000431 2.13E−10
23 70.18 29.05 0.77 94.2 0.14 0.5 99.3 99.2999999999613 3.72E−11
24 68.88 29.94 1.18 94.2 0.14 0.5 89 89.0000000000259 5.3E−11
25 70.42 29.58 0 94.2 0.08 0.5 65.7 65.7000000001113 1.14E−10
26 64.78 32.94 2.28 94.2 0.2 0.5 109.5 109.500000000039 1.83E−11
27 65.48 34.52 0 94.2 0.2 0.5 119.4 119.399999999927 5.71E−10
28 69.19 27.33 3.48 94.2 0.11 0.5 78 78.0000000000419 7.4E−11
29 64.42 31.96 3.62 47.1 0.11 0.5 79 79.0000000000979 3.01E−10
30 70.18 29.05 0.77 47.1 0.11 0.5 85.5 85.5000000000699 1.11E−10
31 68.83 29.21 1.96 47.1 0.11 0.5 78 78.0000000000595 3.15E−10
32 68.83 29.21 1.96 94.2 0.2 0.5 113 113.000000000017 2.86E−11
33 69.19 27.33 3.48 94.2 0.2 0.5 120 120.000000000011 5.33E−11
34 64.42 31.96 3.62 94.2 0.14 0.5 103.7 103.700000000062 3.6E−11
35 64.78 32.94 2.28 47.1 0.11 0.5 67 66.9999999999897 2.22E−10
36 66.17 33 0.83 94.2 0.11 0.25 50 50.0000000000639 1.42E−10
37 64.42 31.96 3.62 94.2 0.08 0.5 83 83.0000000000592 2.78E−11
38 70.42 29.58 0 33.4 0.11 0.5 77 77.0000000001517 1.9E−10
39 68.83 29.21 1.96 94.2 0.14 0.5 96.4 96.4000000000049 6.04E−12
40 66.17 33 0.83 94.2 0.08 0.5 66.3 66.3000000000549 6.99E−12
41 64.42 31.96 3.62 94.2 0.11 1 157 157.000000000012 2.21E−11
42 70.42 29.58 0 94.2 0.11 1 144 144.000000000007 1.84E−11
43 70.18 29.05 0.77 94.2 0.2 0.5 119.9 119.900000000002 4.48E−11
44 65.48 34.52 0 94.2 0.11 0.25 48 48.000000000036 1.28E−9
45 68.88 29.94 1.18 66.8 0.11 0.5 76 76.0000000000458 1.77E−10
46 69.19 27.33 3.48 47.1 0.11 0.5 84 84.0000000001049 1.45E−10
47 69.19 27.33 3.48 94.2 0.11 0.25 55.4 55.4000000001085 4.73E−10
48 68.83 29.21 1.96 94.2 0.11 0.75 104.7 104.700000000023 1.65E−11
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5  Discussions

According to the literature [26], Eq. 8 is able to predict the 
microstructure of Si brass cast alloy in non-equilibrium 
solidification condition. Since, the same casting procedure 
was employed in this study, ZE factor was used for inves-
tigation of the alloys microstructure. The practical data 
confirmed that sample 3 (ZE = 44.3 wt%) had the lowest 
main cutting force during 92 tests. By consideration of ZE 
as criterion, it was confirmed that the proposed alloy by 
ANN–COA–GA model had nearly the same ZE value (44.3 
wt% < ZE < 46.2 wt%).

It was necessary to note that the Si brass alloys with 
above-mentioned ZE encouraged the formation of Wid-
manstätten morphologies. The presence of this type of 

microstructure could result in the strength differences at 
interphase boundaries [29] enhancing the fracturing dur-
ing the machining. This brittle fracture behavior was inten-
sified by the presence of strong anisotropy at the interface 
of the Widmanstäetten and matrix phases [30].

