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Abstract
This study presents an analytical method for the solution of dynamic frictional contact problem between a rigid punch 
and an isotropic elastic solid. Rigid flat punch moves over the isotropic elastic solid at a constant subsonic speed and 
friction force develops based on Dahl’s friction law instead of Coulomb’s dry friction law. Dahl’s dynamic friction model 
is adopted since this model is one of the well-known dynamic friction models in the literature. According to this model, 
friction force depends only on a displacement rather than the speed of the punch since viscous effects are ignored. 
Influences of the parameters describing Dahl’s friction model on contact stress at slow and high speed sliding cases are 
examined. Analytical solution is conducted by means of Galilean and Fourier transformations. Friction force is computed 
numerically by the use of 4th order Runge–Kutta method for various displacements of the punch. Formulation for the 
contact problem is reduced to a singular integral equation and normal stress over the surface of elastic half-plane is 
determined. Obtained contact stresses are compared with those generated through finite element method and results 
display a high degree of accuracy. The influences of direction of motion, Coulomb’s coefficient of friction, pre-sliding 
displacement, asperity stiffness and shape factor of hysteresis loop upon contact stresses and stress intensity factors 
are revealed.

Keywords Contact mechanics · Moving punch · Dahl’s dynamic friction model · Asperity stiffness · Finite element 
analysis

1 Introduction

Contact mechanics of solids have been an attractive 
topic of research for many years since it concerns the 
maintenance of mechanical and structural elements. 
Hence, researchers have focused on contact mechanics 
of mechanical components in order to enhance the reli-
ability and durability of such contacts. Determination 
of surface contact stress indicates critical locations of 
contacts where stresses reach higher levels. Therefore, 
it shed light onto understand the deformation mecha-
nism emerged on the contact surface. Early research on 
contact mechanics date back in 1882 by monographs of 

Hertz [1]. Cerruti [2] and Boussinesq [3] used the potential 
theory to find the stress and displacement in an elastic 
half-space due to surface tractions. Love [4] presented the 
potential theory approach. Muskhelishvili [5] developed 
analytical solutions for frictionless plane contact problems. 
Spence [6, 7] conducted a research on frictional contact 
problems involving flat indenters. Galin [8] examined the 
contact mechanics of isotropic solids. Comninou [9] stud-
ied stress singularities at a sharp edge of the indenter in 
frictional contact problem. Johnson [10] presented some 
benchmark analytical solutions to different kind of contact 
problems. Contact problems can be referred to as rigid-
deformable contacts, deformable-deformable contacts, 
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contacts of advanced materials. Guler and Erdogan [11] 
analyzed contact mechanics of two deformable elastic sol-
ids possessing graded coatings. The interaction between 
two non-linear deformable bodies that collide each other 
was investigated by the use of continuum mechanics for-
mulation [12]. The major aim of the researchers is reducing 
surface contact stresses on machine components so that 
avoiding the surface damage and prolonging the machine 
life. Hence, they have focused on the utilization of new 
kinds of advanced materials or surface coatings as contact-
ing components. It was reported that properly controlled 
material gradients in functionally graded materials (FGMs) 
provides a significant improvement in the resistance to 
contact deformation and damage in tribological applica-
tions [13–15]. Guler and Erdogan [16, 17] examined con-
tact mechanics of FGM coatings bonded to homogenous 
half-planes. Dag et al. [18] studied the contact mechanics 
of laterally graded materials by means of analytical and 
computational approaches. Ke and Wang [19] carried 
out an analytical study to investigate the sliding contact 
mechanics of functionally graded materials with arbitrary 
spatial variations of material properties. Choi [20] deter-
mined the contact stress distributions on the graded 
elastic layer subjected to sliding frictional contact by a flat 
punch. Balci and Dag [21, 22] examined dynamic contact 
mechanics of FGM coating/homogenous substrate system 
under the effect of moving frictional punch.

In all the studies in the foregoing paragraph, Coulomb’s 
friction or so-called Amontons-Coulomb friction model 
was adopted. In Coulomb’s friction model, friction force is 
the function of applied load and direction of the velocity. 
This model was not able to express the pre-sliding and hys-
teresis characteristics of dynamic friction. Literature survey 
showed that there is no previous work related to the con-
tact mechanics of solids under the effect of Dahl’s dynamic 
friction. Friction phenomenon is essential in motion con-
trol, wear, tribology and surface science. Relative sliding 
of the contacting surfaces was accompanied not only by 
friction but also by wear, as is the case in gross sliding 
fretting regime [23, 24]. Argatov and Chai [25] developed 
analytical method for the frictional contact problem of an 
elastic layer considering sliding wear process to find the 
steady state contact geometry for optimal properties. Pác-
zelt et al. [26] conducted a study based on finite element 
method (FEM) to find the steady state optimal profiles of 
monotonically or reciprocally sliding punches under the 
effect of friction and wear. Hence, modelling of friction 
force and the wear are crucial in many application fields 
such as robotics, mechatronics, machine tool design, auto-
motive and aerospace. An experimental comparison study 
was carried out for different friction models on the same 
micro stick–slip motion system [27]. Many of dynamic fric-
tion models have been proposed by Adams [28], Canudas 

De Wit et al. [29], Bliman and Sorine [30], Oden and Martins 
[31] and Dankowicz [32]. According to these studies, while 
friction force in static laws depends on macroscopically 
observed state variables, that in dynamic laws not only 
depends on macroscopically observed state variables 
but also depends on internal state variables consists of 
hidden quantities. Dahl [33] modeled friction as a func-
tion of relative displacement of two contact surfaces. In 
Dahl’s model, friction force depends on micro motions and 
these micro motions are later called as pre-sliding behav-
ior. The main idea behind the Dahl’s friction model is that 
when the applied load is not adequate to exceed static 
friction, the asperities at the contact surface will deform 
which results in a pre-sliding motion. When applied load is 
larger enough, a relative sliding begins between contact-
ing bodies. A text explaining the relationship between the 
Dahl’s model and Coulomb’s dry friction model is found 
in [34]. Dahl’s friction model is capable of modelling both 
pre-sliding and sliding regimes and the hysteresis in a 
continuous manner and this model is a basis for more 
advanced friction models. Dahl’s friction model was uti-
lized in many studies concerning motion control in mech-
anisms, vibration response and friction compensation in 
robotic or control systems. Ganseman et al. [35] described 
a new dynamic friction model based on Canudas de Wit 
[29] and Dahl’s friction model [33] for the control system of 
an industrial robot. Augustynek and Urbas [36] considered 
Dahl, LuGre and elastoplastic friction models while solving 
the mathematical equations of a one-DOF spatial linkage 
including friction. Bastien et al. [37] described the modi-
fied Dahl and Masing models utilized for the prediction 
of the hysteresis behavior of components. The numerical 
and experimental investigations conducted on a belt ten-
sioner for automotive engines showed that the reliabil-
ity of the modified Dahl model. Urbas [38] utilized Dahl’s 
friction model in dynamic analysis of grab cranes. Lam-
paert et al. [39] discussed the compensation of friction in 
pre-sliding regime, and Dahl’s friction model was used as 
one of the most effective feed-forward friction compensa-
tion techniques. Yoon and Trumper [40] studied the influ-
ence of friction on control systems both in the pre-sliding 
and sliding regimes, and Dahl’s resonance identification 
method provided reasonable values for the parameters 
of the friction model. Dahl’s friction model was utilized to 
model friction-reducing performance of an axial oscilla-
tion tool (AOT) [41]. Gutowski and Leus [42] analyzed the 
influence of transverse tangential vibrations on friction 
and driving forces in a sliding motion and Dahl’s dynamic 
friction model was used. Jadav et al. [43] developed an 
analytical friction model based on Dahl’s friction to calcu-
late the drive force required to slide a body over a surface 
that is subjected to coupled longitudinal and transverse 
vibrations.



