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Abstract
A new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous inte-
gration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the 
performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 
69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, 
TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 
independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, 
PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising 
the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is 
analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduc-
tion of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation 
index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin 
in radial distribution systems and its suitability for practical applications.

Keywords  Distributed generation · Interline-photovoltaic system · Power loss minimization · Radial distribution system · 
Pathfinder algorithm · Meta-heuristic algorithms
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AVDI	� Average voltage deviation index
DG	� Distributed generation
EDS	� Electrical distribution system
HSA	� Heuristic search algorithm
IEEE	� Institute of electrical and electronics engineers
I-PV	� Interline-photovoltaic system
NR	� Network reconfiguration
OADG	� Optimal allocation of distribution generation
ONR	� Optimal network reconfiguration
PFA	� Pathfinder algorithm
RDS	� Radial distribution system
RE	� Renewable energy
VSI	� Voltage stability index

1  Introduction

Electrical distribution system (EDS) normally characterized 
by higher R/X ratio and radiality, as well as operation at low 
voltage profile with high currents. Most of the distribution 
systems serve inductive loads which results in low voltage 
profile and consequently higher distribution losses. 
Increased power loss implies inefficient operation not only 
from a technical point of view but also from economical 
aspects due to more power generation requirement and 
consequently its associated cost. Particularly in India, the 
transmission and distribution losses are around 20% of the 
total power generation [1].  In order to overcome this 
potential problem, integration of distribution generation 
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(DG) in EDS becomes inevitable, which can lead to 
improvement of the performance, power quality, stability 
and reliability [2]. Also, the concept of DG can contribute 
to increase in the usage of renewable energy (RE) such as 
photovoltaic (PV) and wind turbine (WT) sources by which 
greenhouse gas (GHG) emission can be minimized in 
power system operation. From the definitions, DG sizes 
can vary from 1 kW to 5 MW and are suitable for integra-
tion even at small consumer sites. This may contribute to 
avoid investments in construction of new larger genera-
tion plants and transmission lines. Integration of DG units 
at appropriate locations and their capacities is a complex 
non-convex optimization problem with multiple-objec-
tives and has been addressed exhaustively using various 
conventional (non-heuristic) and heuristic search algo-
rithms (HSAs) [3–5]. However, in view of complexity and 
computational time, HSAs have become more popular 
than conventional approaches and also have been identi-
fied for many engineering optimization problems. HSAs 
are simple to understand, easy to implement with no need 
of any derivations and require only a few parameters as 
inputs (like search space dimension, variable limits and 
maximum number of iterations) without modifications in 
their basic structure. In [6], different operators of evolu-
tionary algorithms (EA) are adopted to form the hybrid 
grey wolf optimizer (HGWO) and applied to solve the 
OADG problem for loss minimization. The case studies are 
performed on IEEE 33-, 69- and Indian 85-bus practical 
systems for finding the optimal location and sizes of dif-
ferent types of DG technologies. In [7], by merging another 
local search algorithm, an enhanced genetic algorithm 
(EGA) is proposed for solving simultaneous allocation of 
DGs and capacitors for loss minimization. The simulations 
are performed on IEEE 33-, 69-, and 119-bus test distribu-
tion networks by constraining DG capacity to 50% of total 
load and 100% reactive power compensation via capaci-
tors. In [8], weight improved particle swarm optimization 
algorithm (WIPSO) and self adaptive differential evolution 
algorithm (SADE) are proposed along with distributed 
generation sitting index (DGSI) ranking method towards 
loss minimization via simultaneous allocation of DGs and 
capacitors. In [9], whale optimization algorithm (WOA) is 
proposed for optimal allocation of different kinds of single 
DG unit radial distribution system. The search space for 
WOA is reduced using power loss index (PLI) and DG size 
is optimized for loss minimization by considering a speci-
fied range of DG size. In [10], real power loss indices are 
used to limit the search space of location of DGs and 
techno-economic aspects are optimized in distribution 
system operation using shuffled frog leaping algorithm 
(SFLA). In [11], multi-objective whale optimization algo-
rithm (MOWOA) and analytical hierarchy process (AHP) is 
proposed for solving multi-objective optimization 