Obviously, α and β’ phases have various plastic defor-
mation behavior and consequently during the applying 
of dynamic force by the tool tip, the interface of α and β’ 
acts as appropriate sites for the nucleation and growth 
of the voids. Connection of these voids facilitates the 
formation of microcracks and brittle fracture during the 
dynamic loading. The observation of peak shifts for α and 
β’ phases in chip of the sample 3 in Fig. 13 is the evidence 
for the presence of a large amounts of strains aiding the 
easy fracturing. Moreover, the formation of finer grain in 

Table 5  (continued)

No. Cu content 
(wt%)

Zn content 
(wt%)

Si content 
(wt%)

Cutting speed 
(m min−1)

Feed rate 
(mm  rev−1)

Depth of 
cut (mm)

Main cutting force (N)

Measured Predicted Error

49 70.18 29.05 0.77 66.8 0.11 0.5 80.3 80.3000000000887 2.14E−10
50 68.83 29.21 1.96 94.2 0.08 0.5 71.3 71.3000000000914 5.27E−12
51 65.48 34.52 0 94.2 0.08 0.5 70 70.00000000002 6.61E−11
52 70.42 29.58 0 47.1 0.11 0.5 80.77 80.7700000000966 2.08E−12
53 70.42 29.58 0 94.2 0.2 0.5 114 114.000000000005 6.05E−11
54 64.78 32.94 2.28 66.8 0.11 0.5 65 65.0000000003226 2.7E−10
55 65.06 33.07 1.87 66.8 0.11 0.5 60.5 60.4999999997069 3.82E−10
56 65.06 33.07 1.87 94.2 0.2 0.5 93.8 93.8000000000328 4.62E−11
57 70.42 29.58 0 94.2 0.14 0.5 95.6 95.6000000000542 8.64E−12
58 64.42 31.96 3.62 33.4 0.11 0.5 77.8 77.8000000001305 5.19E−10
59 70.18 29.05 0.77 94.2 0.11 0.25 49.4 49.4000000000754 4.4E−11
60 64.78 32.94 2.28 94.2 0.08 0.5 60 60.0000000000892 6.86E−11
61 70.42 29.58 0 66.8 0.11 0.5 78 78.000000000011 3.78E−11
62 65.06 33.07 1.87 94.2 0.11 0.75 91.5 91.5000000000515 3.99E−12
63 70.18 29.05 0.77 94.2 0.08 0.5 72.5 72.5000000000011 2.23E−10
64 69.19 27.33 3.48 94.2 0.14 0.5 99 99.0000000000299 1.77E−11
65 70.42 29.58 0 94.2 0.11 0.5 74 73.9999999999584 5.02E−11
66 69.19 27.33 3.48 94.2 0.08 0.5 82 82.0000000000899 1.54E−10
67 65.06 33.07 1.87 94.2 0.11 0.25 40 40.0000000000643 2.03E−10
68 64.42 31.96 3.62 94.2 0.2 0.5 123.9 123.900000000033 2.65E−11
69 65.06 33.07 1.87 33.4 0.11 0.5 62 62.0000000000987 4.68E−10
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the presence of higher Si content (Fig. 10), enhanced the 
interface of the phases and intensified the brittle fracture.

By consideration of the effect of operational param-
eters on the main cutting force revealed that, at higher FR 
and DoC, more volume of the work piece material could 
be removed during the cutting operation causing more 
resistance against tool which led to the direct relation of 
these parameters with the main cutting force in sensitiv-
ity analysis.

The relatively high sensitivity observed in Fig. 7 for the 
main cutting force with cutting speed variations was due 
to the competition between the work hardening and ther-
mal softening phenomena during machining. By increas-
ing in cutting speeds, high strain rates create during the 
chip formation resulting in work hardening in work piece 
material. By passing the strain rate from a threshold, the 
high heat generation which is produced by severe plas-
tic deformation leads to a localized increase in tempera-
ture. Consequently, drop in shear strength occurs which 
is known as thermal softening. It has been observed in 
austenitic stainless steels [31], Ti–6Cr–5Mo–5V–4Al [32] 

