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Abstract
As the industrial environments become more competitive, managing specific inventory levels and coordination between 
channel members of a companies supply chain is very much crucial. In this paper, we have analyzed a two-echelon sup-
ply chain containing a manufacturer and a retailer in which the manufacturer offers a single product to the retailer and 
the retailer takes the responsibility of managing the inventory of the product. The products deteriorate at the retailer 
warehouse at a constant deterioration rate. We have generalized our model for two different demand functions faced by 
the retailer from the customers’ side. The demand functions are (a) a linear function of price (b) an iso-elastic function of 
price. The shortage is also allowed and partially backlogged with a constant backlogging rate. Total profit of the supply 
chain under two different demand scenarios is evaluated for a joint centralized coordination. The prime objective of our 
paper is to compare the total profit under two different demand functions in joint centralized coordination such that the 
channel member can decide their optimal sales price, inventory scheduling of retailer, ordering lot size to maximize the 
total profit. A numerical example has been illustrated to validate the theoretical results. Also, sensitivity analysis of some 
key parameters is carried out which gives some managerial applications. The findings of this paper demonstrate that 
linear demand would increase the joint profit of a centralized system. This analysis has an important guiding significance 
for the supply chain coordination of deteriorating items under linear and iso-elastic demand.

Keywords  Supply chain · Inventory · Deterioration · Price-sensitive demand · Partial backlogging · Shortage

1  Introduction

Inventory is the source of a large part of the costs of organ-
izations which affects directly the pricing strategy. When 
products are purchased from an outside supplier it is also 
necessary to deal with the replenishment time for best 
optimal decisions. Decision-maker uses price as a deci-
sion variable which needs to be optimized and demand is 
also considered as price-sensitive [2, 4]. Hence pricing and 
inventory control are necessary to increase the ability of 
an organization to be competitive in the market and it is 
also very eminent when considered product deterioration. 
Deterioration of various products is a natural occurrence 

for production inventory which occurs due to damage, 
dryness, evaporation, spoilage, etc. It also reduces the 
quality and quantity of stored products. In recent studies 
of the inventory model, many researchers have investi-
gated their models with deterioration of products [12, 18, 
24]. To evaluate the pricing and inventory strategy, non-
instantaneous deterioration of items was considered in an 
EOQ model under price and time-sensitive demand [15]. 
Food wastage was decreased through pricing strategy and 
maximize the profit under price-sensitive demand in [27]. 
An inventory mechanism with a price-dependent demand 
pattern evaluated the order amount, sales price, and cycle-
length of deteriorating product [5]. Other factors like 
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advertising play a key role in pricing decisions of deterio-
rating inventory model in [9].

In many earlier studies, the demand function is 
assumed to be constant. But for a variety of items like soft 
drinks, fruit juice, detergent, etc. this assumption is vio-
lated and demand is often assumed as iso-elastic [13] and 
infrequently depend on selling price. The exponential and 
negative power of the price form of demand curve was 
used to determine optimum cycle length, deteriorating 
length, and sales price of a deteriorating inventory model 
[17]. Optimum sales price, replenishment number, and 
full-cycle length for iso-elastic price-sensitive demand in 
a deteriorating EOQ model were discussed in [14]. An EOQ 
model for deteriorating items that specify the demand 
explicitly in the multivariate form of price, freshness, and 
display of stocks in [8]. Two different demand function 
with iso-elastic price-sensitive form and linear price- and 
stock-sensitive demand form has been discussed in [20] to 
study a deteriorating inventory model for different credit 
periods.

All of the above literature, various policies are deter-
mined for a single decision-maker to optimize its own 
performance. In today’s competitive market, organizations 
and businesses have enlarged their profitability by utiliz-
ing co-ordination strategy. Supply chain management 
is considered the most advantageous ways to enhance 
benefits for the organization. Today, rapid urbanization 
and competing global markets increase the importance 
of coordination between independent organizations. In a 
coordinated supply chain, various channel members work 
jointly to minimize system-related costs and get competi-
tive advantages. An integrated inventory system for one 
supplier-one customer problem has been performed in 
for companies’ supply chain management mechanism 
[11]. The profit of a manufacturer-retailer supply chain 
was maximized with the level of inventory-dependent 
demand under discount contract [28]. Different supply 
chain policies containing a manufacturer and a retailer in 
which upstream member retailer inventory contains multi-
ple costs for price and inventory-level-dependent demand 
[21]. An enmesh marketing and operations deal with infor-
mation asymmetry and its profitability implications under 
rebates, as the trade incentive of interest in a two-stage 
supply chain has been discussed in [3, 19]. An integrated 
inventory model for a single manufacturer and multiple 
buyers under price-sensitive demand studied in [1].

Supply chain members manage their inventory level 
and faced deterioration of products during stock due to 
different geographical locations. Many studies such as [22, 
26] analyze the pricing strategy and inventory decisions 
of deteriorated products through supply chain structure. 
To minimize the cost of deteriorating items, a two-layer 
supply chain mechanism has been established in [6] to 

evaluate replenishment time and total credit under con-
stant demand. A two-stage supply chain mechanism con-
sidering the deterioration of product with linear price-
sensitive demand was discussed in [7].

The decision-making process of an organization is 
characterized as centralized and decentralized. In a cen-
tralized structure, a central decision-maker controls the 
chain’s desired outcome such that all the members of the 
chain can gain together. This decision-making process is 
our present paper concern. In the decentralized structure, 
each channel member autonomously picks his techniques 
and therefore the general framework effectiveness may 
not necessarily be optimized. A decentralized structure of 
supply chain with linear selling price-dependent demand 
to optimize sales price, number of shipments, and cycle 
length for minimizing overall cost were studied in [23]. 
A manufacturer-retailer supply chain mechanism was 
illustrated under the linear and iso-elastic pattern of the 
price-sensitive demand function for both centralized and 
decentralized structures in [10]. A closed-loop supply 
chain model was addressed for re-manufactured products 
under price-sensitive for both centralized and decentral-
ized cases in [16].

