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Abstract
In this paper, a new approach for Neuro-Fuzzy Controller (NFC) has been presented and compared to previously defined 
NFCs given in open literature. The proposed controller is based on an on-line Adaptive Neuro-Fuzzy Inference System 
(ANFIS) and meticulous analysis through simulations is performed to show its robustness. The performance of Neuro-
Fuzzy Controllers (NFC) depends on controller inputs. To show the difference and superiority of the proposed controller, 
many studies in the open literature are examined and compared. Therefore, the advantages and disadvantages of the 
Neuro-Fuzzy controller are outlined and an optimum Neuro-Fuzzy controller is structured and presented. To test our 
developed controller for a nonlinear problem, having coupling effects, a 2 DOF helicopter model is chosen. Also to show 
the robustness, the controller performance which is applied to a 2 DOF helicopter is investigated and compared with 
other Neuro-Fuzzy controller structures. To better show NFC performance, NFC control results were compared with LQR+I. 
It is observed that besides being on-line adaptive for all systems, the controller developed has many priorities such as 
noiseless, strong stability, and better response time.

Keywords Neuro-Fuzzy Control(NFC) · ANFIS · 2 DOF helicopter · LQR+I

1 Introduction

There has been recently tremendous progress in con-
trol methods because of the increasing complexity and 
technology. Besides, the variations of the state and envi-
ronmental conditions are challenging problems for con-
trollers. Studies have been conducted in the literature on 
adaptive active controllers to overcome these uncertain-
ties [1, 2]. Fuzzy Logic Controller (FLC) is one of the most 
common nonlinear controllers that are still under research 
that it can be self-tuned and it can tune other controller’ 
parameters.

In the classical FLC method, the Fuzzy Controller can 
control any system without any support of other con-
trollers or it can tune controller parameters [3, 4]. These 

classical FLC methods can run perfectly in simulation but 
it needs full information about the system which is under 
control. In other words, an FLC can be designed for any 
system in hand, however when these system parameters 
changed it may not be possibly worked. Because of that, 
scientists in this field have developed Neural Network (NN) 
and ANFIS algorithms for various applications [5]. In litera-
ture, these algorithms are used for various disciplines such 
as structures [6, 7], energy [8], fluids etc. [9].

The ANFIS algorithms can be used in controller 
algorithms as off-line and on-line. Training data must 
be collected from the system to use the off-line ANFIS 
algorithm at control studies. In literature, there are differ-
ent off-line ANFIS controller studies such as tuning PID 
coefficients [10, 11], determining FLC parameters [12] 
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using ANFIS inverse controller by modelling the inverse 
of system [13]. Off-line ANFIS trained controllers are used 
in different areas such as robotics [14], aircraft [15] etc. 
However, these off-line controllers are ineffective against 
changes in the system and environment. So, self-tuned 
Neuro-Fuzzy Controllers (NFC) are proposed which tune 
its own parameters [16]. The advantage of the NFC is that 
it adapts to the changes in the system [17].

Adaptive NFC is implemented, having two inputs, 
to Induction motor drive to show the strength of the 
NFC [18]. The NFC inputs have consisted of two different 
values. One of which is a normalized error with respect 
to a target value and the other one is the derivative of 
output. In this method, the steady-state error is zero but 
noise is greater compared to classical methods. In 2010, 
a new adaptive NFC is proposed, having three inputs, 
which is implemented into a servo system [19]. The NFC 
inputs are as follows; error, error derivative, and sum of 
errors. As stated in [19], the NFC response is faster com-
paring to classical methods but the result is relatively 
wavy. PI, Fuzzy tuned PID, Fuzzy tuned PI-PD and adap-
tive NFC, having two inputs which are error and its deriv-
ative, are compared on a DC motor [20]. They found that 
adaptive NFC is the best when compared to the other 
three controllers. The on-line ANFIS controller outputs 
are compared with Fuzzy PID+ANFIS, PID+ANFIS, Anti 
Wind up PID, Fuzzy Anti Wind up PID, etc. [21]. The results 
obtained indicate that NFC can be operated successfully 
with other controllers by giving highly accurate results. 
In 2017, the NFC is compared to PD and Model Predic-
tive Controllers (MPC) on reconfigurable exoskeletons. 
The NFC is designed with two inputs as error and error 
derivative. The results show that the NFC is robust and 
converges faster than others [22]. The NFC parameters 
have been trained by different methods in literature as 
gradient descent method, Least Square Estimation (LSE), 
genetic algorithms, etc. The genetic algorithms and 
neural network are used to train FLCs in [23] and the 
results show that the on-line trained FLCs have better 
performance when compared to LQR. In 2020, interval 
type-2 FLC (IT2-FLC) supervised ANFIS controller is used 
to control wheeled mobile robot. The results show that 
the combined controller performance is better when 
compared to PD and interval type-2 FLC [24]. In the IT2-
Fuzzy Logic System (IT2-FLS) supervised ANFIS controller 
study, the ANFIS is trained with error and error derivative 
[24]. The ANFIS is used with particle swarm optimization 
to control a quadrotor trajectory tracking that the NFC 
can be used with various methods effectively for highly 
nonlinear problems [25]. As seen in the literature, the 
error and error derivative is commonly used inputs for 
NFC. In this study, the NFC input parameters are tested 