Table 6  Experimental data and predicted output from the ANN–COA network for testing set

No. Cu content 
(wt%)

Zn content 
(wt%)

Si content 
(wt%)

Cutting speed 
(m min−1)

Feed rate 
(mm  rev−1)

Depth of 
cut (mm)

Main cutting force (N)

Measured Predicted Error

1 64.42 31.96 3.62 94.2 0.11 0.25 58 58.0000000001572 3.4E−8
2 66.17 33 0.83 94.2 0.14 0.5 92.5 92.5000000000088 1.2E−8
3 68.88 29.94 1.18 94.2 0.11 0.75 109.8 109.800000000009 2.6E−8
4 65.48 34.52 0 33.4 0.11 0.5 99 99.0000000000413 2.3E−8
5 64.78 32.94 2.28 94.2 0.11 1 129 128.999999999997 6.9E−10
6 68.83 29.21 1.96 94.2 0.11 0.25 48.3 48.3000000000619 4.9E−9
7 68.88 29.94 1.18 94.2 0.2 0.5 111.5 111.500000000007 3.5E−8
8 65.06 33.07 1.87 94.2 0.08 0.5 57 56.9999999999461 3.9E−10
9 70.18 29.05 0.77 94.2 0.11 0.75 111 110.999999999983 5.5E−8
10 65.48 34.52 0 47.1 0.11 0.5 94 94.0000000000418 1.3E−8
11 65.48 34.52 0 94.2 0.11 0.5 87 87.0000000000152 4.5E−9
12 66.17 33 0.83 94.2 0.11 0.75 108 108.0000000014 1.3E−9
13 69.19 27.33 3.48 66.8 0.11 0.5 80 80.000000000052 7.9E−9
14 68.83 29.21 1.96 33.4 0.11 0.5 67.5 67.5000000001224 2E−8
15 65.06 33.07 1.87 94.2 0.14 0.5 79 79.0000000001808 2.1E−8
16 64.42 31.96 3.62 66.8 0.11 0.5 92.2 92.2000000000748 1.2E−9
17 66.17 33 0.83 94.2 0.11 0.5 81.5 81.5000000000145 1.1E−8
18 65.48 34.52 0 94.2 0.11 0.75 110 110.000000000006 5.1E−9
19 68.88 29.94 1.18 47.1 0.11 0.5 82 82.0000000000681 3E−8
20 65.06 33.07 1.87 47.1 0.11 0.5 63 63.0000000001787 2.1E−8
21 70.18 29.05 0.77 33.4 0.11 0.5 94.6 94.600000000142 6.1E−9
22 66.17 33 0.83 33.4 0.11 0.5 74.5 74.5000000001205 2E−8
23 66.17 33 0.83 66.8 0.11 0.5 82 82.0000000000921 1.3E−8

Fig. 7  The sensitivity analysis of the input variables on the main 
cutting force using ANN–COA model
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and Al–(1-2) Fe–1V–1Si [33] alloys that the critical strain 
hardening is the inherent characteristics for each material.

Most of the Si containing samples in this study showed 
work hardening with cutting speeds variation at the 
range of 33.4–94.2 m min−1. Lack of the observation of 
work hardening for samples 3 and 4 was due to the ability 
of these samples to be fractured without the significant 
plastic deformation due to the presence of the Widman-
stäetten morphologies [8].

6  Conclusions

In this study, the main cutting forces of different as-cast Si 
brass alloys were measured at various operating param-
eters including cutting speed, feed rate and depth of 
cut. It has been shown that the ANN–COA is an efficient 
approach for modeling and optimization of the main cut-
ting force. The following main results were acquired.

1. The ANN network with 6-10-7-1 structure using tan-
sig function for hidden layers and pureline for output 
layer had the best prediction ability. The regression 
and MAPE amounts for this network were 0.9307 and 
9.025%, respectively.

2. The usage of COA for optimizing the weight and bias 
achieved by ANN model improved the accuracy of the 
proposed network by ANN.