problem formulated for renewable DG allocation in multi-
type consumers connected distribution system towards 
minimizing the real power loss index, voltage stability 
index and cost benefits. In [12], the elitism phase of ant 
lion optimization (ALO) is updated using PSO, and fuzzy 
logic controller (FLC) is proposed to minimize the error 
criterion. The hybrid approach is used to find optimal rat-
ing and location of renewable DGs in IEEE 33-bus system 
for minimizing loss, operating cost, voltage deviation and 
inverse of voltage stability index. In [13], ant lion optimiza-
tion (ALO) is proposed for optimal allocation of different 
kinds of single DG unit radial distribution system. The 
search space for WOA is reduced using index vector 
method (IVM). In [14], gbest-guided artificial bee colony 
(GABC) along with index vector method (IVM) and power 
loss index (PLI) methods are proposed for multi-objective 
optimization problem of DGs integration in IEEE 33- and 
85-bus systems. Whale optimization algorithm (WOA) is 
proposed for integrating DGs considering multi-objectives 
and simulations performed on IEEE 33-bus and 69-bus sys-
tems [15]. In [16], loss sensitivity factors (LSF) and normal-
ized voltage profile are used to predefine candidate loca-
tions for DGs integration. Later, dragonfly algorithm (DA) 
is implemented to determine optimal location and size of 
single DG considering loss minimization as the major 
objective. In [17], bat algorithm (BA) is proposed for inte-
grating solar PV type DG towards loss minimization. A pre-
defined size of PV array is taken as the control variable and 
optimized for a number of arrays. In [18], a hybrid 
approach is proposed using weight improved PSO (WIPSO) 
and gravitational search algorithm (GSA) called hybrid 
WIPSO-GSA for techno-economic benefits in terms of 
minimum total cost, voltage stability and maximum load-
ability with DGs in IEEE 33- and 85-bus systems. In [19], 
LSFs based potential locations are ranked for DG and 
capacitors integration, and later their optimal locations 
and sizes are determined by applying moth–flame optimi-
zation (MFO) for reducing the loss-voltage-cost index 
(LVCI). In [20], a multi-objective function using loss, voltage 
deviation and voltage stability index is formulated for 
renewable DGs allocation. The locations are prioritized 
using LSFs and later ALO is applied for deducing best loca-
tions and sizes. In [21], a hybrid approach using grasshop-
per optimization and cuckoo search (GOA-CSA) is pro-
posed for solving optimal allocation of DGs considering 
real power loss, voltage deviation and real and reactive 
power cost of DGs, in which the sizes of DGs are con-
strained by specific limits. In [22], hybrid harmony search 
algorithm (HSA) and particle artificial bee colony algo-
rithm (PABC) HSA–PABC is proposed for integrating DGs 
optimally in the network. The search space for locations is 
determined using LSI and optimized for minimum real 
power loss. Also, the impact of DGs is evaluated using 
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voltage deviation (VDI) and voltage stability index (VSI). In 
[23], fixed sizes of PV, WT and capacitors are chosen and 
their optimal number along with a single biomass DG loca-
tion and sizes are optimized using multi-objective PSO 
(MOPSO) considering loss, voltage stability and voltage 
deviation. Later, FLC is used as a trade-off solution set. The 
simulations are performed considering different load pro-
files w.r.t weather seasons and corresponding DG output 
power variation, losses and voltage profiles are analyzed. 
In [24], Symbiotic Organisms Search (SOS) algorithm is 
proposed for reducing the energy losses w.r.t seasons by 
installing renewable DGs. The technical and economic 
benefits are compared with other HSAs namely GA, PSO 
and firefly algorithm (FFA). In [25], based on technical and 
economical indexes, an analytic hierarchy process (AHP) is 
proposed for determining the weighting factors for multi-
objectives. The predefined search space for DG locations 
is determined using a combined sensitivity index, formed 
with apparent load power and voltage deviation. Further, 
the DGs are allocated under different loading levels using 
PSO. Similarly, spring search algorithm (SSA) [26] and 
water cycle algorithm (WCA) [27] are proposed for simul-
taneous allocation of renewable DGs and capacitors con-
sidering the techno-economic multi-objective function.

On the other side, network reconfiguration (NR) is 
another promising approach for obtaining smooth load 
profiles across all sections in the network, avoiding faulty 
sections and consequently improving the resilience in distri-
bution system operation and control. Apart from technical 
benefits, optimal network reconfiguration (ONR) approach 
has also some disadvantages from a practical perspective. 
It needs to equip mechanical switches for every branch and 
infrastructure for automatic control. Also, ONR needs high 
investment cost and regular maintenance for mechanical 
switches, which may not be feasible practically for all EDSs. 
However, many researchers have analyzed the impact of 
simultaneous OADG and optimal network reconfiguration 
(ONR) considering technical aspects [28]. In [29], harmony 
search (HS) and teaching–learning-based optimization 
(TLBO) are hybridized for forming comprehensive teaching 
learning harmony search optimization algorithm (CTLHSO) 
and applied to solve simultaneous DGs and reconfiguration 
problem for minimizing the loss and voltage deviation from 
reference bus considering different loading levels. In [30], 
improved sin-cosine algorithm (SCA) with levy flights is 
proposed and optimized for multi-objective function with 
loss and voltage stability index via determining the optimal 
branches to open and tie-lines to close, for forming optimal 
reconfiguration and location and sizes of DGs. In [31], a new 
thief and police algorithm (TPA) is proposed and applied for 
solving the renewable DGs and capacitor allocation along 
with the reconfiguration problem considering loss, voltage 
stability and operational cost. In [32], three different HSAs 

namely integrated PSO (IPSO), TLBO and Jaya optimiza-
tion enhance the voltage stability and minimize the real 
power loss in distribution system operation via simultane-
ous optimal allocation of DGs and reconfiguration. In [33], 
TLBO is proposed for solving the OADG problem consider-
ing techno-economic objectives. In [34], an improved Elit-
ist–Jaya (IEJAYA) algorithm is proposed for minimizing the 
real power losses and loadability enhancement via joint 
optimal location and rating of DGs and reconfiguration of 
distribution system. In [35], Salp Swarm Algorithm (SSA) is 
implemented for minimizing the losses and voltage devia-
tion in solving the simultaneous OADG and ONR problem 
together in the distribution system.

At this stage, it is worthwhile to realize the following chal-
lenges in the OADG problem. Location and sizes of DGs are 
the main control variables in the search space. In most of the 
works, the DG sizes are constrained by a capacity limit [7–9, 
11–13, 15, 22–24, 26] and locations are limited for predefined 
candidate buses using different sensitivity indices [8, 10, 14, 
16–19] and randomly selected [18]. In some other works, 
the DG sizes are unconstrained (but the sum of their total 
capacities should not be more than total system demand), 
and all buses in the network are considered as search space 
for locations [6, 12, 19–21]. On the other hand, identification 
of appropriate branches for opening and tie-lines for closing 
is additional search space in simultaneous OADG and ONR 
problem. In comparison, the first type of works may seem 
to be efficient w.r.t. convergence time by having limited 
search space, whereas, the second type of works can result in 
global optima (w.r.t. high utilization of renewable DG power 
in distribution systems and large search space), by which the 
efficiency and redundancy characteristics of a HSA can be 
evaluated and compared comprehensively.