and the results are compared on a nonlinear 2 DOF heli-
copter system.

It is well known that helicopters are aerial vehicles that 
it can take off and land in small areas and its maneuverabil-
ity is very high. However, it is a nonlinear system, as men-
tioned above, and has cross-coupling effects, since it is 
hard to control. There are many proposed control methods 
in the literature for these challenging control problems 
[26–28]. Tuning PID coefficients by Type-2 FLC is success-
fully carried out and discussed in [29, 30] for 2 DOF heli-
copter control. Another applied example is tested on the 
2 DOF helicopter by using FLC with Sliding Mode Control 
(SMC) [31, 32]. Because of NFC’s high efficiency, Type1 NFC 
has applied alone to 2 DOF helicopter system, as in [33], 
with two NFC inputs having error and its derivatives.

Within the scope of this study, the NFC controllers pro-
posed in the open literature have been tested and tried 
to reach the best NFC controller combination. So, the 6 
different NFC structures are tested as: (normalized error, 
output derivative [18]), (error, error derivative, summation 
of error [19]), (error, output derivative, summation of error), 
(error, output derivative, error integral), (normalized error, 
error derivative, summation of error), (normalized error, 
output derivative, error integral). As a result of these tests, 
(error, output derivative, the summation of error) inputs 
structure NFC is found to be better than other NFC combi-
nations. The proposed NFC input combination is tested on 
the nonlinear 2 Degree of Freedom (DOF) helicopter sys-
tem and compared to other NFC combinations those given 
in open literature as (normalized error, output derivative 
[18]), (error, error derivative, the summation of error [19]). 
So, the performance of the proposed controller is tested 
for a nonlinear dynamical system.

The rest of this paper is organized as follows. In Sect. 2, 
the 2 DOF helicopter dynamic and control structure are 
introduced. In Sect. 3, the NFC system is introduced and 
different input combinations with our offering are exam-
ined. In Sect. 4, the tested different NFC combinations’ 
simulation results are compared and conclusion is given 
in Sect. 5.

2  System dynamics

The 2 DOF helicopter free body diagram model is identi-
fied in Fig. 1. There are two propellers perpendicular to 
each others. The front propeller controls the pitch angle 
and the back propeller controls the yaw angle. The 2 DOF 
helicopter system can rotate at pitch angle within the lim-
its − 40.5◦ and 40.5◦ but the system can rotate at yaw angle 
without any limit [34].

While the front propeller affects the yaw angle, the 
back propeller affects the pitch angle because of the 
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momentum balance on the system. So, the controller 
must be designed by considering the coupling effects.

The nonlinear dynamics equations can be given in 
terms of pitch angle � and yaw angle �  [33].The param-
eters of the model are given in Table 1.