In Table 1, we have summarized some main assump-
tions and objectives of the recent literature to make it 
simpler for the readers to appreciate the contribution of 
our model. There are lot of researchers generalized differ-
ent decision-making strategies for different demand pat-
terns under a single decision-maker as well as multiple 
stages containing supply chain model but the purpose 
of this paper how both linear and iso-elastic price-sensi-
tive demand pattern together effect on joint pricing and 
inventory policy of a two-echelon supply chain. We have 
designed a two-echelon supply chain model considering 
various assumptions like deterioration of the product, 
shortage with constant backlogging in-retailer inventory 
but neglect the inventory of the manufacturer. Also, we 
have seen from Table 1 that no work has previously done 
considering the effect of two different demand patterns 
in supply chain scenario. Our model is more prominent 
for the deteriorated products such as fruits, vegetables, 
sweets, etc. The demand for these products is mainly 
dependent on the sales price. These products sell through 
the retailer or directly to the customer and market deci-
sions of the products are managed by the channel mem-
bers together or individually as indicated by their sig-
nificance, singular benefit, and connection. One of the 
practical examples of our proposed model is ice-cream 
factory. During any season, the demand for ice-cream 
increases linearly and nonlinearly with the selling price.

Our investigation contrasts from the earlier studies in 
the accompanying significant aspects. Firstly, we have con-
sidered the demand of the customers (1) linear function 
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of selling price. (2) iso-elastic form of selling price. Sec-
ondly, under price-dependent demand, consideration of 
the deterioration of products plays an important role in 
pricing and inventory decisions to analyze the optimal 
profit of the supply chain. Thirdly, a shortage at the retailer 
warehouse is allowed with a constant backlogging rate 
of � . Fourthly, we study the performance of our proposed 
manufacturer-retailer supply chain in a joint centralized 
structure. Lastly, a comparative study on linear and iso-
elastic demand function on our proposed joint centralized 
supply chain strategy are examined.

Our work aims to compare joint pricing and replenish-
ment strategies throughout the supply chain using two 
different types of demand patterns. The proposed analysis 
gives two aspects of a supply chain model (1) increasing 
profitability from the customer by optimizing sales price 
and order amount of a product under different demand 
scenario, (2) reducing cost of material flow between sup-
ply chain members. The results of considering all these 
demand functions greatly influence the total profit of 
business organizations and their decisions.

The paper is structured as follows. Section 2 is based 
on subsection “Notations and assumptions” of the 
model, “Mathematical Formulation” and the “Solution 

methodology” under centralized coordination with 
theoretical results of the model. In Sect. 3, theoretical 
results are demonstrated by a numerical example and a 
sensitivity analysis is conducted. Lastly, conclusion and 
future research direction are presented in Sect. 4.

2 � Model formulation and solution 
methodology

2.1 � Notations and assumptions

2.1.1 � Notations

The following notations are used to establish the model. 

Notations Descriptions

p Selling price for the item (/unit )
T1 Time length up to zero inventory 

level of the retailer
I1(t) Retailer inventory level at time t 

for the item, 0 < t < T1

Table 1   Summary of existing literature which are closely related to this model

Authors Year Sup-
plychain 
scenario

Demand policy Deterioration Shortages/backlogging rate Objec-
tive func-
tion

Optimal decision

Linear Iso-elastic

[18] 2004 × × ✔ ✔ × Profit Price
Order quantity

[3] 2008 ✔ ✔ ✔ × × Profit Price
Rebate value

[15] 2012 × ✔ × ✔ Allowed/time-varying Profit Price
Time upto zero inventory
Cycle duration
Order quantity

[27] 2012 × ✔ × ✔ × Profit Price
Price discount rate

[21] 2015 ✔ ✔ × × × Profit Price
Order quantity

[23] 2016 ✔ ✔ × × × Cost Price
Number of shipments

[10] 2016 ✔ ✔ ✔ × × Profit Price
Order quantity
Order quantity

[25] 2018 × ✔ × ✔ Allowed/time-varying Profit Price
Order quantity
Replenishment-time

[14] 2019 × × ✔ ✔ × Profit Price
Inventory scheduling

Our contribution – ✔ ✔ ✔ ✔ Allowed/constant Profit Price
Order quantity
Time upto zero inventory
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Notations Descriptions

I2(t) Retailer inventory level at time t 
for the item, T1 < t < T

R(p) Demand rate at time t for the 
item

Q Total order quantity of the item 
(units)

q Retailer on-hand inventory of the 
item (units)

S Backlogging size (units) during 
[T1, T ] of retailer

O Retailer ordering cost of the item 
(/cycle )

T The duration of the cycle
M Manufacturing cost for the item 

( /unit )
w Wholesale price of the manufac-

turer ( /unit )
h Retailer holding cost for the item 

(/unit/time unit )
d Retailer deterioration cost for the 

item ( /unit /time unit)
s Retailer shortage cost for the 

item ( /unit /time unit)
� Deterioration rate for the item
TPM Total profit of the manufacturer
TPR Total profit of the retailer
TP Total profit

2.1.2 � Assumptions

The following assumptions are considered to develop the 
model. 

1.	 The supply chain consists of one manufacturer and 
one retailer with a single-item inventory system.

2.	 Demand rates of the items are considered as (a) 
R(p) = a − bp with b > 0 , price elasticity and a basic 
demand, where a >> b . (b) R(p) = d0p

−k where d0 > 0 , 
is a scaling factor and k > 1 is the price elasticity 
parameter. This form of demand is known as iso-elastic 
demand.