Vol.:(0123456789)

SN Applied Sciences (2021) 3:92 | https://doi.org/10.1007/s42452-020-03989-0 Research Article

There are many articles in the literature which consider 
static laws of friction while modelling contacts and they 
did not give idea about contact stresses on elastic sol-
ids especially in the pre-sliding regime. However, Dahl’s 
friction model utilized in several fields as mentioned in 
the previous paragraph. Thorough examination of the 
available literature showed that there is no similar work 
pertaining to the contact mechanics analysis of elastic 
bodies under the effect of Dahl’s dynamic friction model. 
Implementation of the Dahl’s friction model to contact 
mechanics enables to figure out contact stresses in both 
pre-sliding and sliding regimes. Friction force depends 
not only on a direction of the motion but also on a pre-
sliding displacement, asperity stiffness, applied normal 
load and hysteresis loop’s shape factor. The formulation 
is derived considering two-dimensional elastodynam-
ics, which provides acceptable solutions for both slow 
and high speed sliding conditions. Contact stresses are 
determined by solving the singular integral equation 
(SIE) of the contact problem with expansion-collocation 
method. Contact stresses obtained by analytical method 
are compared with those generated by means of finite ele-
ment method in slow speed sliding case and a very good 
agreement is achieved. After verification of the analytical 
method, influences of the direction of the motion, pre-slid-
ing displacement, coefficient of friction, asperity stiffness 
and hysteresis loop’s shape factor on contact stresses are 
examined. The analytical formulations for contact mechan-
ics of elastic solids based on using Dahl’s dynamic friction 
model are provided in Sect. 2. In Sect. 3, derivation of the 
singular integral equation (SIE), numerical calculation of 
friction force and solution method of the SIE are explained. 
In Sect. 4, detailed information about the finite element 
model is provided. Section 5 presents some parametric 
results involving comparisons between analytical results 
and those of finite element analysis. Finally, Sect. 6 pro-
vides the major conclusions of this study.

2  Dahl’s dynamic friction model 
and formulation

Contact mechanics problem is depicted in Fig. 1 where 
one of the contacting bodies is modeled as a rigid flat 
punch and other one is considered as an isotropic elas-
tic half-plane. The rigid punch is pressed against elastic 
half-plane by a normal force N. Friction force is developed 
in tangential direction and this friction force is calculated 
through the use of Dahl’s dynamic friction model instead 
of Coulomb’s dry friction law.

The rigid punch moves over the surface at a constant 
subsonic speed V  . Contact region extends from −a to a 
and close up view around the contact region is shown 

in rectangular region enclosed by dashed red line. (x, y) 
shows the axes of the stationary coordinate system while 
(X , Y) indicates those of the moving coordinate system 
which is attached to the center of the moving punch. 
� and � are designated for the shear modulus and the 
Kolosov’s constant of the half-plane material, respec-
tively. Kolosov’s constant for the isotropic material can 
be calculated by,

The friction force developed is calculated by Dahl’s 
friction model [44] which belongs to the earliest dynamic 
friction models; it was designated to simulate a symmet-
rical hysteresis loops observed in bearings subjected to 
sinusoidal excitations with small amplitudes. This model 
was applied in standard models in aerospace industry 
[39]. According to this model, friction force depends on 
displacement rather than velocity and it does not cap-
ture Striebeck effect and stiction behavior [45]. Figure 2 
shows these hysteresis loops of friction force as depicted 
in Ref. [46]. Dankowicz [32] conducted a research on the 
modelling of dynamic friction phenomena based on 
microscopic interactions between nominally flat sur-
faces. In Dankowicz’s study a coupling was introduced 
between the tangential motion and the separation of the 
surface due to the asperity contact between surfaces. 
However, the separation of the surface is not considered 
in the present work. Argatov and Butcher [47] presented 
the generalization of the Dankowicz’s model and authors 
considered the initial interfacial stiffness as the slope of 
the load deflection curve at the origin.

(1)� =

{ 3−�

1+�
, plane stress,

3 − 4�, plane strain.

Fig. 1  Schematics for the contact problem considering Dahl’s 
dynamic friction model
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The friction force proposed by Dahl is obtained by the 
following formula which reads [44]:

which can be converted into following equations for the 
easier numerical implementation:

where F is the friction force [N], z is the internal state varia-
ble interpreted as elastic deformation of surface asperities 
of adjacent bodies [m], V = dx∕dt is the punch speed [m/s], 
x is the body displacement [m], �0 is the asperity stiffness 
[N/m], �D is the shape factor for the hysteresis loop [-] and 
FC is the friction force due to Coulomb’s dry friction [N]. 
Shorter asperities will begin to slide prior to their longer 
counterparts. Consequently, energy losses are inevitable 
even in the absence of macroscopic displacement. This 
is primarily manifested in the hysteresis loop observed 
experimentally in the friction force’s dependence on dis-
placements on the order of few microns [32, 48]. Dahl’s 
friction model is described by dynamic equation system 
that simultaneously model pre-sliding and sliding friction 
regimes in a continuous manner. Dynamic friction mod-
els, as opposed to the static models, allow for recreating 
processes occurring in standstill friction conditions and at 
very small as well as high sliding velocities [44]. In case of 
modelling precisely positioned mechanical systems with 
friction, it is necessary to use dynamic friction models 

(2)
dF

dx
= �0 sign

(
1 − sign(V )

F

FC

) ||||
1 − sign (V )

F

FC

||||

�D

.