3. The ZE factor was utilized for sorting Si brass alloys 
with the minimum amounts of main cutting force. The 
alloy with ZE value of 44.97 wt% was predicted by GA 
algorithm as candidate for the lowest main cutting 
force during the machining process.

4. By consideration of ZE as criterion, proposed that ZE 
between 44.3 and 46.2 wt% provided the possibility 
of the formation of α Widmanstätten phase and pro-
motion of the machinability through a weakness at 
interface between Widmanstätten morphologies and 
matrix phase.

For future works, the hybrid ANN–COA technique may 
use for modeling and optimization of the main cutting 
force in other ternary brass systems alloyed with different 
alloying elements in order to evaluate the capability of this 
approach as well as the ZE criterion to predict the machin-
ing behavior of brasses.

Fig. 8  Typically microstructure of the Si brass alloys a sample 6 with 
0 wt% Si b sample 9 with 1.96 wt% Si (the lighter phase is α) c sam-
ple 10 with 3.48 wt% Si (the lighter phase is )
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Fig. 9  The XRD patterns of the Si brass alloys a sample 6 with 0 
wt% Si b sample 9 with 1.96 wt% Si c sample 10 with 3.48 wt% Si

Fig. 10  The ADG diagram of  Cu70–Zn30 base alloy as a function of 
Si content

Fig. 11  The hardness diagram of  Cu70–Zn30 base alloy as a function 
of Si content
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Table 7  Results of ANN-COA-GA program and experimental validations

No. Cu content 
(wt%)

Zn content 
(wt%)

Si content 
(wt%)

Cutting speed 
(m min−1)

Feed rate 
(mm  rev−1)

Depth of 
cut (mm)

Main cutting force (N)

Measured Predicted Error

1 65.48 34.52 0 94.2 0.11 1 140.8 140.799999966242 2.39E−10
2 66.17 33 0.83 94.2 0.11 1 134 134.000000038759 2.89E−10
3 65.06 33.07 1.87 94.2 0.11 1 122 122.000000046247 3.79E−10
4 64.78 32.94 2.28 33.4 0.11 0.5 68 67.9999999337485 9.74E−10
5 70.18 29.05 0.77 94.2 0.11 1 147 147.000000055006 3.74E−10
6 68.88 29.94 1.18 33.4 0.11 0.5 84 84.0000000212458 2.53E−10
7 68.83 29.21 1.96 94.2 0.11 1 131 130.999999967488 2.48E−10
8 69.19 27.33 3.48 33.4 0.11 0.5 70.4 70.4000000200009 2.84E−10

Fig. 12  Typically optical micro-
graphs of a sample 3 with ZE 
of 44.3 wt% containing α Wid-
manstäetten plates b sample 4 
with ZE of 46.2 wt% containing 
α Widmanstäetten needles 
along the grain boundaries c 
high magnification of (b)



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:100 | https://doi.org/10.1007/s42452-020-04075-1

Acknowledgement Authors are thankful to Dr Gholam Reza Khayati 
for his valuable comments and discussion during the writing of this 
paper.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

References

 1. Bushlya V, Johansson D, Lenrick F, Ståhl JE, Schultheiss F (2017) 
Wear mechanisms of uncoated and coated cemented carbide 
tools in machining lead-free silicon brass. Wear 376:143–151. 
https ://doi.org/10.1016/j.wear.2017.01.039

 2. Toulfatzis AI, Pantazopoulos GA, Paipetis AS (2016) Microstruc-
ture and properties of lead-free brasses using post-processing 
heat treatment cycles. Mater Sci Technol 32(17):1771–1781. 
https ://doi.org/10.1080/02670 836.2016.12214 93

 3. Schultheiss F, Johansson D, Bushlya V, Zhou J, Nilsson K, Ståhl 
JE (2017) Comparative study on the machinability of lead-free 
brass. J Clean Prod 149:366–377. https ://doi.org/10.1016/j.jclep 
ro.2017.02.098