Notably, OADG and/or ONR may not be of ensuring 
maximum utilization of RE based DGs and lead to cur-
tailment due to various operational constraints. In order 
to improve resilience and reduce RE curtailment rate in 
operation and control of EDS, integration of RE to multiple 
feeders/laterals is essential, which has not been paid much 
attention to in the literature. Interline-Photovoltaic (I-PV) 
concept [36] and soft open points (SOPs) [37] are some of 
such approaches, by which it is possible to maximize utili-
zation of RE among different feeders/locations and ensure 
resilience in operation and control.

On the other side, there is no single specific algorithm 
which can solve all types of optimization problems as 
proved in the no-free-launch theorem [38]. Hence, the 
researchers are still aspiring to introduce new heuris-
tic algorithms and also improvements to the existing 
algorithms for solving different kinds of optimization 
problems. In this paper, the effectiveness of a new meta-
heuristic optimization algorithm, namely Pathfinder 
Algorithm (PFA) [39] is proposed for solving the OADG 
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problem and compared with the unconstrained search 
space for location and sizes of DGs. The main advantage 
of PFA is that it needed only two variables (i.e., population 
and the number of iterations) as controlling parameters 
and was easy to implement. Later, optimal I-PV configu-
ration for addressing the need of interoperability of DGs 
among multi-laterals is proposed using the proposed PFA. 
As per this authors’ knowledge, this work is the first kind 
of application for PFA in solving the simultaneous OADG 
and I-PV problem and can claim as a main contribution 
in this research area. Considering loss minimization, the 
maximum possible penetration levels of solar PV type DG 
are determined without compromising in technical as well 
as radiality constraints of the distribution network. In [39], 
the application of PFA for solving optimal allocation of RE 
sources in IEEE 30-bus power system is presented by con-
sidering multi-objectives OPF framework and proves its 
superiority over other existing solutions like ABC, Fuzzy-
PSO, N-R and Fuzzy-GA. But, the effectiveness of the pro-
posed PFA is still needed to examine the optimization 
problems with continuous and discrete variables simulta-
neously and this research work is one such attempt.

The rest of the paper is organized as follows. Section 2 
explains the concept of interline-photovoltaic (I-PV) system 
and its mathematical modeling. Section 3 describes the 
problem statement, objective function and its equal and 
unequal constraints. Section 4 presents a brief review of 
major stages involved in the Pathfinder Algorithm (PFA) and 
its mathematical formulations. Also it covers the overall pro-
cedure applied for solving the DG allocation problem using 
PFA. Section 5 explains the effectiveness of PFA in solving 
optimal I-PV configuration in IEEE 33- and 69-bus systems, 

and Sect. 6 concludes the paper with major contributions 
and research findings by the proposed methodology.

2 � Proposed interline photovoltaic system

Based on the meteorological conditions, some locations 
are suitable for installing a specific type of RE units having 
a large scale capacity. But the high penetrations levels of 
RE at a single location can cause degradation of the feeder 
performance considerably. In order to avoid this problem, 
the Interline–Photovoltaic (I–PV) concept is highly adapt-
able to inject the total yielded PV power at multiple points 
into the network and consequently for power flow control 
and management between two adjacent feeders. As intro-
duced in [36], the I-PV system consists of a common PV 
source for the different Voltage Source Converters (VSC) 
which are used to inject PV output power into the AC grid 
via shunt coupling transformers (Tsh). In this work, the con-
figuration of basic I-PV system is modified for easy adoption 
in the conventional load flow studies as shown in Fig. 1.

Under steady-state operating conditions, the I-PV system 
can be assumed as P + type DG, which is connected to the 
main feeder AC bus p. This common bus is interconnected to 
various lateral feeders via tap-changers (Tsh) and a distribution 
line having an impedance of Z. The real and reactive power 
injections of the I-PV system at different buses on lateral feed-
ers can be regulated optimally by setting the tap-ratios.

The branch admittance between main feeder bus-p and 
lateral bus-q is modeled in π-model, as given in Fig. 2.

The current at bus-p, and defined positive in the direc-
tion p → q is given by,

Fig. 1   Schematic diagram of the proposed I-PV system
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where Ip is the current drawn at bus-p through intercon-
nection between bus-p and bus-q, Ep and Vq are the voltage 
magnitudes at bus-p and bus-q respectively, �p and �q are 
the load angles at bus-p and bus-q respectively, ypq and 
�pq admittance and its angle of branch between bus-p and 
bus-q respectively, at ratio of tap-changer in series with the 
branch connected between bus-p and bus-q.

The complex power Spq , extracted at bus-p is through 
branch p → q is given by,

The real power and reactive powers supplied by the 
I-PV system can be determined by adding power extrac-
tions through all branches connected from main feeder 
bus-p to lateral feeders and are given by,
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where PI−PV and QI−PV are the real and reactive power sup-
plied by the I-PV system respectively, nl is the number of 
braches connected with lateral feeders from PV bus, and 
k(pq) is the branch index connected between bus-p and 
bus-q.

And subsequently, the MVA rating and operating power 
factor of VSC of the I-PV system are given by,

In conventional NR load flow studies, the selected bus-p 
on main feeder for integrating a solar PV system is con-
verted as generator bus i.e., PV bus. The real power genera-
tion ( PI−PV ), its voltage magnitude ( ||

|

Ep
|

|

|

 ) and ratios of tap-

changers ( at ) are considered as control variables in 
optimization problem.