3.	 The on-hand inventory of the products at the retailer 
warehouse deteriorates with a constant deterioration 
rate of � , ( 0 < 𝜃 < 1 ). Also, it is presumed that deterio-
rated products are not replenished during [ 0, T1].

4.	 The supply chain system operates for a prescribed 
period of T units (planning horizon). At time t = 0 
the initial inventory of the retailer is q and t = T1 the 
inventory level of the retailer is zero. Then the shortage 
occurs up to next replenishment time T. Clearly, T > T1.

5.	 Shortages are allowed and partially backlogged with 
a constant backlogging rate � . The shortage period is 
(T − T1).

6.	 Lead time is negligible.

2.2 � Mathematical formulation

In this paper, we consider a two-layered supply chain 
comprising of a manufacturer and a retailer. In Fig. 1, we 
see that the manufacturer delivers the product to the 
retailer at a wholesale price of w. Retailer ordering lot size 
from the manufacturer is Q. Some products are deterio-
rated at retailer inventory which is described elaborately 
in Sect. 2.2.1 and Fig. 2. The retailer faces a demand R(p) 
from the customer side and sells the products at a price p 
to the customer.

Fig. 1   Supply chain structure

Fig. 2   Retailer’s inventory diagram
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2.2.1 � Retailer profit function

The retailer inventory level follows the pattern presented 
in Fig. 2. At the beginning of the retailer inventory cycle, 
inventory starts with an on-hand inventory I1(0) = q at 
time t = 0 . This stock is reduced to meet the customers’ 
demand with deterioration of product and inventory level 
reaches zero at time t = T1 . Then shortage at the retailer 
warehouse appears which is partially backlogged with 
a constant backlogging rate � at time-interval [T1, T ] . We 
mention the amount of backlogging is S. So, the total 
order quantity placed by the retailer to the manufacturer 
is q + S.

During the time interval [0, T1] , the retailer’s inventory 
follows the following differential equation:

with the initial condition I1(0) = q and boundary condition 
I1(T1) = 0 . By solving (1), it yields

Finally, in the interval [T1, T ] , the shortage occurs and 
demand is partially backlogged. Thus, the below differen-
tial equation represents the inventory status during the 
shortage

with the boundary condition I2(T1) = 0 the solution of (3) is

If we put t = T  into (4), the maximum amount of backlog-
ging will be obtained as follows

Then the total order quantity per cycle (Q) is the sum of 
q and S, i.e.,

Now, we have calculated different inventory costs and 
sales revenue per unit time per cycle that consist of the 
following six components: 

1.	 Ordering cost = O
T

2.	 Retailer’s purchasing cost = wQ
T

(1)
dI1(t)

dt
+ �I1(t) = −R(p)

(2)I1(t) = R(p)
[
e�(T1−t) − 1

]
, t ∈ [0, T1]

(3)
dI2(t)

dt
= −�R(p) = −�R(p)

(4)I2(t) = �R(p)(T1 − t), t ∈ [T1, T ]

(5)S = −I2(T ) = −�R(p)(T1 − T )

(6)Q = q + S = R(p)
[
e�T1 − 1

�
− �(T1 − T )

]

(7)=
wR(p)

T

[
e�T1 − 1

�
− �(T1 − T )

]

3.	 Holding cost = h
T
∫ T1
0

I1(t)dt

4.	 Deterioration cost = d
T

[
I1(0) − ∫ T1

0
R(p)dt

]

5.	 Shortage cost = s
T
∫ T

T1

[
− I2(t)

]
dt

6.	 Sales revenue = p
T
∫ T

0
R(p)dt

Therefore, the total profit of the retailer per unit time per 
cycle (denoted by TPR ) is obtained by:

Total profit = Sales revenue − Ordering cost − Purchasing 
cost − Holding cost − Deterioration cost− Shortage cost.

with p > w , w > 0 , p ∈ R+ , T1 ∈ R+.
Rearranging Eq. (12) we get,

with p > w , w > 0 , p ∈ R+ , T1 ∈ R+.

2.2.2 � Manufacturer profit function

There are no different individual cost of the manufacturer. 
The manufacturer makes the products and delivers them 
to the retailer with zero lead time. Products are stored for a 
short period at the manufacturer warehouse. So, we neglect 
deterioration cost, inventory cost and optimized the manu-
facturer overall profit(TPM ) per unit time.

with w > M , w ∈ R+ , T1 ∈ R+.

(8)=
hR(p)

T�

[
e�T1

�
− T1 −

1

�

]

(9)=
dR(p)

T

[
e�T1 − 1

�
− T1

]

(10)= −
s�R(p)

T

[
TT1 −

T 2
1

2
−

T 2

2

]

(11)= pR(p)

(12)

TPR =
pTR(p)

T
−

O

T
−

wR(p)

T

[
e�T1 − 1

�
− �(T1 − T )

]

−
hR(p)

T�

[
e�T1

�
− T1 −

1

�

]
−

dR(p)

T

[
e�T1 − 1

�
− T1

]

+
s�R(p)

T

[
TT1 −

T 2
1

2
−

T 2

2

]

(13)
TPR =

R(p)

T

[
p −

(
w + d +

h

�

)(
e�T1 − 1

�

)
− w�T

+

(
w� + s� + d +

h

�

)
T1 − s�

(T 2
1

2
+

T 2

2

)]
−

O

T

(14)
TPM = (w −M)

Q

T

= (w −M)
R(p)

T

[
e�T1 − 1

�
− �(T1 − T )

]
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2.3 � Solution methodology

The manufacturer and the retailer are both decision-makers 
and they jointly optimize the profit function for both the 
demand scenario. This strategy to solve the mathematical 
model is a centralized system. Let, TP(p, T1) be the joint aver-
age profit function of the supply chain that is the sum of 
manufacturer’s and retailer’s average profit.

with p > w > M > 0 , T > T1 , p ∈ R+ , T1 ∈ R+.
The corresponding optimization problem for the overall 

supply chain can be written as

2.3.1 � Supply chain profit under linear price‑sensitive 
demand

For R(p) = a − bp , the joint average supply chain profit is

with p > w > M > 0 , T > T1 , p ∈ R+ , T1 ∈ R+.