 4. Vilarinho C, Davim JP, Soares D, Castro F, Barbosa J (2005) Influ-
ence of the chemical composition on the machinability of 
brasses. J Mater Process Technol 170(1–2):441–447. https ://doi.
org/10.1016/j.jmatp rotec .2005.05.035

 5. Nobel C, Klocke F, Lung D, Wolf S (2014) Machinability enhance-
ment of lead-free brass alloys. Procedia CIRP 14:95–100. https ://
doi.org/10.1016/j.proci r.2014.03.018

 6. Lü YZ, Wang QD, Zeng XQ, Ding WJ, Zhu YP (2001) Effects of 
silicon on microstructure, fluidity, mechanical properties, and 
fracture behaviour of Mg–6Al alloy. Mater Sci Technol 17(2):207–
214. https ://doi.org/10.1179/02670 83011 01509 872

 7. Oishi K (2002) U.S. Patent No. 6,413,330. U.S. Patent and Trade-
mark Office, Washington, DC

 8. Adineh M, Doostmohammadi H, Raiszadeh R (2019) Effect of 
Si and Al on the microstructure, mechanical properties and 
machinability of 65Cu–35Zn Brass. IJMSE 16(2):21–32

 9. Karunakar DB, Datta GL (2008) Prevention of defects in cast-
ings using back propagation neural networks. Int J Adv Manuf 
Technol 39(11–12):1111–1124. https ://doi.org/10.1007/s0017 
0-007-1289-0

 10. Anijdan SM, Madaah-Hosseini HR, Bahrami A (2007) Flow stress 
optimization for 304 stainless steel under cold and warm com-
pression by artificial neural network and genetic algorithm. 
Mater Des 28(2):609–615. https ://doi.org/10.1016/j.matde 
s.2005.07.018

 11. Pepe G, Looney L, Hashmi MSJ, Galantucci LM (1999) Predicting 
the wear resistance of WC-Co coatings using neural networks. 
Int J Model Simul 19(4):410–417. https ://doi.org/10.1080/02286 
203.1999.11760 272

 12. Jafari MM, Khayati GR (2016) Artificial neural network based 
prediction hardness of Al2024-Multiwall carbon nanotube 
composite prepared by mechanical alloying. IJE Trans C 
29(12):1726–1733

 13. Varol T, Canakci A, Ozsahin S (2017) Prediction of effect of 
reinforcement content, flake size and flake time on the den-
sity and hardness of flake AA2024-SiC nanocomposites using 
neural networks. J Alloys Compd 739:1005–1014. https ://doi.
org/10.1016/j.jallc om.2017.12.256

 14. Manjunath Patel GC, Krishna P, Parappagoudar MB (2016) An 
intelligent system for squeeze casting process—soft computing 
based approach. Int J Adv Manuf Technol 86(9–12):3051–3065. 
https ://doi.org/10.1007/s0017 0-016-8416-8

 15. He F, Zhang L (2018) Mold breakout prediction in slab continu-
ous casting based on combined method of GA-BP neural net-
work and logic rules. Int J Adv Manuf Technol 95(9–12):4081–
4089. https ://doi.org/10.1007/s0017 0-017-1517-1

 16. Arafat M, Sjafrizal T, Anugraha RA (2020) An artificial neural 
network approach to predict energy consumption and surface 
roughness of a natural material. SN Appl Sci 2:1–11. https ://doi.
org/10.1007/s4245 2-020-2987-6

 17. Jafari S, Bozorg-Haddad O, Chu X (2018) Cuckoo optimization 
algorithm (COA). In: Bozorg-Haddad O (ed) Advanced optimiza-
tion by nature-inspired algorithms. Studies in computational 
intelligence, vol 720. Springer, Berlin, pp 39–49. https ://doi.
org/10.1007/978-981-10-5221-7_5