3 � Problem formulation

In this paper, the location/bus and power injection by SPV 
system and locations on lateral feeders to form I-PV configu-
ration are the main control variables. The impact of the I-PV 
system on the performance of RDS is evaluated in terms of 
real power loss, voltage profile and voltage stability.
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Fig. 2   Equivalent circuit of a 
branch between main feeder 
bus-p and lateral bus-q 
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3.1 � Objective function

Loss minimization in RDS is an important operational 
requirement for improving the utilization of DG’s power 
or reducing grid-dependency. The total real power loss in 
a distribution system is given by,

Also, operating the distribution system at a proper volt-
age profile and consequently adequate voltage stability 
margin is another essential requirement for having quality 
and reliability supply.

3.2 � Operational constraints

The following constraints are considered in solving the 
proposed objective function.

•	 Bus voltage constraint: The voltage magnitude of each 
bus should be maintained within specified limits,

	 
•	 Thermal constraint: The current flow through any 

branch should not be more than its maximum rated 
limit,

	 
•	 I-PV active power compensation constraint: The total 

real power generation via DG in the network should not 
be more than total real power demand of the system,

	 
•	 I-PV reactive power compensation constraint: The total 

reactive power generation via WTs or capacitors in the 
network should not be more than total reactive power 
demand of the system,

	 
•	 I-PV bus voltage constraint: The reactive power genera-

tion via VSC of I-PV system can be controlled by regulat-
ing the bus-p voltage within specified limits.

	 
•	 Tap-ratio constraint: The ratios of tap-changers associ-

ated with different interconnections between I-PV bus 
and lateral buses are constrained by,
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•	 Radiality constraint: The number of branches and 

their interconnections in a radial distribution network 
should not create loops, and is considered as,

	 
where Ploss is the total real power loss in the feeder dis-
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are the active and reactive power injections by I-PV sys-
tem respectively; Pload(T ) and Qload(T ) are the active and 
reactive power loading on the network respectively.

3.3 � Average voltage deviation index

The impact of optimal I-PV system configuration on net-
work voltage profile is determined using average volt-
age deviation index (AVDI) w.r.t. substation voltage and 
defined mathematically as,

3.4 � Voltage stability analysis

For maintaining secured and reliable operation, assess-
ment voltage stability is very important. In this paper, the 
voltage stability index (VSI) proposed in [40] is adopted 
and determined to identify the closeness of the distribu-
tion system to voltage collapse. Mathematically, VSI is 
defined as,

For stable operation, the VSI of a load bus should be more 
than zero and the lowest value among all buses is treated 
as system voltage stability index.

In addition to the reduced real power loss, the impact 
of proposed I-PV configuration on the distribution sys-
tem can be understood more clearly by observing AVDI 
and VSI values. The reduced AVDI and increased VSI can 
indicate improved voltage profile across the network and 
enhanced voltage stability margin.
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4 � Pathfinder algorithm

In nature, some groups of animals often migrate to differ-
ent locations as per the seasons by following social hier-
archy amongst them. Foraging, exploiting and hunting 
behaviors of a group of animals are the major motivational 
factors in developing the Pathfinder Algorithm (PFA) [39]. 
Also, playing a lead role in a swarm for successful hunt-
ing and consequently influencing the other individuals to 
follow it, are the features of the computational process of 
PFA. The proposed PFA saves the best position achieved 
so far as the position of pathfinder and it never gets lost. 
The pathfinder is skilled to explore and exploit the hunt 
or food source. Different individuals follow the pathfinder 
and collaborate with their neighbor, so they can explore 
and exploit the objective in search space. The controlling 
parameters can keep the PFA from the possibility of local 
optima. Hence, PFA can be solved optimization prob-
lems effectively. In this section, the mathematical model 
involved for initialization, iteration and stopping phases 
of PFA are covered.

4.1 � Mathematical model of PFA

In an n-dimensional search space, an individual animal 
from a swarm equal to the number of search variables is 
located in a best hunting area for a prey in a time is treated 
as leader and named as pathfinder. This stage is similar to 
finding the initial best fitness value among all solutions 
obtained using the initial population at the initialization 
stage of any HSA. The initial population is generated using 
Eq. (18), in which xi(0) is position vector of individual animal 
i at initial stage, d is the dimension of search space, Lb and 
Ub are the lower and upper boundaries of the variables in 
the optimization problem.

Now the behavior of all other followers w.r.t change in 
their position and time is modeled as given in Eq. (19).

where t  is time, xi(0) and xi(k) is the position vector of indi-
vidual animals i  at initial stage and at iteration k respec-
tively; the a⃗ is the unit vector of zero angle, fij is the inter-
action between a pair of neighbors i  and j ; fp is the global 
best so far or pathfinder fitness; and �v is the vibration 
vector.

Simultaneously the position pathfinder is updated by 
using Eq. (20).

(18)xi(0)(t) = Lb +
(

Ub − Lb
)

⋅ ∗ rand(1, d)

(19)xi(k)(t + Δt) = xi(0)(t) ⋅ a⃗ + fij + fp + 𝜈v

(20)xp(k)(t + Δt) = xp(0)(t) + ΔxP + �f

xp(0) and xp(k) is position vector of pathfinder p at initial 
stage and at iteration k respectively; ΔxP is position change 
by pathfinder and �f  is vector of fluctuation rate.

By modifying Eqs. (19) and (20) to Eqs. (21) and (22) for 
solving an optimization problem, the following equations 
are proposed for collective movement of swam.

where r1 , r2 and r3 are uniformly distributed random num-
bers in [0, 1]; u1 and u2 are the random vectors in the range 
of [− 1, 1]; � is the interaction coefficient for defining the 
magnitude of interaction with a neighbor, � is the attrac-
tion coefficient for setting the random distance for an 
individual with group, preferably with pathfinder, kmax is 
maximum number of iteration. The range of � and � is [1, 
2]. In specific, �v and �f  are generated in each iteration for 
random walk in multi-dimension for each animal in the 
group. The more understanding on swam movements 
w.r.t. changes of �,� , u1 and u2 in PFA is illustrated in [34].