(3)F = �0 z,

(4)
dz

dx
= sign

(
1 − sign(V )

�0 z

FC

) ||||
1 − sign(V )

�0 z

FC

||||

�D

,

(5)FC = �C N.

which consider both friction regimes [49–51]. Stress-dis-
placement relations for isotropic medium reads:

Equations of motion in planar theory of elastodynam-
ics reads:

where �M is the mass density of the isotropic elastic mate-
rial. Galilean transformation is introduced. ẋ > 0 or Ẋ > 0 
indicate the motion of punch is towards right direction, 
named as Forward Motion (FM) and ẋ < 0 or Ẋ < 0 show 
the motion is towards left direction, called as Backward 
Motion (BM). Hence, following equations can be writ-
ten between the stationary and moving coordinates as 
follows:

when the sign becomes positive ( +) in Eq. (11), the motion 
of the punch becomes to the right direction whereas if 
the sign turns to be negative (-), motion of the punch is 
towards left direction. Punch speed is normalized utilizing 
the shear wave propagation speed of the elastic solid. The 
shear wave propagation speed in elastic solid is computed 
by,

Then, the normalized punch speed is determined as 
follows:

Stress-displacement relations given by Eqs. (6)-(8) are 
substituted into Eqs. (9)-(10). The time dependency of the 
right hand sides of Eqs. (9)-(10) is eliminated through the 

(6)�xx(x, y) =
�

� − 1

[
(� + 1)

�u

�x
+ (3 − �)

�v

�y

]
,

(7)�yy(x, y) =
�

� − 1

[
(3 − �)

�u

�x
+ (� + 1)

�v

�y

]
,

(8)�xy(x, y) = �

[
�u

�y
+

�v

�x

]
.

(9)
��xx(x, y)

�x
+

��xy(x, y)

�y
= �M

�2u

�t2
,

(10)
��xy(x, y)

�x
+

��yy(x, y)

�y
= �M

�2v

�t2
.

(11)x = X ± Vt,

(12)y = Y .

(13)cs =

√
�

�M
.

(14)c =
V

cs
.

Fig. 2  Hysteresis loop of friction force as a function of displace-
ment for Dahl’s model
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utilization of Galilean Transformation and Eqs. (13)-(14). 
After some mathematical manipulations, the following 
partial differential equation system is obtained.

Equations (15)–(16) are solved analytically by Fourier 
transformation technique. Applying Fourier transform in 
X- direction, the following solutions are obtained for the 
displacement components in the homogenous elastic 
medium.

where

and � is the Fourier transform variable. The following func-
tion is useful to join the vertical and horizontal displace-
ment fields in the isotropic elastic medium:

Displacements given by Eqs. (17)-(18) involve four 
unknowns as M1,… ,M4. These unknowns are determined 
by the use of following boundary conditions:

where �(X ) is the shear stress beneath the flat punch. 
The regularity boundary condition requires that displace-
ment components u and v should vanish at very further 
points in the medium. Since we adopted Dahl’s dynamic 
friction model, shear stress becomes:

(15)
[
� + 1

� − 1
− c2

]
�2u

�X2
+

2

� − 1

�2v

�X�Y
+

�2u

�Y2
= 0,

(16)
(
1 − c2

) �2v
�X2

+
2

� − 1

�2u

�X�Y
+
[
� + 1

� − 1

]
�2v

�Y2
= 0.

(17)

u(X , Y) =
1

2𝜋

∞

∫
−∞

4∑

j=1

Mj(𝜌)Nj(𝜌) e
(njY+i𝜌X) d𝜌, −∞ < Y < 0, −∞ < X < ∞,

(18)

v(X , Y) =
1

2𝜋

∞

∫
−∞

4∑

j=1

Mj(𝜌) e
(njY+i𝜌X) d𝜌, −∞ < Y < 0, −∞ < X < ∞,

(19)n1,2 = ±
√
1 − c2 �𝜌�, ℜ

�
n1
�
> 0,ℜ

�
n2
�
< 0,

(20)

n3,4 = ±

√
1 −

(
𝜅 − 1

𝜅 + 1

)
c2 |𝜌|, ℜ

(
n3
)
> 0, ℜ

(
n4
)
< 0.

(21)Nj = i
(� + 1) n2

j
+ �2 (1 − �)

(
1 − c2

)

2� nj
, j = 1,… , 4.

(22)
𝜎YY (X , 0) = 𝜎XY (X , 0) = 0, −∞ < X < −a, a < X < ∞,

(23)𝜎YY (X , 0) = 𝜎(X ), −a < X < a,

(24)𝜎XY (X , 0) = 𝜏(X ), −a < X < a,

The friction force applied to the rigid punch F is derived 
based on Dahl’s dynamic friction model and it can be 
expressed as functions of Coulomb’s coefficient of friction 
�C , displacement X , asperity stiffness 

(
�0
)
 to applied load 

per depth ratio �0l∕N and shape factor of the hysteresis 
loop �D as:

where f
(
�C , X , �0l∕N, �D

)
 is the normalized friction 

force which can be obtained by dividing friction force by 
applied normal load. Parameters �C ,�0l∕N , �D describe the 
shape of Dahl’s dynamic friction force curve illustrated in 
Fig. 2, F or normalized friction force f = F∕N is calculated at 
some pre-sliding displacement X values. Therefore, instead 
of assigning constant coefficient of friction and the fric-
tion force for all the motion of the punch, friction force 
applied to punch is calculated as function of �C ,X , �0l∕N
,�D . Dag [52] studied the spatial variation of the coefficient 
of friction due to the utilization of graded material in hori-
zontal direction. However, the spatial variation of the fric-
tion force beneath the flat punch is ignored in the present 
study. Equilibrium equation requires that the integral of 
the normal stress on the contact surface should be equal 
to the applied normal load N.

Unknowns Mj (j = 1,..., 4) in displacement components 
provided by Eqs. (17)-(18) are not provided explicitly for 
brevity.

3  Solution technique

Analytical solution of the contact problem is performed 
based on the singular integral equation technique (SIE). 
The singular integral equation of the contact problem is 
obtained by the use of displacement derivative condition 
beneath the flat punch which necessitates:

Asymptotic analyses are conducted to extract the sin-
gularity of the integral equation. At the end of mathemati-
cal manipulations, the singular integral equation of the 
problem can be written as follows:

(25)𝜏(X ) = f 𝜎(X ), −a < X < a.