 18. Joshi AS, Kulkarni O, Kakandikar GM, Nandedkar VM (2017) 
Cuckoo search optimization: a review. Mater Today Proc 
4(8):7262–7269. https ://doi.org/10.1016/j.matpr .2017.07.055

Fig. 13  The XRD patterns comparison of sample 3 in as cast and 
chip (CS = 94.2 m min−1, FR = 0.11 mm  rev−1 and DoC = 1 mm) forms

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.wear.2017.01.039
https://doi.org/10.1080/02670836.2016.1221493
https://doi.org/10.1016/j.jclepro.2017.02.098
https://doi.org/10.1016/j.jclepro.2017.02.098
https://doi.org/10.1016/j.jmatprotec.2005.05.035
https://doi.org/10.1016/j.jmatprotec.2005.05.035
https://doi.org/10.1016/j.procir.2014.03.018
https://doi.org/10.1016/j.procir.2014.03.018
https://doi.org/10.1179/026708301101509872
https://doi.org/10.1007/s00170-007-1289-0
https://doi.org/10.1007/s00170-007-1289-0
https://doi.org/10.1016/j.matdes.2005.07.018
https://doi.org/10.1016/j.matdes.2005.07.018
https://doi.org/10.1080/02286203.1999.11760272
https://doi.org/10.1080/02286203.1999.11760272
https://doi.org/10.1016/j.jallcom.2017.12.256
https://doi.org/10.1016/j.jallcom.2017.12.256
https://doi.org/10.1007/s00170-016-8416-8
https://doi.org/10.1007/s00170-017-1517-1
https://doi.org/10.1007/s42452-020-2987-6
https://doi.org/10.1007/s42452-020-2987-6
https://doi.org/10.1007/978-981-10-5221-7_5
https://doi.org/10.1007/978-981-10-5221-7_5
https://doi.org/10.1016/j.matpr.2017.07.055


Vol.:(0123456789)

SN Applied Sciences (2021) 3:100 | https://doi.org/10.1007/s42452-020-04075-1 Research Article

 19. Sohrabpoor H, Khanghah SP, Shahraki S, Teimouri R (2016) 
Multi-objective optimization of electrochemical machining 
process. Int J Adv Manuf Technol 82(9–12):1683–1692. https ://
doi.org/10.1007/s0017 0-015-7448-9

 20. Moezi SA, Zakeri E, Zare A (2017) A generally modified cuckoo 
optimization algorithm for crack detection in cantilever 
Euler–Bernoulli beams. Precis Eng 52:227–241. https ://doi.
org/10.1016/j.preci sione ng.2017.12.010

 21. Teimouri R, Sohrabpoor H (2013) Application of adaptive neuro-
fuzzy inference system and cuckoo optimization algorithm for 
analyzing electro chemical machining process. Front Mech Eng 
8(4):429–442. https ://doi.org/10.1007/s1146 5-013-0277-3

 22. Mellal MA, Williams EJ (2016) Total production time minimiza-
tion of a multi-pass milling process via cuckoo optimization 
algorithm. Int J Adv Manuf Technol 87(1–4):747–754. https ://
doi.org/10.1007/s0017 0-016-8498-3

 23. Mahdavi Jafari M, Khayati GR, Hosseini M, Danesh-Manesh H 
(2017) Modeling and optimization of roll-bonding param-
eters for bond strength of Ti/Cu/Ti clad composites by artifi-
cial neural networks and genetic algorithm. IJE Trans B Asp 
30(12):1885–1893

 24. Rajabi Z, Doostmohammadi H (2018) Effect of addition of tin 
on the microstructure and machinability of α-brass. Mater Sci 
Technol. https ://doi.org/10.1080/02670 836.2018.14354 84

 25. Adineh M, Doostmohammadi H (2019) Microstructure, mechani-
cal properties and machinability of Cu–Zn–Mg and Cu–Zn–Sb 
brass alloys. Mater Sci Technol 35(12):1504–1514. https ://doi.
org/10.1080/02670 836.2019.16300 89