4.2 � Implementation procedure of PFA for solving 
optimal I‑PV configuration

The solution methodology of PFA for solving the optimal 
I-PV configuration considering resilience and radiality con-
straints is followed in the following sequential steps.

4.2.1 � Initialization of animal swarm

In the PFA, a population of animal swarm is represented by 
X =

[

x1, x2,… , xd
]T

 , where xi , i ∈ {1, 2,… , d} represents a 
possible solution vector and it is consider in optimal I-PV 
configuration problem as follows:

where lPV ,i , PPV ,i , lIPV ,i and obr,i , respectively, represent the 
locations for PV system on main feeder, the size of PV sys-
tem,, the locations on lateral feeders for interconnection 
and the branches for opening towards radiality constraint. 

(21)

xi(k + 1) = xi(k) + �r
1
⋅

[

xj(k) − xi(k)
]

+ �r
2

⋅

[

xp(k) − xi(k)
]

+ �v , i ≥ 2

(22)xp(k + 1) = xp(k) + 2r3 ⋅
[

xp(k) − xp(k − 1)
]

+ �f

(23)

�v =

(

1 −
k

kmax

)

⋅ u1 ⋅ Dij , Dij =
‖

‖

‖

xi − xj
‖

‖

‖

and �f = u2 ⋅ e

(

−2k

kmax

)

(24)

xi =
[

lPV ,1, lPV ,2,… , lPV ,nPV , PPV ,1, PPV ,2,

… , PPV ,nPV , lIPV ,1, lIPV ,2,

… , lIPV ,nIPV , obr,1, obr,2,… , obr,nIPV

]
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nPV and nIPV , respectively, the number of PV locations on 
main feeder and the number of buses on lateral feeders for 
I-PV configuration. In this paper, nPV is fixed and it is 1 and 
whereas nIPV is chosen differently in different case studies.

In the PFA, the animal swarm initiates randomly within 
specified lower and upper bounds and thus the possible 
solution variables are generated as follows:

Here the continuous variables for locations (i.e., lPV ,i and 
lIPV ,i ) and branch numbers (i.e., obr,i ) are rounded for dis-
crete variables as observed in Eqs. (25)–(27) and used in 
the moving functions.

4.2.2 � Cost function

In the PFA, the randomly generated positions of each ani-
mal are evaluated by a cost function as defined in Eq. (29).

where kv and ki are penalty factors for maintaining bus 
voltage magnitudes, ||

|

V
(i)
|

|

|

 and branch currents, ||
|

I
(i)
|

|

|

 within 

specified limits as given in Eqs. (9) and (10), respectively.
In each iteration, the solution vector generated by the 

PFA can change the values of bus voltage magnitudes and 
branch currents and subsequently the cost function evalu-
ates by adjusting dependent variable to its violated limit 
as given by general way in Eq. (30).

The complete solution methodology of PFA for obtaining 
the optimal I-PV configuration considering radiality con-
straint for improving resilience is given as a flowchart in 
Fig. 3.

(25)lPV ,i = round
[

l
PV ,min +

(

lPV ,max − l
PV ,min

)

⋅ ∗ rand
(

1, nPV
)]

i ∈
{

1, 2,… , nPV
}

(26)lIPV ,i = round
[

l
IPV ,min +

(

lIPV ,max − l
IPV ,min

)

⋅ ∗ rand
(

1, nIPV
)]

i ∈
{

1, 2,… , nIPV
}

(27)Obr,i = round
[

o
br,min +

(

obr,max − o
br,min

)

⋅ ∗ rand
(

1, nIPV
)]

i ∈
{

1, 2,… , nIPV
}

(28)PPV ,i =
[

P
PV ,min +

(

PPV ,max − P
PV ,min

)

⋅ ∗ rand
(

1, nPV
)]

i ∈
{

1, 2,… , nPV
}

(29)

CFT = OF + kv

nb
∑

i=1

(

|

|

|

V
(lim)

|

|

|

−
|

|

|

V
(i)
|

|

|

)2

+ ki

nbr
∑

i=1

(

|

|

|

I
(lim)

|

|

|

−
|

|

|

I
(i)
|

|

|

)2

(30)vlim =

⎧

⎪

⎨

⎪

⎩

vmax ∀

�

v > vmax

�

vmin ∀

�

v < vmin

�

v ∀

�

vmin ≤ v ≤ vmax

�

5 � Results and discussion

The proposed methodology is applied on IEEE 33-bus 
[41] and IEEE 69-bus systems [42]. The simulations are 
performed for three different scenarios: (1) optimal loca-
tion and sizing of PV system, (2) optimal I-PV configuration 
with radiality constraint, and (3) optimal I-PV configura-

tion without radiality constraint. The voltage profile and 
losses of the distribution system is determined using NR 
load flow method from MATPOWER toolbox [43]. The avail-
able MATLAB programs for PFA [44] are modified to evalu-
ate the proposed methodology and executed in a PC with 
specification of 4.00 GB, 64-bit OS and Intel® Core™ i5-5200 
CPU @ 2.30 GHz processor. The maximum number of itera-
tions and also number of population are taken as 50.

5.1 � IEEE 33‑bus system

The single line diagram of IEEE 33-bus system is given in 
Fig. 4. In this system, it is assumed that the buses 1–18 
as main feeder and buses 19–22, buses 23–25 and buses 
26–33 as lateral feeders. From the data given in [41], the 
system is serving a load of (3715 kW + j 2300 kVAr) and 
suffering with total distribution losses of (210.9983 kW + j 
143.0329 kVAr) respectively. Also, the system has poor volt-
age profile (i.e., < 0.95 p.u.) at some locations and the low-
est voltage magnitude 0.9038 p.u is registered at 18th bus. 
The results of this base configuration are treated as Case-1.