(26)F = f
(
�C , X , �0l∕N, �D

)
× N,

(27)

a

∫
−a

�(X )dX = −N.

(28)v(X , 0) = −v0, −a < X < a,

(29)
𝜕v(X , 0)

𝜕X
= 0, −a < X < a,
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where r(X ) = 4�∕(� + 1) �v(X , 0)∕�X , and r(X ) = 0 for the 
rigid flat punch since derivative of the displacement equals 
to zero beneath the flat punch. The constants �1 and �2 
depend on the first terms of asymptotic expansions.

In-plane stress on the contact surface is another signifi-
cant stress component to be calculated since this stress 
component may play an important role in the occurrence 
of possible surface related failures such as surface crack-
ing and propagating of the previously existing surface 
cracks. In-plane stress component is calculated consid-
ering Hooke’s law, constitutive relations and displace-
ment gradients on the contact surface �u∕�X  and �v∕�Y . 
After performing asymptotic analysis and mathematical 
manipulations, in-plane stress on the contact surface can 
be written as:

In Eqs. (30)–(32), f  denotes normalized friction force which 
can be expressed as a function f = f

(
�C , X , �0l∕N, �D

)
. The 

constants �3 and �4 depend on the first terms of asymp-
totic expansions.

First terms of asymptotic expansions 
(
e10 + e20

)
, (

f10 + f20
)
, 
(
g10 + g20

)
, 
(
h10 + h20

)
 are functions of mate-

rial properties and dimensionless punch speed. Singular 
integral equation of the contact problem can be solved 
by either theoretical or numerical methods. In the pre-
sent study, we adopted a numerical method called as 
expansion-collocation method [53]. Before applying this 
technique, singular integral equation has to be normal-
ized such as:

(30)−�2 f �(X ) −
1

�

a

∫
−a

� �1

t − X
�(t) dt = r(X ),

(31)�1 =
4
(
e10 + e20

)

� (� + 1)
, �2 =

4
(
f10 + f20

)

(� + 1)
,

(32)

�XX (X , 0) =
(
2�4 +

3 − �

� + 1

)
�(X ) +

2

�

a

∫
−a

f��3

t − X
�(t) dt

(33)�3 =
4
(
g10 + g20

)

� (� + 1)
, �4 =

4
(
h10 + h20

)

(� + 1)
,

(34)X = a r, −a < X < a, −1 < r < 1,

(35)t = a s, −a < X < a, −1 < s < 1,

(36)� = (1∕a) � ,

(37)
�(X ) = �(ar) = −(N∕a)�(r), �(t) = �(as) = −(N∕a)�(s),

The normalized singular integral equation has the fol-
lowing form:

The equilibrium equation in the normalized form 
becomes:

The solution of the singular integral equation can be 
done by the use of series expansion such that [16]:

where cj (j ≥ 0) are the unknown coefficients to be deter-
mined. P(�,�)

j
(s) is the Jacobi polynomial of order j and W(s) 

is the corresponding weight function defined by,

 � and � are the powers of the stress singularities. Due 
to the physics of the flat punch problem, both � and � 
should be negative. Powers of the stress singularities are 
expressed as [54]:

The normalized friction force f  is calculated numerically 
by solving Eqs. (3), (4) through the implementation of 4th 
order Runge–Kutta formulation [55]. Firstly, the pre-dis-
placement interval of the hysteresis loop is specified as 
L =

(
xf − xi

)
= 0.1mm [44]. Then, other parameters such as 

punch speed V , Coulomb’s coefficient of friction �C , asper-
ity stiffness �0, and shape factor �D are determined. For 
the first forward motion (1st FM), xf = 0.0001m and xi = 0. 
Increment amount is specified as:

Initial conditions are:

Coefficients for the 4th order Runge–Kutta method at 
each displacement step is found by,

(38)𝜔2 f 𝜙(r) +
1

𝜋

1

∫
−1

−𝜋 𝜔1

s − r
𝜙(s) ds = 0, −1 < r < 1,

(39)

1

∫
−1

�(s)ds = 1.

(40)𝜙(r) = W(r)

∞∑

j=0

Aj P
(𝛼,𝛽)

j
(r), −1 < r < 1.

(41)W(r) = (1 − r)𝛼 (1 + r)𝛽 , −1 < r < 1.

(42)

f > 0 ∶ 𝛼 = −1 + 𝜀∕𝜋 , 𝛽 = −𝜀∕𝜋 ,

f = 0 ∶ 𝛼 = −0.5, 𝛽 = −0.5,

f < 0 ∶ 𝛼 = −𝜀∕𝜋, 𝛽 − 1 + 𝜀∕𝜋.

(43)� = tan−1
(|||��1

/(
f �2

)|||
)
.

(44)h =
(
xf − xi

)/
20

(45)x(0) = 0, z(0) = 0,
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where d =
dz

dx
= sign

(
1 − sign(V )

�0 z

FC

)
 |||1 − sign(V )

�0 z

FC

|||
�D
. 

The non-dimensional friction force at each displacement 
step is then calculated as follows:

Table  1 shows non-dimensional friction force val-
ues fi and coefficients of 4th order Runge–Kutta 
method kji (j = 1,..., 4) with respect to some pre-sliding 
displacements.

Applying the orthogonality property of the Jacobi poly-
nomials [16, 56, 57], one can obtain the following func-
tional equation:

Equation (52) is truncated at j = N and it yields N × N 
linear algebraic equation system. Collocation points are 
selected as the roots of the Jacobi polynomials [16].

Comparing both sides of Eq. (52), the only non-zero 
coefficient is found as A0 which is expressed by,

The normal stress on the contact surface can be 
expressed as follows:

(46)k1i = d
(
xi , zi , V ,�C , �0,N, �D

)
,

(47)k2i = d
(
xi + h∕2, zi +

(
k1i∕2

)
h, V ,�C ,N, �0, �D

)
,

(48)k3i = d
(
xi + h∕2, zi +

(
k2i∕2

)
h, V ,�C ,N, �0, �D

)
,

(49)k4i = d
(
xi + h, zi + zi +

(
k3i h

)
, V ,�C ,N, �0, �D

)
,

(50)zi+1 = zi + 1∕6 ×
(
k1i + 2k2i + 2k3i + k4i

)
× h,

(51)fi = �0 zi∕N.

(52)
∞∑

j=0

cj

[
𝜋 𝜔1

2 sin (𝜋𝛼)
P
(−𝛼,−𝛽)

j−1
(r)

]
= 0, −1 < r < 1.

(53)P
(�+1,�+1)

N−1

(
rk
)
= 0, k = 1, ...,N.

(54)A0 = −sin (��)∕�.