 26. Alirezaei M, Doostmohammadi H (2016) Microstructure evolu-
tion in cast and equilibrium heat-treated CuZn30–(Si) alloys. Int 
J Cast Met Res 29(4):222–227. https ://doi.org/10.1080/13640 
461.2015.11264 30

 27. Gale WF, Totemeier TC (2003) Smithells metals reference book. 
Elsevier, Amsterdam

 28. Velásquez JP, Bolle B, Chevrier P, Geandier G, Tidu A (2007) Metal-
lurgical study on chips obtained by high speed machining of a 
Ti-6 wt% Al-4 wt% V alloy. Mater Sci Eng A 452:469–474. https 
://doi.org/10.1016/j.msea.2006.10.090

 29. Gil FJ, Ginebra MP, Manero JM, Planell JA (2001) Formation of 
α-Widmanstätten structure: effects of grain size and cooling rate 
on the Widmanstätten morphologies and on the mechanical 
properties in Ti6Al4V alloy. J Alloys Compd 329(1–2):142–152. 
https ://doi.org/10.1016/S0925 -8388(01)01571 -7

 30. Loginova I, Ågren J, Amberg G (2004) On the formation of 
Widmanstätten ferrite in binary Fe–C-phase-field approach. 
Acta Mater 52(13):4055–4063. https ://doi.org/10.1016/j.actam 
at.2004.05.033

 31. Fernández-Abia AI, García JB, de Lacalle LNL (2013) High-per-
formance machining of austenitic stainless steels. In: Machining 
and machine-tools, pp 29–90. https ://doi.org/10.1533/97808 
57092 199.29

 32. Rashid RR, Sun S, Wang G, Dargusch MS (2012) An investigation 
of cutting forces and cutting temperatures during laser-assisted 
machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int 
J Mach Tools Manuf 63:58–69. https ://doi.org/10.1016/j.ijmac 
htool s.2012.06.004

 33. Pathak BN, Sahoo KL, Mishra M (2013) Effect of machining 
parameters on cutting forces and surface roughness in Al–(1–2) 
Fe–1V–1Si alloys. Mater Manuf Processes 28(4):463–469. https 
://doi.org/10.1080/10426 914.2013.76395 2

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00170-015-7448-9
https://doi.org/10.1007/s00170-015-7448-9
https://doi.org/10.1016/j.precisioneng.2017.12.010
https://doi.org/10.1016/j.precisioneng.2017.12.010
https://doi.org/10.1007/s11465-013-0277-3
https://doi.org/10.1007/s00170-016-8498-3
https://doi.org/10.1007/s00170-016-8498-3
https://doi.org/10.1080/02670836.2018.1435484
https://doi.org/10.1080/02670836.2019.1630089
https://doi.org/10.1080/02670836.2019.1630089
https://doi.org/10.1080/13640461.2015.1126430
https://doi.org/10.1080/13640461.2015.1126430
https://doi.org/10.1016/j.msea.2006.10.090
https://doi.org/10.1016/j.msea.2006.10.090
https://doi.org/10.1016/S0925-8388(01)01571-7
https://doi.org/10.1016/j.actamat.2004.05.033
https://doi.org/10.1016/j.actamat.2004.05.033
https://doi.org/10.1533/9780857092199.29
https://doi.org/10.1533/9780857092199.29
https://doi.org/10.1016/j.ijmachtools.2012.06.004
https://doi.org/10.1016/j.ijmachtools.2012.06.004
https://doi.org/10.1080/10426914.2013.763952
https://doi.org/10.1080/10426914.2013.763952

	A hybrid approach based on artificial neural network and cuckoo algorithm for optimization of the main cutting force during turning of Si brass alloys
	Abstract
	1 Introduction
	2 Background
	2.1 Artificial neural network (ANN)
	2.2 Cuckoo optimization algorithm (COA)

	3 Experimental procedures
	4 Results
	5 Discussions
	6 Conclusions
	Acknowledgement 
	References