5.1.1 � Scenario‑1: optimal location and sizing of PV system

Initially, PFA is applied to determine the optimal location 
and sizing of a single PV system considering loss minimi-
zation as objective, since the system has already satisfied 
radiality constraint. In order to simulate this scenario, 
the mathematical modeling explained in Sect. 2 is still 
applicable by neglecting interconnection branches. Also, 
the admittance of all branches are set to be zero, the DG 



Vol.:(0123456789)

SN Applied Sciences (2021) 3:118 | https://doi.org/10.1007/s42452-020-04044-8	 Research Article

Fig. 3   Flowchart of proposed 
PFA for solving optima I-PV 
configuration
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location should be treated as load bus i.e., PQ bus and volt-
age magnitude should be considered as a control variable 
in search space. Considering these assumptions, this sce-
nario is similar to many literature works solved for DG allo-
cation with unity power factor (upf ) in RDSs [16]. Hence, 
the search space for location and size are considered as [2, 

33] and [0, 3715] respectively. The optimized solution by 
PFA is as follows: the best location: 6th bus; best PV size: 
2590 kW; global optima: 111.0299 kW. Under these condi-
tions, the feeder voltage profile is improved considerably 
with lower voltage magnitude 0.9424 p.u at 18th bus. The 
results of this stage are treated as Case-2.

In order to verify the accuracy of the global solution 
provided by PFA, conventional NR load flow is repeated 
for incremental PV power step size as 1 kW up to 3715 kW. 
As it is shown in Fig. 5, the optimal PV size is 2590 kW at 
6th bus and beyond this, again the losses increase. Hence, 
it can be said that the solution given by PFA is exactly a 
global minima.

As given in Table 1, the competitiveness of FPA with 
other HSAs is highlighted. It is observed that PFA is supe-
rior to WIPSO [8], SADE [8], ALO [20] and MFO [19] and 
well in agreement with the results of WOA [15], HGWO [6] 
and DA [16].

Table 2 explores the performance characteristics of pro-
posed PFA and other heuristic algorithms namely particle 
swarm optimization (PSO) [45], teaching–learning based 
optimization (TLBO) [46], cuckoo search algorithm (CSA) 
[47], and grasshopper optimization algorithm (GOA) [48]. 
These techniques are implemented for solving Case-1. 
The results are highlighting the PFA superiority over other 

Fig. 4   Single line diagram of standard IEEE 33-bus RDS
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Fig. 5   Impact of PV penetration at 6th bus on real power loss and 
optimal size

Table 1   Comparison of FPA 
with literature in IEEE 33-bus 
system

Method PV (kW) and bus Ploss (kW) Qloss (kVAr) Vmin (p.u.) and bus AVDI VSI and bus

Base – 210.9983 143.0329 0.9038 (18) 0.0547 0.6486 (16)
WIPSO [8] 1600 (30) 125.267 89.590 0.9280 (18) 0.0328 0.7222 (16)
SADE [8] 1600 (30) 125.267 89.590 0.9280 (18) 0.0328 0.7222 (16)
ALO [20] 2450 (6) 111.302 81.702 0.9404 (18) 0.0294 0.7619 (16)
MFO [19] 2560 (6) 111.042 81.658 0.9419 (18) 0.0283 0.7670 (16)
WOA [15] 2589.6 (6) 111.030 81.683 0.9424 (18) 0.0280 0.7684 (16)
HGWO [6] 2590 (6) 111.030 81.684 0.9424 (18) 0.0280 0.7684 (16)
DA [16] 2590.2 (6) 111.030 81.684 0.9424 (18) 0.0280 0.7684 (16)
Proposed 2590.264 (6) 111.030 81.684 0.9424 (18) 0.0280 0.7684 (16)
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HSAs with lowest objective function value. In addition the 
best, mean and standard deviation (SD) values of PFA are 
also less than other HSAs considerably. The lowest best 
value (111.0299) indicates PFA as a global optimization 
algorithm, lowest mean value (111.2841) indicates its 
precision and lowest SD (0.0267) indicates its capability 
in avoiding local minima than other algorithms. As seen 
in the same table, the average computational time for 50 
times independent trail runs is also less than other HSAs. 

At this stage, it can be concluded that the PFA is faster than 
other HSAs by 25.342 s. The convergence characteristics of 
PFA and other HSAs are given in Fig. 6.

5.1.2 � Scenario‑2: optimal I‑PV configuration with radiality 
constraint

In order to form I-PV configuration, it is required to deter-
mine at least one bus on any lateral feeder for intercon-
necting the existing PV system on the main feeder. In this 
case, PFA needs to identify simultaneously for best loca-
tion and size of PV system in the entire search space (i.e., [2, 
33]) as well as for forming I-PV configuration with 3 laterals. 
It also needs to identify 3 interconnecting points among 
15 buses (i.e., from bus-19 to bus-33) and 3 branches for 
opening among 22. Different case studies are performed. 
As given in Table 3, Case-3 is for 1 optimal lateral feeder, 
Case-4 is for 2 optimal lateral feeders, Case 5 is for 3 opti-
mal feeders. In each case, the optimal size of PV system 
at 6th bus, the optimal interconnecting points on lateral 
feeders, optimally opened branches for radiality and cor-
respondingly losses and lowest voltage profile are given in 
the same Table 3. Here, the results obtained for Case 5 are 
explained. Optimal PV location: 6th bus; PV size: 3356 kW; 
I-PV integration points on lateral 1 is 19th bus, lateral 2 is 
25th bus and lateral 3 is 30th bus; and branch numbers 
to open: 3 (3–4), 23 (23–24) & 28 (28–29). The overall I-PV 
configuration with 3 laterals is given in Fig. 7. Under these 
conditions, the losses (51.7086 kW + j 54.8051 kVAr) and 
minimum voltage at 18th bus is 0.9469 p.u.