(1)

(Jeq,p +mheli l
2

cm
)�̈� = KppVm,p + KpyVm,y

− mheliglcmcos𝜃 − Bp�̇�
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2
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2
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sin𝜃cos𝜃�̇��̇�

Fig. 1  2 DOF helicopter free 
body diagram

Table 1  Physical parameters 
of the 2 DOF helicopter system 
[34]

Symbol Description Values

Jeq,p Total moment of inertia about pitch axis 0.0384 kgm2

Jeq,y Total moment of inertia about yaw axis 0.0431 kgm2

mheli Total moving mass of the helicopter 1.3872 kg
lcm Center of mass length along helicopter body from pitch axis 0.1855 m
Kpp Thrust torque constant acting on pitch axis from pitch propeller 0.2041 Nm/V
Kpy Thrust torque constant acting on pitch axis from yaw propeller 0.0068 Nm/V
Kyp Thrust torque constant acting on yaw axis from pitch propeller 0.0219 Nm/V
Kyy Thrust torque constant acting on yaw axis from yaw propeller 0.072 Nm/V
Vm,p Voltage apply to pitch motor ± 24 V

Vm,y Voltage apply to yaw motor ± 15 V

g Gravitational constant 9.81m∕s2

Bp Viscous damping about pitch axis 0.8 N/V
By Viscous damping about yaw axis 0.318 N/V
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The 2 DOF helicopter control structure is given in Fig. 2 
that the 2 DOF helicopter system contains two inputs as 
pitch motor voltage ( Vm,p ) and yaw motor voltage ( Vm,y ). 
So the controller must determine the two voltage values.

The 2 DOF Helicopter model is controlled with Linear 
Quadratic Regulator+Integral (LQR+I) in [34]. The LQR+I 
control matrix is given as [34]:

3  Neuro Fuzzy controller

Neuro-Fuzzy Controller (NFC) has occurred in two steps. 
The first step is the on-line Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) and the second step is the FLC. 
In this study, the ANFIS structure is based on a linear 
Sugeno Fuzzy Inference System (FIS). The general ANFIS 
structure for two inputs and two Membership Function 

(3)Ki =

[
18.9 1.98 7.49 1.53 7.03 0.77

− 2.22 19.4 − 0.45 11.9 − 0.77 7.03

]

(MF) is given in Fig. 3. In the tests in this paper, three 
membership functions are used. The following equations 
are used in on-line ANFIS for two inputs.

Layer 1: x and y are system inputs. A is the first input 
and B is second input MFs. Trapezoid MFs are used as 
linguistic term. � defines the value of membership func-
tions. So, for every input, there are two membership 
values.

Layer 2: Number of the “i” nodes is the rule number. Every 
“i” node represents a fuzzy rule. Weights are calculated for 
every rule by using the “and-prod” method. “w” represents 
the weights.

Layer 3: Weights are normalized. In the Sugeno (FIS), there 
is two defuzzification step as “wtaver” and “wtsum”. In this 
study, the “wtaver” defuzzification method is used and so 
in Sugeno ANFIS weights are normalized.

(4)O1

i
= �Ai

(x) O1

i
= �Bi

(y)

(5)O2

i
= �Ai

(x)�Bi
(y) = wi

Fig. 2  2 DOF helicopter control structure

Fig. 3  ANFIS structure
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Layer 4: The rule outputs are calculated where “p, q, r” is the 
consequent parameters of the first-order Sugeno model. In 
this layer, all yi defines the normalized rule outputs.

Layer 5: The aggregation step is represented that all out-
put values are gathered. This result gives the same results 
with Sugeno FIS “wtaver” method.

The output “y” can be defined in matrix form as:

where “w” is the weights, “x” is the inputs and “W” is the 
output parameters.

As seen in the literature, the ANFIS trains the input 
Membership Functions (MF) and the consequent param-
eters (p, q, r) according to input and output values 
[5]. The error value is determined with the difference 
between the desired value ( yd ) and the actual/measured 
value (y).

as proved by [35].
In off-line ANFIS, a defined data set can be trained 

simply by choosing the desired value and the actual 
value. However, it is well known that off-line ANFIS is 
a weak tool for control problems. Therefore, a logical 
approach must be conducted in control problems, i.e., 
the main target in the control problem is to minimize 
error it means that the system is being stabilized. In 
other words, for a desired constant target, the change 
in output must be zero. For a desired linearly changing 
target, the change in output must be constant.

In this study, the outputs are the pitch angle � , the 
yaw angle � , and learning rate is lr that is set to 1. So the 
error term for ANFIS is defined as given below.

For pitch angle:
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= XW

(10)E = 0.5(yd − y)2

For yaw angle:

In ANFIS training, Gradient Descent (GD) method is used 
for consequent parameters’ training. So, the update law 
is given as:

where

It is stated in Eq. (9) that y = XW  . So, the �E
�W

 term can be 
defined as

where y defines the ( � , � ) angles and yd defines ( �d , �d ) 
angles.

