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Abstract
The application of pH-responsive superwetting materials receives increasing attention in oil/water separation. In this 
work, a mussel inspired robust surface coating fabricated with dopamine, copolymer PDMAEMA-co-PHEMA-co-PHFBMA 
(PDHH) and  SiO2 nanoparticles (DPS) was formed on stainless steel mesh to perform multiple repeatable oil/water 
separation. Herein, dopamine was chosen to provide strong adhesion strength and durability, endowing the mesh 
excellent stability in harsh environments, such as mechanical abrasion, acid/alkali immersion and UV irradiation. In 
virtue of pH stimulation, the as-prepared mesh can be reversibly switched between superhydrophobicity and superhy-
drophilicity. Moreover, the mesh possesses remarkable oil/water separation efficiency (SE) (≥98%) and desirable recy-
clability. An oil collector prepared by the mesh and kapok fiber showed good oil absorption capability in the range of 
39.67–79.56 g/g. The facile and inexpensive preparation of the durable separation device enables it promising in actual 
oil/water separation.
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pH-responsibility comes from polymeric coatings that 
can reversibly switch their chemical conformation or polar-
ity to change the surface energy and surface wettability 
[29–31]. Zhang et  al. [30] grafted pH-sensitive poly(2-
vinylpyridine)-based block copolymer on non-woven tex-
tiles and polyurethane sponges. The resulted material real-
ized switchable superoleophilicity and superoleophobicity 
and exhibited excellent oil/water separation performance. 
Dai [32] fabricated a three-dimensional structural collagen 
fiber matrix modified by poly(methacrylic acid-co-glycidyl 
methacrylate) copolymer. The functional material can be 
tuned to absorb or release oil with pH variation, which is 
beneficial for recycling the absorbed oil. Yi [33] developed 
a novel membrane based on reduced graphene oxide and 
polyacrylic acid (PAA) grafted carbon nanotube. Benefited 
from the pH-responsive property of PAA, the pore size 
of the membrane can be narrowed in acid solution and 
enlarged in basic solution, providing controllable separa-
tion efficiency (SE) over a wide pH range. However, the 
layer of functional polymer is intolerant toward acids, 
bases and organic solvents, and microscale/nanoscale 
rough structures on surface are inevitably weak towards 

1 Introduction

With the rapid development of industrialization, world-
wide oil spill and industrial oily wastewater have dis-
charged various toxic compounds to the water systems 
and thus threaten the global ecosystem [1, 2]. Superwet-
ting materials, showing different interfacial effects on oil 
and water, are effective means for oil/water separation 
[3–10]. For the purpose of separating the contaminants 
and pure water with higher flexibility, smart response of 
superwetting materials become the most promising mat-
ter since their surface structure could alternate under 
external stimuli such as pH [11–15], light [16–18], tem-
perature [19, 20], electric field [21, 22], gas [23] and pres-
sure [24]. Their stimuli-responsive behavior can result in 
switchable wettability between superhydrophobicity and 
superhydrophilicity, offering different affinity to water and 
oily matters during the separation.

Among these smart switchable materials, pH-respon-
sive superwetting materials with porous structures have 
great advantages on convenient operation, rapid response 
and uncomplicated equipment [25–28]. Generally, the 
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mechanical abrasion [34]. The low stability of pH-respon-
sive materials limits their application in practical oil/water 
separation and can be further optimized.

Mussel-inspired chemistry provides a facile and prom-
ising surface-modification approach to introduce special 
wettability behavior and hierarchical structures onto 
surfaces [35–39]. Polydopamine (PDA) is quite similar in 
molecular structure to the dihydroxyphenylalanine in 
mussel foot proteins. It has been proved to show strong 
adhesive ability on nearly all kinds of substrates, offering 
new opportunities in oil/water separation [40–44]. Huang 
[45] used PDA as a small molecular bioadhesive to pre-
pared the superhydrophobic polyurethane sponge with 
hierarchically structured surface. The as-prepared sponge 
remained excellent absorption capacities towards pump 
oil and chloroform after five absorption cycles. Kang [46] 
presented a durable superhydrophobic glass wool (GW) 
fabricated by the combination of PDA chemistry and 
chemical vapor deposition of polydimethylsiloxane. The 
water contact angle (WCA) of the superhydrophobic GW 
remained above 150° after being kept in diesel and petrol 
for even 30 days. This was attributed to the inherent stabil-
ity of the PDA nanoparticles towards oil.