Proposition 1  For a fixed T, the joint supply chain profit 
TP(p, T1) under linear price-sensitive demand is concave 
with respect to p and T1 . For p > w > M and T > T1, the sell-
ing price p and inventory time T1 are obtained by solving the 
following system of equations:

1.	

(15)

TP(p, T1) = TPR + TPM

=
R(p)

T

[
p −

(
M + d +

h

�

)(
e�T1 − 1

�

)

−M�T +

(
M� + s� + d +

h

�

)
T1

−s�
(T 2

1

2
+

T 2

2

)]
−

O

T

(16)

max TP(p, T1)

such that: p > w > M > 0,

T > T1, p ∈ R+, T1 ∈ R+

(17)

TP(p, T1) =
(a − bp)

T

[
p −

(
M + d +

h

�

)(
e�T1 − 1

�

)

−M�T +

(
M� + s� + d +

h

�

)
T1

−s�
(T 2

1

2
+

T 2

2

)]
−

O

T

(18)
p =

1

� − 1

[
s�(T − T1) −M(e�T1 − �)

− (d + h)(e�T1 − 1)

]

2.	

Proof  To find the optimality, differentiating TP(p, T1) with 
respect to p and T1 we get the following,

Equating �TP(p,T1)
�T1

= 0 and �TP(p,T1)
�p

= 0 , we get (18) and (19). 

Due to the complexity of Eq. (19), it is difficult to show 
analytically the expression of time-length up to zero inven-
tory T1 . Using mathematical software, we easily derive T1 
and shown it numerically.

Total profit (TP) is concave in retail price (p) and time-
length up to zero inventory ( T1 ). The second-order deriva-
tive of the profit function is

if a > 2bp holds, since a >> b and T > T1 assumed.
To verify the optimality of Eqs. (18) and (19), we cal-

culate the Hessian matrix (H) of the corresponding profit 
function TP(p, T1) is

(19)

[
a −

2b

� − 1

{
s�(T − T1) −M(e�T1 − �)

− (d + h)(e�T1 − 1)

}]
×

{
T1 + (T − T1)�

}

− b
[
s�
(
TT1 −

T 2
1

2
−

T 2

2

)

− (h + d +M)
e�T1

�
+ (h + d)

(
T1 +

1

�

)

+M
{
1

�
− �(T − T1)

}]
= 0

(20)

�TP(p, T1)

�p
=

(a − 2bp)

T

{
T1 + (T − T1)�

}

−
b

T

[
s�
(
TT1 −

T 2
1

2
−

T 2

2

)

−(h + d +M)
e�T1

�
+ (h + d)

(
T1 +

1

�

)

+M
{
1

�
− �(T − T1)

}]

(21)

�TP(p, T1)

�T1
=

(a − bp)

T

[
p(1 − �) + s�(T − T1)

−M(e�T1 − �) − (d + h)(e�T1 − 1)

]

(22)
𝜕
2TP(p, T1)

𝜕p2
= −

2b

T

[
T1 + (T − T1)𝛿

]
< 0

(23)

𝜕
2TP(p, T1)

𝜕T 2
1

= −
(a − 2bp)

T

[
s𝛿 + (d + h +M)𝜃e𝜃T1

]
< 0

� =

⎡⎢⎢⎣

�
2TP(p,T1)

�p2

�
2TP(p,T1)

�p�T1
�
2TP(p,T1)

�T1�p

�
2TP(p,T1)

�T 2
1

⎤⎥⎥⎦
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Here expressions

To prove the concavity, we have to show that the Hessian 
matrix is negative definite, i.e., principal minors alternate 
their sign starting with a negative sign. Clearly, 
Δ1 =

𝜕
2TP(p,T1)

𝜕p2
< 0 as T > T1.

Since p > w > M and T > T1 , Δ2 > 0 holds (see “Appen-
dix 1”, when Eq. (35) satisfy) then the solution set is opti-
mal. 	�  ◻

2.3.2 � Supply chain profit under iso‑elastic price‑sensitive 
demand

For R(p) = d0

pk
 , the joint supply chain profit is

with p > w > M > 0 , T > T1 , p ∈ R+ , T1 ∈ R+.

Proposition 2  For a fixed T, the joint supply chain profit 
TP(p, T1) under iso-elastic price-sensitive demand is concave 
with respect to p and T1. For p > w > M and T > T1, the sell-
ing price p and inventory time T1 are obtained by solving the 
following system of equations:

1.	

2.	

(24)

�
2TP(p, T1)

�p�T1
=

�
2TP(p, T1)

�T1�p

=
(1 − �)

T
(a − bp) +

b

T

[
(d + h)(e�T1 − 1)

+M(e�T1 − �) − p(1 − �) − s�(T − T1)
]

(25)

TP(p, T1) =
d0

Tpk

[
p −

(
M + d +

h

�

)(
e�T1 − 1

�

)

−M�T +

(
M� + s� + d +

h

�

)
T1

− s�
(T 2

1

2
+

T 2

2

)]
−

O

T

(26)
p =

1

� − 1

[
s�(T − T1) −M(e�T1 − �)

− (d + h)(e�T1 − 1)

]

(27)

(1 + k)
{
T1 + (T − T1)�

}

−

k�(� − 1)

(
TT1 −

T 2
1

2
−

T 2

2

)
[
s�(T − T1) −M(e�T1 − �) − (d + h)(e�T1 − 1)

]

− (h + d +M)
e�T1

�
+ (h + d)

(
T1 +

1

�

)

+M
{
1

�
− �(T − T1)

}
] = 0

Proof  To find the optimality differentiating total profit 
TP(p, T1) with respect to p and T1 we get the following,

Equating �TP(p,T1)
�T1

= 0 and �TP(p,T1)
�p

= 0 , we get (26) and (27).