3.1  Two input NFC

As mentioned before, in the classical FLC method, the 
Fuzzy Controller can control any system without any sup-
port of other controllers or it can tune controller param-
eters. The classical FLC can be trained by off-line ANFIS, 
but such a FLC can not optimize its own parameters. The 
trained FLC can only work for well-defined cases. It is possi-
ble to define such a powerful Neuro-Fuzzy Controller (NFC) 
[18] which adapts itself for every given case. The proposed 
NFC structure can be shown in Fig. 4.

The controller inputs,Nerror ,
d�

dt
 , are normalized error 

and rotational velocity. The normalized error and angular 
velocity can be limited in the desired intervals [18].

where dt is sampling time, �(n) is present angular velocity 
and �(n − 1) is previous angular velocity and �des is desired 
angular velocity. The similar equations are implemented 
to the yaw angle.

As mentioned before, to implement NFC effectively, the 
training algorithm must be executed by a target value. The 
target value is defined and applied to an Induction motor 
drive in [18] as y = error . So, when the error minimized the 
ANFIS training error input will be minimized, and when 

(11)E = 0.5(�d − �)2

(12)E = 0.5(�d − �)2

(13)W(n) = W(n − 1) − lr
�E

�W

(14)W =
[
p1 q1 r1 p2 q2 r2 …

]

(15)
�E

�W
= 0.5 ∗ (yd − y)X

(16)Nerror =
�des − �n

�des

(17)
d�

dt
(rad∕s2) =

�(n) − �(n − 1)

dt
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the error becomes bigger the ANFIS training error will be 
bigger. So the training will be slower or faster depending 
on the target value.

3.2  Three input NFC

The two input NFC results show that the steady-state error 
of the two input NFC is zero, however, it is noisy as seen in 
Fig. 10. This leads to oscillation in real-time applications, 
results in mechanical vibration for the system and fatigue. 
Because of that, three input NFC is tested. In the ANFIS 
step, the Gradient descent method is used to train FIS 
parameters as did in two inputs NFC.

3.2.1  e,de,sum(e) inputs NFC

The three input NFC is proposed in [19] where controller 
inputs are given as error, error derivative and sum of errors 
as shown in (18). It is defined in [19] that there is always oscil-
lation in the outputs. Besides, the 2 DOF helicopter model 
has coupling effects. Because of that, the results are very 
oscillatory and unacceptable as seen from Figs. 5, 6. The cou-
pling effects of 2 DOF helicopter makes the system behave 
worse, i.e. the response of the system output amplitude is 

increasing. So, this NFC approach is not compared to other 
controllers.

3.2.2  e,dy,sum(e) inputs NFC

To enhance the NFC controller effects, different NFC method 
combinations were tested. These test results indicate that 
three-input NFC controller with three inputs which are error, 
output derivative, and summation of error, gives better 
outputs compared to other methods. The three-input NFC 
2 DOF helicopter model structure is given in Fig. 7. The cal-
culation of de

dt
 can result in some numerical errors, however, 

if d�
dt

 is taken from the governing Eqs. (1), (2), the possible 
numerical errors are minimized.

(18)e = �des − �n, de =
en − en−1

dt
,

∑
e

(19)e = �des − �n,
d�

dt
=

�(n) − �(n − 1)

dt
,

∑
e

Fig. 4  Two input NFC structure for 2 DOF helicopter
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4  Simulation results and discussions

The performance of proposed NFCs has been widely 
examined for a nonlinear system in simulation. Desired 
pitch ( � ) angle is square wave [ − 10, 10 ] as seen in Fig. 16 
and desired yaw ( � ) angle is a constant as seen in Fig. 17. 

The sampling time is set to 1 ms for all studies. In figures 
two input NFC is stated as (ne,dy), three input NFC is stated 
as (e,dy,sume) and (e,de,sume). These statements express 
NFC inputs. The used LQR+I controller coefficients are 
given in Eq. (3). For two inputs NFC, W matrix is started as 
( 3 × 9 ) zero matrices and for three inputs NFC, W matrix 

Fig. 5  Theta angle three inputs (e,de,sume) NFC results

Fig. 6  Psi angle three inputs (e,de,sume) NFC results
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Fig. 7  Three input NFC structure for 2 DOF helicopter

Fig. 8  Theta angle two inputs (ne,dy) NFC results
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is started as [ 4 × 27 ] zero matrices. The W matrices are 
changed by ANFIS as on-line to adapt FLC optimally.