Herein, we described a facile method to fabricate a 
random copolymer-coated stainless steel mesh with pH-
switchable wettability to efficiently separate oil/water 
mixture, as illustrated in Scheme 1. The dopamine@poly-
mer@SiO2 nanoparticles (DPS) stainless steel mesh was 
fabricated by dipping meshes into dopamine solution 
and then treated with the mixture solution of poly(2-
(dimethylamino) ethyl methacrylate)-co-poly(2-hydrox-
yethyl methacrylate)-co-poly(2,2,3,4,4,4-hexafluorobutyl 
methacrylate) (PDMAEMA-co-PHEMA-co-PHFBMA) and 
 SiO2 nanoparticles. Stainless steel mesh was chosen for 
its high compressive strength, corrosion resistance and 

firmness to provide efficient and durable foundation 
for oil/water separation. In our previous work, the func-
tional copolymer was synthesized by simple free radical 
polymerization [47, 48]. PDMAEMA segments gave the pH 
responsiveness, HEMA segments rose the hydrophilicity 
and the HFBMA segments reduced surface energy. PDA 
enhanced the adhesion between the components and 
 SiO2 nanoparticle provided the required surface rough-
ness. The as-prepared meshes exhibited intelligent pH-
switchable wettability, excellent mechanical and chemi-
cal stability. The microstructure and surface properties of 
the DPS stainless steel meshes were investigated and the 
oil–water SE and recyclability of the mesh were evaluated. 
The mussel inspired durable pH-responsive mesh is prom-
ising in high-efficient oil/water separation.

2  Experimental

2.1  Materials

2-(Dimethylamino) ethyl methacrylate (DMAEMA), 
2-hydroxyethyl methacrylate (HEMA), and 2,2,3,4,4,4-hex-
afluorobutyl methacrylate (HFBMA) were purchased from 
Aladdin Biochemistry Co. Ltd. and were filtered to remove 
the inhibitor through alkaline alumina column for further 
use. Dopamine hydrochloride (98.0%) was purchased from 
Aldrich Chemical Company. Silica nanoparticles (7–40 nm) 
and 2,2′-azobis-(isobutyronitrile) (AIBN) were purchased 
from Macklin Biochemistry Co. Ltd. The stainless steel 
meshes (500 mesh size) were obtained from Shanghai 
Jiya Industrial Wire Mesh Products Co., Ltd. Meshes were 
washed with acetone, ethanol, and deionized water in 
sequence under ultrasonication to remove impurities and 
dried at 60 °C for 24 h. Kapok fiber was purchased from 

Scheme 1  Schematic illustra-
tion of the preparation of DPS 
stainless steel mesh
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Nanning Weiyu Home Textile Co., Ltd. It was immersed into 
ethanol under ultrasonication and dried up for later use. 
Other reagents were used without further purification.

2.2  Synthesis of PDMAEMA‑co‑PHEMA‑co‑PHFBMA

Copolymer PDMAEMA-co-PHEMA-co-PHFBMA (PDHH) 
was synthesized through free radical polymerization with 
following details. A mixture of DMAEMA (12.59 g), HEMA 
(2.60 g), HFBMA (5.00 g), and AIBN (0.16 g) were dissolved 
in purified toluene (100 mL) under ultrasonication and 
then poured into a dry eggplant-type flask with a mag-
netic stirrer. The system was removed oxygen by nitrogen 
gas for 0.5 h and stirred for another 4 h with a thermostat 
at 65 °C under nitrogen protection. The obtained copoly-
mer was precipitated into excessive n-hexane for three 
times and then dried under vacuum oven at 65 °C.

2.3  Preparation of PDA modified stainless steel 
mesh

Dopamine hydrochloride was dissolved in deionized water 
to prepare a solution with a mass concentration of 2 g/L 
and Tris buffer was used to adjust solution pH to 8.5. The 
stainless steel mesh was immersed in the solution for 0.5 h 
under ultrasonication and then stirred for 24 h. After reac-
tion, the PDA mesh was washed by ethanol and water for 
several times and was dried in oven at 60 °C.

2.4  Fabrication of the dopamine@polymer@
SiO2‑coated (DPS) stainless steel mesh

Silica nanoparticles (THF, 1 wt%) and copolymer PDHH 
were dispersed into tetrahydrofuran to form a coating 
solution. The DPS mesh was prepared by immersing the 
PDA mesh into the solution for 0.5 h. The DPS mesh was 
dried in a vacuum oven at 120 °C for 3 h. Finally, after wash-
ing in ethanol to remove residuals, the mesh was dried at 
60 °C. In addition, a coated mesh without being modified 
with dopamine was prepared as polymer@SiO2-coated 
(PS) stainless steel mesh for comparison.