Once the normal contact surface on the contact sur-
face is determined, in-plane contact stress can be cal-
culated by substituting normal stress into Eq. (32). The 
mode-I stress intensity factors at the edges of the flat 
punch can be calculated as follows [16]:

In normalized form, punch stress intensity factors 
(SIFs) are determined by,

4  Finite element method

Finite element method (FEM) has been frequently used in 
the solution of complex engineering problems [58]. The 
procedure shown by Fig. 3 shows the implementation of 
Dahl’s friction force to FE procedure and getting the con-
tact stresses. For the verification of the present analytical 
study, a computational model involving a rigid flat punch 
and a homogenous elastic half-plane is constructed and it 
is illustrated in Fig. 4. The dimensions of the homogenous 
elastic half-plane is kept large to avoid any dimensional 
effects. Hence, dimensional ratios are lp

/
W = 0.01, and 

lp
/
H = 0.02. Normal load applied to the rigid punch is 

denoted by N and friction force is indicated by F whose 
direction may change depending on the motion cycle. 
For instance, the direction of F is towards right direction 
for the 1st Forward Motion (1st FM, Ẋ > 0 ) while its direc-
tion is towards left for the 1st Backward Motion (1st BM, 
Ẋ < 0 ). The magnitude of friction force F is calculated by 
multiplying non-dimensional friction force f  by applied 
normal load N.

Dahl’s friction force is calculated by Runge–Kutta 
method for various values of parameters �C , �0l∕N, X∕L , 
�D . Hence, the influence of these parameters on contact 
stresses are observed. The finite element mesh consists 
of 145,106 PLANE183 quadrilateral elements in total and 
contact surface is discretized by CONTA172 and TARGE169 
elements available in ANSYS [59].

(55)

𝜎YY (X , 0)

(N∕2a)
= −

2 sin (𝜋𝛼)

𝜋

(
1 −

X

a

)𝛼 (
1 +

X

a

)𝛽

, −a < X < a,

(56)kI(−a) = lim
X→−a

−
�YY (X , 0)

2� (a + X )�
=

N∕a

a�
A0,

(57)kI(a) = lim
X→a

−
�YY (X , 0)

2� (a − X )�
=

N∕a

a�
A0,

(58)KI(−a) = KI(a) = −
sin (��)

�
.

Table 1  Some values of non-dimensional friction force and coeffi-
cients of 4th order Runge–Kutta method �0l∕N = 25000 , , �

C
= 0.5.

f
i

x
i
 [m] k1i k2i k3i k4i

0 0 1 0.875 0.8906 0.7773
0.3567 0.000025 0.2865 0.2507 0.2552 0.2227
0.4590 0.000050 0.0821 0.0718 0.0731 0.0638
0.4882 0.000075 0.0235 0.0206 0.0209 0.0183
0.4957 0.00010 0.0067 0.0059 0.0060 0.0052
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The motion of the rigid punch is controlled by a pilot 
node which is created at the center of the punch. Homog-
enous elastic half-plane is divided into two regions called 
as Zone 1 and Zone 2. Zone 1 consists of PLANE 183 quad-
rilateral elements with their triangular shape option. Trian-
gular shape of PLANE183 is generated by merging three 
nodes of element at one single point. Hence, each element 
in Zone 1 covers smaller area than those elements used 
in Zone 2, which leads to utilization of greater number of 
elements. Moreover, density of the finite element mesh 
in Zone 1 is increased around the contact region in order 
to capture the sharp variations in the stress components. 
There are various methods for the solution of contact 
problems computationally such as Penalty, Lagrange, 
Lagrangian Multiplier and Augmented Lagrangian. In 
the present study, the Augmented Lagrangian method 
is adopted since this method provides better results in a 

faster way when compared to other methods [60]. Stain-
less Steel (T302) is selected as a homogenous isotropic 
material utilized in analyses. The properties of Stainless 
Steel (T302) are provided in Table 2.

Figure 5 shows the contact stress results obtained by 
present analytical study and those generated through the 
finite element analysis together in the same figure. Black 
and red solid lines respectively show the contact stress 
distributions found by analytical approach for dimension-
less pre-sliding displacements X∕L = 0.2 and X∕L = 0.8. 
While the former pre-sliding displacement indicates the 
early stages of the pre-sliding of the hysteresis loop, the 
latter one shows the closer site to the end of the pre-slid-
ing. Figure 5(a),(b) show the normal and in-plane contact 
stresses for the first forward motion (1st FM), Fig. 5(c), (d) 
illustrate the normal and in-plane contact stresses for the 
first backward motion (1st BM), and Fig. 5(e),(f ) indicate 
those stress components for the second forward motion 
(2nd FM). In this analysis, the speed of the punch is so slow 
V = 1.5 × 10−3 m∕s hence performing elastostatic contact 
simulation is applicable in this kind of contact problem. 
For the 1st BM, tensile in-plane stress occurs around 
X∕a = 1 due to the change of the direction of motion. It 
can be inferred from Fig. 4 that contact stresses obtained 
by analytical approach and those of finite element analy-
sis agree very well. Thus, verification of present analytical 
study is accomplished.

5  Results

In this section, hysteresis loops, contact stresses and 
punch stress intensity factors are presented. Firstly, hys-
teresis loop of normalized friction force as a function 
of displacement is provided. In Piatkowski’s study [44], 
asperity stiffness and applied normal load are given as 
�0 = 1.5922 N∕�m and N = 55.3 N, hence dimensionless 
parameter can be written as �0l∕N = 28792 per depth 
of the contact model. Driving velocity for the Dahl’s 
dynamic friction model is generally assumed in the 
interval V = 0.5 − 1.5 ×10−3m

/
s [44, 61, 62] which can 

be regarded as slow speed sliding. In the present study, 
however, two different velocity values are used. Sliding 
speeds V = 1.5 ×10−3m

/
s and V = 1.884 ×103m

/
s are 

designated to simulate both slow and high speed sliding 

Fig.3  Scheme showing the implementation of Dahl’s friction 
model to FE procedure

Fig. 4  Finite element model established for the contact problem

Table 2  Material properties used in the simulations [63]

Material Stainless Steel (T302)

E   (Elastic Modulus) 193 GPa
� (Poisson’s ratio) 0.25
�
M

 (Density) 7860 kg/m3
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cases, respectively. Hence, dimensionless punch speeds 
for each case are determined as c = 4.786 × 10−7 and 
c = 0.6, respectively. The former dimensionless speed is 
very close to zero hence, dynamic effects due to the speed 
of the punch will be minimal. However, the latter speed is 
very high and punch dynamics will be influential in this 
case. These two sliding cases are named as slow speed 
and high speed sliding cases and they are denoted by the 

abbreviations ‘SS’ and ‘HS’ as shown in Table 3. The pre-
sliding displacement of the hysteresis loop of friction force 
is determined as L = 0.1 mm [44]. If friction force reaches 
its steady saturated level within this interval, the actual 
pre-sliding displacement can be La < L. On the other hand, 
if friction force is not able to reach steady saturated level 
within L, the actual pre-sliding displacement is greater 
than La > L.