Figures 8, 10 shows two-input oscillatory NFC, these 
inputs are normalized error and output derivative. For 
pitch angle, the output of the system is smooth, how-
ever, two input NFC shows small perturbations as seen in 
seventh seconds in Fig. 8. Such type of behavior is more 
effective and more frequent for lower sampling times. As 
seen from Fig. 10, for yaw angle, the two input NFC has 
noise. The same noise was obtained from DC motor NFC 
simulation results in [18]. When this is implemented in 
real system, this noise leads to dynamically instability. 
The control signals are given in Figs. 9, 11 for two input 

NFC. It is seen from the figures that the psi angle control 
signal is noisy. So, it is clear that the two input structure 
is not enough for highly nonlinear cases.

As seen from Figs. 12, 14, three input (e,dy,sume) NFC 
results have no overshoot and noise. Besides, their control 
signals are noiseless (Figs. 13, 15).

When the NFC controllers are compared to LQR+I con-
troller to show better the performance of the proposed 
controller, it is seen in Fig. 16, steady-state error is zero for 
the three controllers. NFCs have not any overshoot but 
LQR+I has overshoot as shown in Fig. 16. The settling times 
of NFCs are smaller than LQR+I settling times. As seen in 
Fig. 17 in the tenth and twentieth seconds there are some 

Fig. 9  Theta angle two inputs 
(ne,dy) NFC control signal

Fig. 10  Psi angle two inputs (ne,dy) NFC results
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breakdowns because of the sudden effect of pitch angle 
motions. NFCs give faster answers to the sudden effect of 
pitch angle comparing to LQR+I.

When compared the two and three input NFC, it is 
stated in [33] that two input (error, error derivative) NFC 
controller performance on 2 DOF helicopter is close to 

classical PID. Besides, the two input NFC has some unex-
pected behaviors [33]. The same unexpected behaviors are 
seen in our two input NFC controllers.

Fig. 11  Psi angle two inputs (ne,dy) NFC control signal

Fig. 12  Theta angle three inputs (e,dy,sume) NFC results
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The results are presented in Table 2, it is easy to notice 
that the three-inputs NFC has better settling time and its 

Root Mean Square (RMSE) is smaller than two-input NFC. 
It is noticed that the pitch angle RMSE is nearly same as 
stated in [33] but yaw angle RMSE is very different from 
the LQR+I controller results.

Fig. 13  Theta angle three inputs (e,dy,sume) NFC control signal

Fig. 14  Psi angle three inputs (e,dy,sume) NFC results



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:124 | https://doi.org/10.1007/s42452-020-03984-5

5  Conclusion

In this study, 2 DOF helicopter trajectory tracking is con-
ducted by NFCs and LQR+I controller. The most impor-
tant characteristics of NFC is the ability to change its 
own parameters, therefore it is more flexible to adapt 

itself to any change in the system, even some part of the 
system physically damaged during the operation, it will 
continue hold the system in operation.

In order to show the robustness of the NFC, 2 DOF 
helicopter is chosen as a target model since in this model 
the nonlinear coupling effects were created by the, i.e., 
pitch and yaw effects. Also, by using the NFC, a DC motor 

Fig. 15  Psi angle three inputs (e,dy,sume) NFC control signal

Fig. 16  Comparison of NFCs for theta angle
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is tested and an aircraft is tested by applying pitch, roll 
and yaw effects. For all these cases mentioned, the NFC 
shows strong performance to control the systems. This 
system developed can be applied to any mechanical 
system which has nonlinear behavior to be controlled.

By comparing the NFC structures, it was decided 
which would be the most suitable structure and this 
structure will be used in future studies. In future works, 
the NFCs that is stated in this paper will be implemented 
to air vehicles like quadrotor and tilt rotor unmanned 
aircrafts. Type-1 and interval type-2 FLCs will be tested. 
However, it is known that online trained interval type-2 
FLC is a challenging problem. The classical ANFIS can 
not be used to train interval type-2 FLS parameters. To 
overcome this challenge, we developed an ANFIS train-
ing model by modifying Karnik-Mendel Algorithm. This 
new algorithm is tested and it will be used to control air 
vehicles.
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