5.1.3 � Scenario‑3: optimal I‑PV configuration 
without radiality constraint

In Case 6, optimal I-PV configuration is determined with 
three laterals without considering radiality constraint. 
The optimized results of PFA are as follows: PV location: 
6th bus; PV size: 3228 kW; I-PV integration points on lat-
eral 1 is 19th bus, lateral 2 is 25th bus and lateral 3 is 30th 
bus. Under these conditions, the losses (46.6756 kW + j 

Table 2   Comparison of PFA performance with other HSAs for 50 
runs

Method Performance measures

Best Mean SD Time (s)

PSO 115.0025 111.7151 0.0295 31.021
TLBO 112.1362 110.8476 0.0291 29.002
CSA 112.1467 110.5194 0.0281 28.923
GOA 111.0302 111.2955 0.0275 25.453
Proposed PFA 111.0299 111.2841 0.0267 25.342

Fig. 6   Convergence characteristics of PFA with other HSAs for 
Case-2 in IEEE 33-bus system

Table 3   Overall summery of all cases in IEEE 33-bus system

Case # Bus numbers for 
I-PV configuration

Branch 
numbers for 
opening

PV (kW) Ploss (kW) Qloss (kVAr) Vmin (p.u.) and bus AVDI VSI and bus Computa-
tion time 
(s)

1 – – – 210.9983 143.0329 0.9038 (18) 0.0547 0.6486 (16) 0.283
2 6 – 2590 111.0299 81.6838 0.9424 (18) 0.0280 0.7684 (16) 0.442
3 6, 19 3 2685 81.2494 69.4196 0.9487 (18) 0.0242 0.7885 (16) 0.515
4 6, 19, 25 3, 23 3405 75.4461 70.5234 0.9469 (18) 0.0247 0.7836 (16) 0.553
5 6, 19, 25, 30 3, 23, 28 3356 51.7086 54.8051 0.9469 (18) 0.0209 0.7835 (16) 0.598
6 6, 19, 25, 30 – 3228 46.6756 44.1169 0.9508 (18) 0.0177 0.7967 (16) 0.601
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44.1169 kVAr) and minimum voltage at 18th bus is 0.9508 
p.u. There is almost 77.87% reduction in loss as compared 
to base case.

The impact of optimal I-PV configuration is evaluated 
in terms of average voltage deviation w.r.t. substation bus 
and voltage stability. The results of AVDI and VSI for each 
case are also given in the Table 3 In comparison, the AVDI 
is reduced as the number of interconnections increases on 
different lateral feeders. This indicates the improved volt-
age profile across the network with the I-PV system. Also, 
the increased VSI indicates the enhanced voltage stability 
margin in the system.

The voltage profile under each case is given in Fig. 8. 
From the figure, it can be observed that the minimum 

voltage limit is satisfied only under Case 6 without main-
taining radiality constraints.

5.2 � IEEE 69‑bus system

The single line diagram of IEEE 69-bus system is given in 
Fig. 9. It has 68 sectionalizing switches. In this system, it is 
assumed that the buses 1–27 as main feeder and 28–35, 
36–46, 47–50, 51–52, 53–65, 66–67 and 68–69 as lateral 
feeders. The total load of the system is (3802.1  kW + j 
2694.7 kVAr) and total loss is (225.0007 kW + j 102.1648 
kVAr). The lowest voltage magnitude 0.9092 p.u. is regis-
tered at 65th bus. The results of this standard system are 
treated as Case-1.

Fig. 7   Optimal I-PV configuration in IEEE 33-bus system with 3 laterals

Fig. 8   Voltage profile of IEEE 33-bus system under various case studies
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5.2.1 � Scenario‑1: optimal location and sizing of PV system

By using the proposed PFA, the location and size of the 
PV type DG is optimized. The search space for location 
is [2, 69] and DG size is [0, 3802 kW] are considered. 
The proposed PFA determines the optimal size of the 
PV system is 1873 kW at bus-61. The best solution of 
loss is (83.224 kW + j 40.536 kVAr). The lowest voltage is 
observed at 0.9683 p.u on the 27th bus. In comparison 
to base case, the total losses are reduced by 63.01%. The 
results of this section are treated as Case-2.

The solution of PFA is compared with various other 
methods as given in Table 4. It has been observed that 
the FPA is better than GOA-CSA [21], ALO [13], SFLA [10] 
and DA [16]. From the comparison, it can be said that the 
PFA is a keen competitor to various HSAs and fine tunes 
the decision variables towards global optima irrespec-
tive of size of search space.

5.2.2 � Scenario‑2: optimal I‑PV configuration with radiality 
constraint

As determined in IEEE 33-bus system, here also, it is 
required to determine at least one point on any lateral 
feeder for interconnecting the PV system. In this case, 
PFA needs to identify simultaneously the best PV location 
and size in the entire search space (i.e., [2, 69]) as well as 
best I-PV buses on lateral feeders. The new branch param-
eters of the I-PV system are chosen as the 68th branch in 
standard IEEE 69-bus system [42]. Different case studies 
are performed. As given in Table 5, Case-3 is for 1 opti-
mal lateral feeder, Case-4 is for 2 optimal lateral feeders, 
Case-5 is for 3 feeders, and Case-6 is for 4 lateral feeders. 
In each case, the optimal size of PV system at 61st bus, the 
optimal integration points on lateral feeders, the optimal 
open branches for radiality and corresponding losses and 
lowest voltage profile is given in the same Table 4. Here, 
the results obtained for Case 6 are explained. Optimal PV 
location: 61st bus; PV size: 3340 kW; I-PV integration points 