Fig. 5  a, b Normal and in-plane contact stresses for the 1st Forward 
Motion (1st FM), c, d Normal and in-plane contact stresses for the 
1st Backward Motion (1st BM), e, f Normal and in-plane contact 

stresses for the 2nd Forward Motion (2nd FM); V = 1.5 × 10−3 m∕s, 
�
C
= 0.7, �0l∕N = 25000 , �

D
= 1.0
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Figure 6(a) shows hysteresis loop of normalized fric-
tion force f  for different dimensionless punch speed c . It 
can be observed that friction force does not depend on 
punch speed as concluded in Ref. [46]. Figure 6(b) indi-
cates hysteresis loop of normalized friction force for vari-
ous values of Coulomb’s friction in the pre-sliding interval. 
In the beginning of the 1st Forward Motion (1st FM), there 
is no friction force applied to the rigid punch in all cases. 
However, normalized friction force f  gradually develops 
as the rigid punch displacement X  increases. Although 
friction force reaches its steady value at early stages of 
displacement for �C = 0.1 such as x = 0 − 0.01mm , a 
greater displacement value is required to obtain steady 

value of friction for larger �C such as �C = 0.5, �C = 0.7. 
The difference between friction force acquired by 1st For-
ward Motion (1st FM) and 2nd Forward Motion (2nd FM) 
seems greater for larger values of coefficient of friction. 
Figure 5(c) depicts the hysteresis loop of normalized fric-
tion force as functions of �0l∕N. Instead of increasing the 
asperity stiffness �0 solely, the dimensionless ratio �0l∕N 
is altered parametrically since change in the asperity 
stiffness and applied normal load per depth at the same 
proportion does not lead to any change in the hyster-
esis loop of friction force. Hence, asperity stiffness �0 is 
changed relatively to the applied normal load per depth 
N∕l . Coulomb’s coefficient of friction is taken as �C = 0.5. 

Table 3  Speeds of the punch 
for slow speed (SS) and high 
speed (HS) sliding cases

Sliding case Nominal speed V Dimensionless speed c Time required

Slow speed (SS) 1.5 ×10−3m
/
s 4.786 × 10−7 0.06667 s

High speed (HS) 1.884 ×  103 m/s 0.6 5.308 × 10−8 s

Fig. 6  Hysteresis loop of normalized friction force as a function of 
displacement for various values of a Dimensionless punch speed 
c, �0l∕N = 25000 , �

C
= 0.7, �

D
= 1.0, b Coulomb’s coefficient of 

friction �
C
, �0l∕N = 25000 ,�

D
= 1.0, c Asperity stiffness to normal 

load per depth ratio �0l∕N, �C
= 0.5, �

D
= 1.0, d shape factor �

D
, 

�0l∕N = 25000 , �
C
= 0.5.
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As the ratio �0l∕N is increased, the required displacement 
is decreased to get steady saturated friction force. It is 
noteworthy to say that for surfaces with higher asperity 
stiffness, friction force develops more quickly and reaches 
steady level which indicates that pre-sliding displacement 
is smaller and gross sliding begins earlier. The difference 
between friction forces obtained at 1st Forward Motion 
(1st FM) and 2nd Forward Motion (2nd FM) becomes larger 
for surfaces with lower asperity stiffness. Figure 6(d) dem-
onstrates hysteresis loop of friction force as functions of 
loop shape factor �D . . The loop shape factor depends on 
material properties. �D is always greater than zero.

Bliman [64] stated that the loop shape factor is in the 
interval of 0 ≤ 𝛿D < 1, for brittle materials and �D ≥ 1, for 
more ductile like materials. Hence, �D is changed paramet-
rically between 0.8 and 1.5. As �D is decreased, frictional 
force reaches to steady value at early stages of pre-sliding 
displacement. However, increase in �D leads to decrease in 
the friction force at whole range of displacement. Hence, 
friction force slowly develops on the surface of more duc-
tile like materials. Figure 7 shows normalized normal and 
in-plane contact stresses for 1st Forward Motion (1st FM), 
1st Backward Motion (1st BM) and 2nd Forward Motion 
(2nd FM). Solid lines display the contact stress results at 
small speed sliding case (SS) in which V = 1.5 mm∕s, or 
c = 4.786 × 10−7, dot points indicates those obtained at 
high speed sliding case (HS) where V = 1880.4 m∕s, or 
c = 0.6. Figures 7(a)-(b) are obtained for X∕L = 0.2, which 
can be considered as the beginning stage of the pre-
sliding displacement of the hysteresis loop. Figure 7c, d 
show stress results for X∕L = 0.5 and Figs 7e, f depict stress 
results for X∕L = 1.0.

Although there is a slight difference between normal 
stress curves obtained for 1st FM, 1st BM at X∕L = 0.2, this 
difference becomes notable at X∕L = 0.5 and X∕L = 1.0 . 
However, normal contact stress obtained at 2nd FM 
becomes almost the same as that obtained for the 1st FM 
at X∕L = 0.5 and X∕L = 1.0 . Normal contact stresses cal-
culated for small speed sliding case (SS) and high speed 
sliding case (HS) are very close to each other in all cases. 
Due to the direction of motion, in-plane contact stress var-
ies. In all cases, there is a stress singularity at contact ends. 
The tensile in-plane stress peak is observed at trailing end 
for 1st FM, it is seen at the leading end for 1st BM and it is 
seen at the trailing end for 2nd FM, again. At the beginning 
stage of the pre-sliding interval X∕L = 0.2, in-plane stress 
for 2nd FM seems decreased relatively to that obtained for 
the 1st FM over the contact surface. For larger values of 
X∕L, difference between in-plane contact stress obtained 
for 1st FM and 2nd FM is gradually decreased and it is 
almost negligible for X∕L = 1.0. Moreover, in-plane con-
tact stresses calculated at high speed sliding (HS) and slow 
speed sliding (SS) cases seem different. In HS case, in-plane 

contact stresses are greater along the contact. The differ-
ence between in-plane contact stresses calculated at HS 
and SS cases gradually increases as illustrated in Fig. 7e, f.