Again closed form of optimal solutions of T1 for iso-elas-
tic demand could not be obtained due to complexity of 
Eq. (27). So, we derive it numerically in Sect. 3.

The supply chain profit function (TP) is concave in retail 
price (p) and time-length up to zero inventory ( T1 ). The sec-
ond-order derivative under iso-elastic demand pattern are

if

holds for p > w > M , T > T1 and

To verify the optimality of Eqs. (26) and (27), we calculate 
the Hessian matrix (H) of the corresponding profit function 
TP(p, T1) is

(28)

�TP(p, T1)

�p
=

d0

Tpk

{
T1 + (T − T1)�

}

−
d0k

Tpk

[
�

(
TT1 −

T 2
1

2
−

T 2

2

)

−(h + d +M)
e�T1

�
+ (h + d)

(
T1 +

1

�

)

+M
{
1

�
− �(T − T1)

}]

(29)

�TP(p, T1)

�T1
=

d0p
k

T

[
p(1 − �) + s�(T − T1)

−M(e�T1 − �) − (d + h)(e�T1 − 1)

]

(30)

𝜕
2TP(p, T1)

𝜕p2
= −

2d0k

Tpk+1
[T1 + 𝛿(T − T1)]

+
d0k(k + 1)

Tpk+2

[
s𝛿
(
TT1 −

T 2
1

2
−

T 2

2

)

+p
{
T1 + 𝛿(T − T1)

}
+M𝛿(T1 − T )

]

−(h + d +M)

(
e𝜃T1 − 1

𝜃

)
+ (h + d)T1

< 0

(31)

2d0k

Tpk+1

[
T1 + 𝛿(T − T1)

]
+ (h + d +M)

(
e𝜃T1 − 1

𝜃

)
>

d0k(k + 1)

Tpk+2

[
s𝛿
(
TT1 −

T 2
1

2
−

T 2

2

)
+ p

{
T1 + 𝛿(T − T1)

}

+M𝛿(T1 − T )
]
+ (h + d)T1

(32)
𝜕
2TP(p, T1)

𝜕T 2
1

= −
d0

Tpk

[
s𝛿 + (d + h +M)𝜃e𝜃T1

]
< 0.
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Here expressions

To prove the concavity, we have to show that hessian 
matrix is negative definite, i.e., principal minors alternate 
their sign starting with a negative sign. Clearly, 
Δ1 =

𝜕
2TP(p,T1)

𝜕p2
< 0 if

for p > w > M > 0 and T > T1 .
Since p > w > M and T > T1 , Δ2 > 0 holds (see “Appen-

dix 2”, when Eq. (36) satisfy) then the solution set is opti-
mal. 	�  ◻

3 � Algorithm

1.	 Start
2.	 Find TPR and TPM , calculating all inventory cost. Then 

find joint overall supply chain profit TP(p, T1) under 
centralized structure.

3.	 Evaluate �TP(p,T1)
�p

 , �TP(p,T1)
�T1

 simultaneously.

4.	 Solve the nonlinear-dependent equations �TP(p,T1)
�p

= 0 

and �TP(p,T1)
�T1

= 0 by initializing the values of d0 , k, a, b, 

M, h, s, d, � , � and T.
5.	 Choose set of solutions from step 4.
6.	 Evaluate �

2TP(p,T1)

�2p
 , �

2TP(p,T1)

�T 2
1

 and �
2TP(p,T1)

�p�T1
.

� =

⎡
⎢⎢⎣

�
2TP(p,T1)

�p2

�
2TP(p,T1)

�p�T1
�
2TP(p,T1)

�T1�p

�
2TP(p,T1)

�T 2
1

⎤
⎥⎥⎦

(33)

�
2TP(p, T1)

�p�T1
=

�
2TP(p, T1)

�T1�p

=
d0(1 − �)

Tpk
−

d0k

Tpk+1
[(d + h)(e�T1 − 1)

+M(e�T1 − �) − p(1 − �) − s�(T − T1)
]

(34)

2d0k

Tpk+1

{
T1 + 𝛿(T − T1)

}
+ (h + d +M)

(
e𝜃T1 − 1

𝜃

)
>

d0k(k + 1)

Tpk+2

[
s𝛿
(
TT1 −

T 2
1

2
−

T 2

2

)
+ p

{
T1 + 𝛿(T − T1)

}

+M𝛿(T1 − T )
]
+ (h + d)T1

7.	 If the principal minor of the Hessian matrix alternate 
there sign starting with negative, i.e., (−1)jΔj > 0 , here 
j = 1, 2 , then the solution is optimal.

8.	 Evaluate the selling price (p), time length up to zero 
inventory ( T1 ), and then order quantity (Q) as well as 
total profit of the retailer (TP).

9.	 End

4 � Numerical results and discussion

Our mechanism is mainly applicable for the organizations 
which stored deteriorated items like fruits, vegetables, 
sweets, and so on. During any season, the demand for these 
products increases linearly dependent on selling price or 
sometimes negative power of selling price. One of the popu-
lar examples of our anticipated model is (ice-cream factory/
Chocolate factory/bakery/vegetable or food supply chain 
etc.). Due to the linear and nonlinear behavior of demand, 
business organizations can adjust their pricing strategy by 
understanding the market situation and rapid globalization.