Fig. 9   Single line diagram of IEEE 69-bus system

Table 4   Comparison of 
simulation results of PFA 
for single PV type DG with 
literature

Method PV (kW) and bus Ploss (kW) Qloss (kVAr) Vmin (p.u.) and bus AVDI VSI and bus

Base – 225 102.165 0.9092 (65) 0.0266 0.55 (60)
GOA-CSA [21] 1990.712 (6) 203.895 90.502 0.9146 (65) 0.0235 0.5650 (60)
ALO [13] 1872.82 (61) 83.224 40.536 0.9683 (27) 0.0126 0.8583 (60)
SFLA [10] 1872.7 (61) 83.224 40.536 0.9683 (27) 0.0126 0.8583 (60)
DA [16] 1872.7 (61) 83.224 40.536 0.9683 (27) 0.0126 0.8583 (60)
Proposed 1872.7 (61) 83.224 40.536 0.9683 (27) 0.0126 0.8583 (60)
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on laterals are buses 2, 17, 11, 50 and the open branches: 
52 (9–53), 11 (11–12), 8 (8–9) and 48 (48–49). Under these 
conditions, the losses (3.747 kW + j 1.875 kVAr) and mini-
mum voltage at 69th bus is 0.9934 p.u. In comparison 
to the base case, the losses are reduced significantly by 
98.33%, by which the network becomes almost independ-
ent from the grid. The single line diagram of 69-bus system 
with I-PV configuration using 4 lateral feeders is given in 
Fig. 10.

Here also, the impact of optimal I-PV configuration is 
evaluated in terms of average voltage deviation w.r.t. sub-
station bus and voltage stability. The results of AVDI and 
VSI for each case are also given in Table 5. In comparison, 
the AVDI is reduced as the number of interconnecting 
points increases on different lateral feeders. This indicates 

the improved voltage profile across the network with the 
I-PV system. Also, the increased VSI indicates the enhanced 
voltage stability margin.

5.2.3 � Scenario‑3: optimal I‑PV configuration 
without radiality constraint

The results of optimal I-PV configuration without radi-
ality constraint are also given in Table 5. The optimized 
results of PFA are as follows: PV location: 61st bus; PV size: 
3314 kW; I-PV integration points on laterals are the same as 
in Case-7. Under these conditions, the losses (2.2159 kW + j 
1.3208 kVAr) and minimum voltage at 69th bus is 0.9971 
p.u. The voltage profile under each case is given in Fig. 11. 
It can be observed that the voltage profile is almost flat 

Table 5   Optimal I-PV configuration results in IEEE 69-bus

Case # Bus numbers for 
I-PV configuration

Branch 
numbers for 
opening

PV (kW) Ploss (kW) Qloss (kVAr) Vmin (p.u.) and bus AVDI VSI and bus Computa-
tion time 
(s)

1 – – 225 102.165 0.9092 (65) 0.0266 0.5500(60) 0.321
2 61 – 1872.7 83.224 40.536 0.9683 (27) 0.0126 0.8583(60) 0.535
3 61, 2 52 1924 23.814 14.907 0.9716 (27) 0.0085 0.8851(20) 0.572
4 61, 2, 17 52, 11 2429 7.406 8.111 0.9934 (69) 0.0018 0.9067(48) 0.593
5 61, 2, 17, 11 52, 11, 8 2645 5.914 7.371 0.9934 (69) 0.0014 0.9068(48) 0.625
6 61, 2, 17, 11, 50 52, 11, 8, 48 3340 3.747 1.875 0.9934 (69) 0.0012 0.9480(63) 0.659
7 61, 2, 17, 11, 50 – 3314 2.2159 1.3208 0.9971 (69) 0.0008 0.9110(48) 0.691

Fig. 10   Optimal I-PV configuration in 69-bus system with 4 lateral feeders
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throughout the feeder in Case-5 to Case-7 respectively. 
At this stage, it can be said that with more I-PV intercon-
nections with lateral networks, the system performance 
can improve significantly in terms of reduced losses and 
increased voltage profile.

The impact of optimal I-PV configuration is evaluated 
in terms of average voltage deviation w.r.t. substation 
bus and voltage stability. The results of AVDI and VSI for 
each case are also given in Table 5. In comparison, the 
AVDI is reduced as the number of interconnecting points 
increases on different lateral feeders. This indicates the 
improved voltage profile across the network with the I-PV 
system. Also, the increased VSI indicates the enhanced 
voltage stability margin.

6 � Conclusion

In this paper, a new meta-heuristic Pathfinder Algorithm 
(PFA) is implemented for solving the simultaneous OADG 
problem and optimal I-PV configuration in RDSs. At first, 
the performance of the proposed PFA is evaluated first 
for solving OADG problem for loss minimization in IEEE 
33-bus system and compared with PSO, TLBO, CSA and 
GOA by simulating 50 times each. The results are com-
pared by analyzing best, mean, standard deviation of the 
fitness functions obtained in 50 runs and elapsed time. 
The comparison of these performance measures has 
clearly highlighted the superiority of PFA over other algo-
rithms by providing global optima more often. Later, PFA 
is applied to determine optimal configuration of Interline-
Photovoltaic (I-PV) system among multi-lateral feeders for 

improving the performance and resilience in distribution 
system operation and control without compromising the 
various operational and radiality constraints. The simula-
tion results on IEEE 33- and 69-bus systems have shown 
the adaptability of proposed methodology for practical 
applications with reduced loss, improved voltage profile 
and enhanced voltage stability. Since, optimization of DGs’ 
location and sizes considering various operational and 
radiality constraints is a non-linear multi-objective optimi-
zation problem, application of PFA has resulted for global 
optima more often by avoiding the trap of local optima.
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