Figure 8 shows the normal and in-plane contact stresses 
for various values of Coulomb’s coefficient of friction for 
1st Forward Motion (1st FM). Figure 8a, b provide con-
tact stresses for X∕L = 0.2and Fig. 8c, d present those for 
X∕L = 0.8. It can be inferred from these figures that fric-
tion force does not develop so much at the beginning of 
the hysteresis loop i.e. X∕L = 0.2. However, friction force 
develops and becomes close to its saturated level towards 
the end of the hysteresis loop, i.e. X∕L = 0.8. The change in 
contact stress with respect to different �C seems larger at 
Fig. 8c, d than that observed at Fig. 8a, b since friction force 
developed and it almost reaches the steady saturated level 
at X∕L = 0.8. On the contrary, contact stress curves are 
close to each other in the case of X∕L = 0.2 due to early 
stage of pre-sliding and lower values of friction force. Nor-
mal contact stresses obtained for slow speed and high 
speed sliding cases are close to each other as shown in 
Fig. 8a–c. When in-plane contact stresses are examined, it 
can be seen that there is a remarkable difference between 
stresses in the contact zone. In-plane stresses at HS case 
is more compressive than stresses generated at SS case. 
Outside the contact region, the magnitude of in-plane 
stresses for HS case is greater than those obtained for SS 
case. At X∕L = 0.2, although difference between HS and SS 
in-plane stresses seems slight outside the contact region, 
a notable difference occurs between HS and SS stresses 
for X∕L = 0.8. Moreover, change in the in-plane contact 
stress due to alteration of �C is observed greater for the 
X∕L = 0.8 case when compared to X∕L = 0.2.

Figure 9 illustrates the influence of �0l∕N ratio on con-
tact stresses. �0 shows the asperity stiffness in 

[
N∕mm

]
 and 

N indicates the applied normal load to the flat punch in 
[N]. Hence, �0l∕N is the dimensionless parameter where 
N∕l shows applied load per depth for the two-dimensional 
model. Figure 9a, b display contact stress distributions for 
the 1st Forward motion (1st FM). When the ratio �0l∕N is 
increased, normal contact stress slightly slants towards 
the leading end. Moreover, normal stresses for HS and 
SS cases are quite close to each other. While increase in 
the ratio �0l∕N results in a formation of larger tensile in-
plane stresses behind the trailing end of the contact, it 
leads to occurrence of larger compressive stresses ahead 
of the contact. In-plane stresses obtained for HS case in 
the contact region is greater than those obtained for SS 
case. The difference between in-plane stresses acquired 
at HS and SS cases becomes larger as the ratio �0l∕N is 
increased. Figure 9c, d depict contact stress results for 
the 2nd Forward Motion (2nd FM). As the ratio �0l∕N is 
increased, normal contact stress slightly leans towards the 
leading end as found in Fig. 9a. However, in this case, the 
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direction of friction force is in the opposite direction when 
�0l∕N = 12500 and it turns out to be same direction for 
larger values of �0l∕N. This conclusion is also true for both 
SS and HS sliding cases. As �0l∕N is increased, in-plane con-
tact stress increases in the contact region and greater ten-
sile in-plane stress occurs behind the trailing end. Stresses 
ahead of the contact region becomes much compressive. 

When Fig. 9b–d are examined, difference between stress 
curves obtained for SS and HS cases is larger at 2nd FM 
when compared to that occurs at 1st FM in Fig. 9b.

Figure 10 shows the influence of the shape factor �D 
of the hysteresis loop on contact stresses at 1st Forward 
Motion (1st FM). As �D is increased, normal contact stress 
slightly decreases around the trailing end while it slightly 

Fig. 7  a, b Normal and in-plane contact stress at X∕L = 0.2, c, d Normal and in-plane contact stress at X∕L = 0.5, e, f Normal and in-plane 
contact stress at X∕L = 1.0; �

C
= 0.7, �0l∕N = 25000, �

D
= 1.0
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increases around the leading end. Stresses obtained at 
slow speed and high speed sliding conditions are close to 
each other as depicted in Fig. 10a. When �D is increased, 
in-plane stress in the contact region slightly decreases. 
Moreover, increase in the shape factor �D results in a forma-
tion of tensile in-plane stresses with lower in magnitude 
behind trailing end. In-plane contact stress ahead of the 
contact region slightly decreases as well. This conclusion 
is also true for not only in-plane stresses obtained in SS 
case but also true for those generated in HS case. The main 
difference between in-plane stresses obtained at SS and 
HS cases is observed in the contact region. In high speed 
sliding case (HS), in-plane stresses are much compressive 
due to boosted impact of punch dynamics.

Table  4 tabulates the stress intensity factors (SIFs) 
at sharp ends of the flat punch for slow speed sliding 
case (SS) where dimensionless punch speed is set to 
c = 4.786 × 10−7. In this case, dynamic impact of the punch 
is almost negligible since speed of the punch is very low. 
Non-dimensional stress intensity factor at the trailing end 
of the punch is shown by KI(−a) while that at the leading 

end of the punch is indicated by KI(a). Three consecutive 
motions, i.e. 1st FM, 1st BM and 2nd FM, and two different 
non-dimensional pre-sliding locations are selected. For all 
three motions, SIFs at leading and trailing ends are equal 
to each other and they vary with respect to non-dimen-
sional pre-sliding location. For the 1st FM and 2nd FM, 
SIFs obtained at X∕L = 0.8 are less than those obtained 
at X∕L = 0.2 whereas for the 1st BM, SIFs generated for 
X∕L = 0.2 are less than those generated at X∕L = 0.8.

Table 5 lists the SIFs at punch ends for high speed 
sliding case (HS) where c = 0.6 . For the 1st FM and 2nd 
FM, punch stress intensity factors obtained at X∕L = 0.8 
are less than those obtained at X∕L = 0.2. However the 
reverse trend is observed for SIFs for 1st BM as seen 
in Table  4. Percent difference values are calculated 
between SIFs obtained at X∕L = 0.2 and X∕L = 0.8. 
Results indicate that percent difference (Diff%) between 
SIFs obtained for high speed sliding case (HS) are 
greater than those acquired for slow speed sliding case 
(SS).