4.1 � Numerical example

In this section, to illustrate the applicability of the pro-
posed model, we study a numerical example considering 
the values of the input parameters M = $20 , s = $5 , T = 10 
week are taken from [3], the value of deterioration rate 
� = 0.08 taken from [15] and some of the key parameters 
d0 = 400000 , k = 2.2 , a = 250 , b = 3.2 , � = 0.7 , O = $100

/order, h = $4 , d = $3 are logically chosen based on the 
assumptions presented in Sect. 2.1.

Customer demand for product move proportionately 
with the price changes. We have shown the sensitivity of the 
price-elasticity parameter of linear demand (a,b) in Table 5 
and price elasticity parameter of iso-elastic demand (k) in 
Table 6 and discuss the managerial insights in Sect. 3.3.

4.2 � Solution and discussion

By using software MATHEMATICA, we have evaluated the 
optimum solutions to maximize total profit TP(p, T1) are 
listed in Table 2. The optimality of the proposed model has 
been performed considering the cycle length T=10 weeks 
and then analyze the changes of the optimal solutions under 
different T value for T = 8 , 9, 11, 12 weeks (shown in Table 4). 
To illustrate the concavity of the objective function TP(p, T1) 
the sufficient conditions of the profit function have been 

Table 2   Optimal solution Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗($) p∗ ($) Q∗(units) T ∗
1

 (weeks) TP∗ ($)

T = 10 weeks 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
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evaluated in Table 3. The numerical illustration may help to 
elucidate the comparisons between linear and nonlinear 
behavior of demand functions.

Comparing the results of the supply chain for two dif-
ferent demand strategies, we find that the retail price in 
a linear price-sensitive demand scenario is higher than 
that of the iso-elastic price-sensitive demand scenario. 
Meanwhile, the order quantity and time-length to stock 
out the products as well as the total profit under linear 

price-sensitive demand are greater than those of iso-elas-
tic demand pattern.

Figure 3a shows the concavity of total profit TP(p, T1) 
with respect to p and T1 under linear price-sensitive 
demand. Employing the suggested solution algorithm 
and the result of the proposed mechanism shown in 
Table 2, if the retailer sells the product at p = $53.48 then 
the stock out time of products in retailer’s inventory will 
be T1 = 7.038 weeks and the supply chain will achieve it’s 
highest profit $1761.06 employing the sufficient condi-
tions of Table 3.

Similarly, Fig. 3b shows the concavity of total profit 
TP(p, T1) under iso-elastic price-sensitive demand. From 
optimal Table 2, it is clear that if the retailer sells the prod-
uct at p = $52.47 and able to sells the product at time 
T1 = 6.771 weeks, then the supply chain will achieve its 
highest profit $1457.89 employing the sufficient condi-
tions of Table 3.

From Table 4, it is interesting to show the variation of 
cycle duration T on optimal profit under linear and iso-
elastic price-sensitive demand scenario. Keeping order 
quantity as low as possible for a short duration of the 
cycle, save money on holding and other costs associated 
with the item. Also the retailer sells the product at a lower 
selling price as he invests less on inventory costs. But the 
shortened cycle duration is profitable for an organization’s 
supply chain model. An increase in cycle length sustained 
high-order quantity call for an increase in other costs asso-
ciated with that item. So stock-outs of items are costly and 
they represent the lost sales and failure of supply chain 
coordination for both demand patterns.

4.3 � Sensitivity analysis

Tables 4, 5, 6, 7, 8, 9 and 10 and Figs. 4 and 5 show the 
impact of the percentage change of different cost param-
eters M, h, d, s on optimal selling price (p), optimal order 
quantity (Q), optimal time-length up to zero inventory(T1 ) 
and total supply chain profit (TP). The analysis is conducted 
by changing the value of one of the parameters by −30% , 
−15% , +15% and +30%, respectively, keeping the other 
parameters constant.

Table 3   Value of second-order derivative

Sufficient condition check

2nd order derivative Under linear form Under iso-
elastic form

�
2TP(p,T1)

�p2
−5.8312 < 0 −1.4072 < 0

�
2TP(p,T1)

�T 2

1

−57.517 < 0 −50.741 < 0

�
2TP(p,T1)

�p2

�
2TP(p,T1)

�T 2

1

− {
�
2TP(p,T1)

�p�T1
}2 +329.80 > 0 +69.676 > 0

Fig. 3   Concavity curve of profit function

Table 4   Sensitivity analysis 
with respect to cycle duration T 

Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($) p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

T = 8 weeks 52.65 743.62 6.023 1910.22 49.14 684.27 5.623 1584.46
T = 9 weeks 53.05 827.10 6.535 1834.80 50.78 725.92 6.203 1519.40
T = 10 weeks 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
T = 11 weeks 53.91 988.50 7.531 1688.60 54.20 790.61 7.328 1399.60
T = 12 weeks 54.37 1065.91 8.014 1617.36 55.95 814.99 7.874 1344.50
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Table 5 shows the impact of changes of a, b for lin-
ear demand and table 6 shows impact of changes of k 
for iso-elastic demand in total profit TP and decision 
variables. We change the initial value of some particu-
lar parameters (a, b, k) keeping other parametric values 
unchanged at that time.

Results of sensitivity analysis have revealed that there 
is a significant effect of change in the values of duration 
of cycle T and cost parameters M, h, d, s on the optimal 
Net Profit (TP) as well as on the optimal values of the 
decision variables which are shown in Figs. 4 and 5.

Based on Tables 4, 5, 6, 7, 8, 9 and 10 and Figs. 4 and 5, 
we have the following managerial insights according to 
change the behavior of different parameters. 

1.	 As the manufacturing cost (M) increases, the selling 
price (p) of the retailer increases, ordering lot size (Q) 
of the manufacturer, time-length up to zero inventory 
( T1 ) of retailer warehouse and the total profit (TP) of 
the supply chain decreases as shown in Table 7 and 
Figs. 4a, e and 5a. From an economic viewpoint, when 
manufacturing cost increases retailer prefers to raise 
its selling price to chase more benefits. But under both 
linear and nonlinear demand, the rate of change of 
selling price, ordering lot size is different. Increasing 
manufacturing cost leads to a very low demand under 
iso-elastic price-sensitive demand pattern compared 
to linear price-sensitive demand and fewer products 
have sold out at less time which prompts the retailer 
to increase its selling price at a higher rate in case of 
iso-elastic demand pattern, as a result, this affects a 
negative impact on total supply chain profit. The total 
profit for the iso-elastic demand form is very less com-

Table 5   Sensitivity analysis with respect to linear price elasticity a 
and b 

Linear demand

b p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

a = 280 3.6 53.30 1014.60 7.03 1954.47
3.4 55.60 1055.50 7.12 2208.65
3.2 58.25 1098.05 7.23 2500.09
3.0 61.23 1142.70 7.35 2836.47
2.8 64.63 1189.92 7.49 3227.74

a = 250 3.6 49.07 831.21 6.85 1343.35
3.4 51.14 869.38 6.94 1537.48
3.2 53.48 908.81 7.03 1761.06
3.0 56.12 949.87 7.15 2020.13
2.8 59.16 992.90 7.27 2322.52

a = 220 3.6 44.85 652.95 6.68 847.34
3.4 46.67 688.75 6.75 988.38
3.2 48.72 725.53 6.84 1152.33
3.0 51.04 763.49 6.94 1343.49
2.8 53.70 803.00 7.05 1567.88

Table 6   Sensitivity analysis with respect to iso-elastic price elastic-
ity k 

Linear demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

k
2.0 57.38 1419.50 6.90 3258.80
2.1 54.70 1041.23 6.82 2175.60
2.2 52.47 761.13 6.77 1457.89
2.3 50.60 554.85 6.72 979.70
2.4 49.00 403.57 6.68 659.58

Table 7   Sensitivity analysis 
with respect to manufacturing 
cost M 

Value % Change Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($) p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

M 26 + 30 56.94 735.68 6.377 1269.23 65.58 453.70 6.430 1105.05
23 + 15 55.22 818.45 6.692 1502.18 59.06 578.54 6.593 1258.78
20 0 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
17 − 15 51.71 1008.50 7.419 2048.40 45.80 1042.60 6.965 1725.20
14 − 30 49.94 1120.18 7.843 2367.38 40.12 1416.51 7.150 2099.32

Table 8   Sensitivity analysis 
with respect to holding cost h 

Value % Change Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($) p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

h 5.2 +30 53.58 895.14 6.920 1738.70 52.89 742.06 6.672 1440.84
4.6 +15 53.53 901.88 6.978 1749.76 52.68 751.44 6.721 1449.26
4 0 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
3.4 −15 53.42 915.93 7.098 1772.59 52.26 771.16 6.822 1466.75
2.8 −30 53.36 923.25 7.160 1784.38 52.04 781.53 6.873 1475.84
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pared to the linear demand for increasing manufactur-
ing cost.

2.	 As the holding cost (h) increases, the retailer selling 
price (p) also increase, but the order quantity (Q), time 
length up to zero inventory ( T1 ) reduce so that that the 
total profit (TP) of the supply chain decrease as shown 
in Table 8 and Figs. 4b, f and 5b. Increasing holding 
cost keeps away the retailer to stock more amount and 
sells the product as soon as possible which shortened 
the time-length up to zero inventory. Also, retailer 
slightly increases its selling price for the hope of gain 
benefit. But contrary to retailer expectation, overall 
profit of the supply chain decreases simultaneously 
under both linear and nonlinear demand. The impact 
of the change of holding cost on optimal solutions is 
approximately the same for both linear and iso-elastic 
demand patterns. The physical phenomena implies 
that the retailer should balance their ordering quantity 
based on holding costs.

3.	 As the deterioration cost (d) increases, the overall 
profit (TP) of the supply chain decreases as shown in 
Table 9. From the business viewpoint, it is clear that 
due to increasing deterioration cost the retailer has to 
increase a minimum around on their selling price (p) 
and reduce order quantity (Q) at the optimum level. 
The changes of different optimality are also shown 
in Figs. 4c, g and 5c. Less stock is sold out at a short-
ened period. The impact of both linear and iso-elastic 
demand on the rate of change of optimal solutions is 

approximately the same for increasing deterioration 
cost.

4.	 As the shortage cost (s) increases as shown in Table 10 
and Figs. 4d, h and 5c, selling price (p), inventory time 
( T1 ) increases under both the demand pattern. But 
with the changes in shortage cost, order quantity (Q) 
will increase under the linear demand policy while it 
decreases under the iso-elastic demand policy. Moreo-
ver, increasing shortage cost (due to various phenom-
enon like a quantity discount, price discount, offer-
ing facility, an opportunity of delay in payment, etc.) 
always reduce supply chain profitability under both 
the demand analysis.

5.	 It is observed that when a increases in linear demand 
pattern, market demand will be increased. It indi-
cates the instantaneous growth of ordering lot size. 
As a result, the time-length to stock out the product 
is lengthier and organizations sell the more product 
at more selling price and get higher profit shown in 
Table 5.

6.	 When price-elasticity parameters for both linear and 
iso-elastic demand (b, k) increases demand decreases. 
The organization will bring down the retail price and 
order amount. Fewer products are stock out at less 
time. Due to the fixed replenishment cycle, shortage 
period is lengthened. All these behavior of the price-
elasticity parameter b, k decreases the total profit(TP) 
of the supply chain shown in Tables 5 and 6.