Fig. 8  a, b Normal and in-plane contact stress at 1st Forward motion (FM)X∕L = 0.2, c, d Normal and in-plane contact stress at X∕L = 0.8, 
�0l∕N = 25000, �

D
= 1.0
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Fig. 9  a, b Normal and in-plane contact stress at 1st Forward motion (1st FM) c, d Normal and in-plane contact stress at 2nd Forward 
Motion (2nd FM); �

C
= 0.5,X∕L = 0.2, �

D
= 1.0

Fig. 10  a, b Normal and in-plane contact stress at 1st Forward motion (FM)X∕L = 0.4, �
C
= 0.5, �0l∕N = 25000
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6  Conclusions

In this study, the implementation of Dahl’s dynamic 
friction model to contact mechanics of elastic isotropic 
solids is presented. Dynamic contact problem between 
a rigid flat punch and an isotropic elastic medium is 
treated and governing partial differential equations are 
derived based on theory of elasticity and equations of 
motion. According to Dahl’s friction model, it is observed 
that friction force applied to the punch depends on the 
Coulomb’s coefficient of friction, pre-sliding displace-
ment, asperity stiffness/normal load per depth and 
hysteresis loop shape factor. Friction force is calculated 
for various values of pre-sliding displacement utilizing 
4th order Runge–Kutta method. Analytical solutions 
are presented by the use of singular integral equation 
(SIE) technique. In addition, computational results are 
obtained by means of finite element method. Direct 
comparisons indicate that results of these two methods 
display a high degree of accuracy. Then, influences of 
Coulomb’s coefficient of friction, pre-sliding displace-
ment, asperity stiffness/normal load per depth ratio 
and hysteresis loop shape factor on contact stresses are 
investigated for not only for small speed sliding (SS) case 
but also in high speed sliding (HS) case. The following 
conclusions can be drawn from the present study:

• Normalized friction force in the hysteresis loop does 
not change even if punch speed reaches 0.6 times of 
shear wave propagation speed of the elastic body. 
This conclusion is also drawn by Dahl’s friction model. 
However, as punch speed is increased to greater levels, 
punch dynamics becomes influential on contact prob-
lem. Although there is a slight difference between nor-
mal contact stresses in SS and HS cases, a remarkable 
change is observed in the in-plane stress component. 
In-plane stress calculated in the HS case is much com-
pressive in the contact zone.

• Normal and in-plane contact stresses are calculated for 
different pre-sliding displacements. In early stages of 
pre-sliding (i.e. X∕L = 0.2 ), contact stresses calculated 
at 1st FM, 1st BM and 2nd FM seem quite different from 
each other, however, at the end of pre-sliding interval 
(i.e. X∕L = 1.0 ) contact stresses calculated at 1st FM and 
2nd FM starts to coincide with each other. It should 
also be remarked that difference between contact 
stresses obtained for high speed sliding case (HS) and 
slow speed sliding case (SS) tend to increase at further 
sites of pre-sliding displacement such as X∕L = 0.5, 
X∕L = 1.0.

• Coulomb’s coefficient of friction has a crucial impact on 
contact stresses. As coefficient of friction is increased, 
normal stress slants towards the leading end, and 
in-plane stress may reach considerable tensile level 
around the trailing end. Increase in coefficient of fric-
tion leads to greater change in contact stress at further 
sites of pre-sliding displacement when compared to 
that occurred at early stage of pre-sliding. Difference 
between contact stresses obtained for HS and SS cases 
becomes notable for greater values of coefficient of 
friction �C and pre-sliding displacement X∕L. Contact-
ing body may expose to surface cracking type failure 
due to the high tensile in-plane stress around trailing 
end especially for greater values of �C and X∕L.

• Asperity stiffness to normal load per depth ratio 
(
�0l∕N

)
 

affects contact stresses. As �0l∕N is increased, normal 
stress leans towards the leading end and greater com-
pressive in-plane stress is formed in the contact region. 
Increase in the �0l∕N ratio results in a formation of 
greater tensile in-plane stress around the trailing end. 
At early stages of pre-sliding, the direction of friction 
force can remain in the opposite direction for the 2nd 
forward motion (2nd FM) especially for lower values of 
�0l∕N, which makes in-plane stress tensile at the lead-
ing end. Difference observed between contact stresses 
obtained for HS and SS cases becomes remarkable at 
2nd FM for larger values of �0l∕N.

• Shape factor of the hysteresis loop has a slight impact 
on contact stresses for both SS and HS sliding cases. As 
�D is increased, normal contact stress slightly increases 

Table 4  Punch stress intensity factors at different locations in 
the hysteresis loop of friction force for SS case c = 4.786 × 10−7, 
�
C
= 0.7, �0l∕N = 25000

Motion/SIF X∕L K
I(−a) K

I(a) Diff %

1st Forward Motion (1st FM) 0.2 0.3161 0.3161 1.65
0.8 0.3109 0.3109

1st Backward Motion (1st BM) 0.8 0.3183 0.3183 2.07
0.2 0.3117 0.3117

2nd Forward Motion (2nd FM) 0.2 0.3183 0.3183 2.07
0.8 0.3117 0.3117

Table 5  Punch stress intensity factors at different locations in 
the hysteresis loop of friction force for HS case c = 0.6, �

C
= 0.7, 

�0l∕N = 25000.

Motion/SIF X∕L K
I(−a) Diff %

1st Forward Motion (1st FM) 0.2 0.3149 0.3149 2.45
0.8 0.3072 0.3072

1st Backward Motion (1st BM) 0.8 0.3183 0.3183 3.11
0.2 0.3084 0.3084

2nd Forward Motion (2nd FM) 0.2 0.3183 0.3183 3.11
0.8 0.3084 0.3084
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around the leading end. Increase in �D leads to forma-
tion of in-plane contact stress with lower magnitude 
along the contact. In-plane contact stresses gener-
ated for HS sliding case is observed greater than those 
obtained for SS sliding case.

• Friction force beneath the flat punch is assumed con-
stant, and it can be regarded as a limitation of the 
present study. The spatial variation of the coefficient 
of friction affects the contact stress distributions [52]. 
This study presents contact mechanics analysis based 
on Dahl’s friction model which is used to simulate pre-
displacement and hysteresis. Nevertheless, there are 
some advanced dynamic friction models in the litera-
ture which consider the rate dependency due to the 
viscous effect, and able to capture Stribeck effect and 
stiction behavior.

• Application of different dynamic friction models to 
contact stress analysis of solids will be an interesting 
work. Thus, an assessment of friction models based on 
contact stress will be made.

• Implementation of different dynamic friction models 
to contact mechanics of composite/anisotropic mate-
rials will be a future work since composite/anisotropic 
materials have been widely utilized in aerospace and 
robotic/control systems.

It is believed that contact stress results obtained in the 
present study may be useful for understanding the wear 
and fatigue behavior of elastic solids which are especially 
utilized as a mechanical component in mechanisms and 
robotic/control systems.
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