Table 9   Sensitivity analysis 
with respect to deterioration 
cost d 

Value % Change Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($) p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

d 3.9 + 30 53.56 898.49 6.949 1744.20 52.79 746.71 6.696 1445.02
3.45 + 15 53.51 903.59 6.993 1752.57 52.63 753.83 6.733 1451.40
3 0 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
2.55 −15 53.43 914.13 7.083 1769.69 52.31 768.62 6.809 1464.51
2.1 −30 53.39 919.56 7.129 1778.45 52.15 776.30 6.847 1471.26

Table 10   Sensitivity analysis 
with respect to shortage cost s 

Value % Change Linear demand Iso-elastic demand

p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($) p∗ ($) Q∗ (units) T ∗
1

 (weeks) TP∗ ($)

s 6.5 + 30 53.85 927.36 7.421 1729.68 53.95 743.23 6.235 1423.74
5.75 + 15 53.67 918.66 7.243 1744.23 53.21 752.82 6.503 1432.10
5 0 53.48 908.81 7.038 1761.06 52.47 761.13 6.771 1457.89
4.25 −15 53.24 897.53 6.796 1780.80 51.52 773.90 6.470 1480.84
3.5 −30 52.96 884.47 6.508 1804.31 50.36 790.84 6.101 1509.82
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Fig. 4   Changes of p and Q with 
respect to M, h, d and s 

(a) M vs. p (b) h vs. p

(c) d vs. p (d) s vs. p

(e) M vs. Q (f) h vs. Q

(g) d vs. Q (h) s vs. Q
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5 � Conclusion

In this article, we have considered a two-echelon supply 
chain comprising of a manufacturer and a retailer for two 
different demand functions. The demand function of the 
customer is linearly dependent on selling price and iso-
elastic form of the selling price. The manufacturer offers the 
product to the retailer and at retailer warehouse products 
are deteriorated at a constant deterioration rate. The short-
age also occurs at the retailer warehouse which is partially 
backlogged with a backlogging rate � . Under these circum-
stances, the joint profit function of the channel members of 
the supply chain is discussed. We have developed two mod-
els under two different patterns and compare the total profit 
under a joint centralized strategy. The key decision variables 
of our proposed model are the selling price of the retailer, 
optimal time-length up to zero inventory, total supply chain 
profit by which the organization can invest securely for dif-
ferent demand patterns. In our model, we assume the total 
duration of the cycle to be fixed and discuss the profitability 
of a coordinated organization by showing the impact of dif-
ferent time-length of the cycle in Table 4.

A numerical example has been solved to demonstrate 
the proposed algorithm. Through the comparison of two 
different demand scenarios, the retailer sells the product at 
a higher selling price for a fixed period in case of linear price-
sensitive demand compared to the iso-elastic price-sensitive 
form. Moreover, higher selling price and more ordering lot 
size lead to more profit in linear price-sensitive demand.

Sensitivity of some key parameters has been analyzed 
which will give an option in contrast to given strategies in 
the area of supply chain management and construct the 
route for a more extensive application extent of the model. 
The result shows that the change of some input param-
eters has a significant impact on the optimal decisions of 
the supply chain system. Total profit of the supply chain 
decreases for increasing holding cost, deterioration cost, 
shortage cost and manufacturing cost. But,the decreas-
ing rate of total profit is high for increasing manufacturing 
cost which indicates that a lower manufacturing cost is 
more beneficial for the joint supply chain system. In case 
of demand elasticity parameter, the increasing market 
potential is always beneficial for the supply chain system 
but increasing price-elasticity parameter value for both 
the demand pattern causes a loss for the system.

Fig. 5   Changes of Total profit 
(TP) with respect to M, h, d 
and s 

(a) M vs. TP (b) h vs. TP

(c) d vs. TP (d) s vs. TP
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The new major contribution of this paper is a compari-
son of joint profit and optimal decisions under linear and 
iso-elastic demand form and also consideration of dete-
rioration, shortage of product at retailer warehouse com-
pared to the existing literature. This model is applicable for 
the deteriorated products like fruits, vegetables, etc. when 
the market decisions are taken together by both manufac-
turer/supplier and retailer.

In this paper, both the manufacturer and retailer are 
decision-makers and they jointly optimize their profit under 
different demand patterns but we have not discussed our 
model if any of the channel members may not accept to 
participate in the joint centralized model which is a limita-
tion of our model. Different incentive plans could be consid-
ered including a decentralized decision model in the future 
direction. Another limitation is the constant deterioration 
rate which is very common in literature. We may extend our 
model considering time-dependent deterioration at the 
retailer warehouse and for a multi-stage supply chain.
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Appendix 1

Due to complexities of Eq. (35) the condition of △2 > 0 
holds if T > T1 and p > w > M is verified numerically on 
Sect. 3 and also shown the concavity in Fig. 3a.

(35)

△2 =
𝜕
2TP(p, T1)

𝜕p2

𝜕
2TP(p, T1)

𝜕T 2
1

−

{
𝜕
2TP(p, T1)

𝜕p𝜕T1

}2

=
2b(a − 2bp)

T 2

{
T1 + (T − T1)𝛿

}

×

{
s𝛿 + (d + h +M)𝜃e𝜃T1

}

−

{
(1 − 𝛿)

T
(a − bp) +

b

T
[(d + h)(e𝜃T1 − 1)

+M(e𝜃T1 − 𝛿) − p(1 − 𝛿) − s𝛿(T − T1)]

}2

> 0

Appendix 2

Again Δ2 > 0 is verified numerically in our numeric setting 
if T > T1 , p > w > M and shown the concavity in Fig. 3b.
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