2.5  Fabrication of oil collector

1.0 g  NaClO2 was ultrasonically dissolved in 100 mL deion-
ized water, and acetic acid was added dropwise with a 
syringe until the solution pH was adjusted to 4.5. Then, 
1.0 g kapok fiber was added and was poured into a single-
neck flask equipped with a mechanical stirrer. The reaction 
was stirred at 650 rpm and 80 °C for 2 h. After the reac-
tion, the fibers were washed with deionized water until the 
pH value of the filtrate reached 7. The DPS stainless steel 
meshes were cut into small rectangle blocks (2 × 4 cm) and 

folded into squares (2 × 2 cm). Pretreated kapok fiber was 
filled into the stainless steel mesh bag and the oil collector 
was prepared after the edges were sewed on with fishline.

2.6  Characterization

The morphologies of the as-prepared meshes were 
observed by scanning electron microscopy (SEM, Hitachi 
S-3400N). The WCA of as-prepared material surfaces was 
measured three times by a contact angle measuring 
instrument (JC2000D2) with 2 μL of liquid at ambient 
temperature.

2.7  Oil/water separation experiments

The separation capability of the DPS stainless steel mesh 
was gauged through a simple filtering device. Six differ-
ent kinds of oil–water mixtures (n-hexane, cyclohexane, 
kerosene, dichloromethane, chloroform and carbon tet-
rachloride) were prepared by taking same volume of oil 
and water, using Oil Red O to dye the oil, and mixing the oil 
and water. The SE and flux of the meshes were calculated 
according to following equations:

where  m0 and  m1 are the weight of water or the solvent 
before and after separation, respectively, V is the volume 
of the filtrate, S is the effective filtration area, and t is the 
filtration time.

2.8  Oil/solvent absorption capacity

The oil collector was dipped into various solvents or oils 
until reaching the absorption equilibrium, after that the 
excess liquid was removed for mass measurement. The 
measurement process needs to be fast to avoid solvent 
evaporation. The absorption capacity Q of the oil collector 
was calculated according to the following equation:

2.9  Durability tests

To evaluate the mechanical stability of DPS mesh, a mesh 
loaded with 100 g weight was put on the abrasive paper 
with selected roughness (500CW, 1000CW, 1500CW). For 
each cycle, the mesh was pulled along the ruler for 10 cm. 

SE =
m

1

m
0

× 100%

Flux =
V
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Q =
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The surface morphology was observed and WCA was 
recorded after each 5 cycles.

For the acid/alkali resistance test, DPS meshes were 
immersed into 1 M HCl solution, 1 M NaOH solution, 1 M 
NaCl solution, hot water, and ice water for 1 h, respectively. 
After dried in oven at 80 °C, the WCAs were measured and 
dichloromethane/alkaline water separation performance 
was evaluated.

In the UV-irradiation resistance test, DPS meshes were 
treated under UV irradiation for a series of time periods at 
25 ± 2 °C with a relative humidity of 60 ± 2%. WCAs were 
measured once UV irradiation finished and then heavy oil/
water separation performance was evaluated as above.

3  Results and discussion

The DPS stainless steel mesh was prepared by dip-coating 
of stainless steel mesh into PDA solution and copolymer 
PDHH suspension containing  SiO2, shown in Scheme 1. 
The copolymer PDHH with pH-responsiveness was synthe-
sized via simple radical polymerization (Fig. S1) [47]. The 
FT-IR and 1H NMR spectra (Figs. S2 and S3) indicated that 
the copolymer has been successfully synthesized.

3.1  Surface morphology and pH‑switchable 
wettability of DPS meshes

The surface wettability and morphology of the DPS 
mesh were measured to confirm the dip-coating pro-
cess resulted in the pH-sensitive superwetting surface 
on meshes. Figure 1a revealed that the DPS mesh was 
hydrophobic under alkali condition, and turned hydro-
philic under acid condition. However, the pristine mesh 
absorbed all droplets quickly (Fig.  1b) and exhibited 
nonselective wettability. Acidic water (pH = 1) could be 
fully absorbed within 10 s by DPS mesh (Fig. 1c). In con-
trast, the DPS mesh at alkaline water (pH = 13) showed 

superhydrophobicity with an WCA of 153° (Fig. 1d) due 
to the pH-responsive surface on the mesh (Fig. 1e). Figure 
S4 showed the process in which an alkaline water droplet 
rolled off the DPS mesh with a sliding angle less than 15°.

The surface chemical compositions of three different 
meshes (pristine mesh, PDA mesh and DPS mesh) were 
characterized by XPS spectra in Fig. 2. For the pristine 
mesh, it mainly has the characteristic peaks of C, O and Fe 

Fig. 1  Photographs of the 
acidic water (pH = 1) and 
alkaline water (pH = 13) on the 
(a) DPS mesh and (b) pristine 
mesh. WCA of the DPS mesh 
with (c) acidic (pH = 1), (d) alka-
line (pH = 13) water droplets. 
(e) FESEM image of the DPS 
mesh: magnified 500 times

Fig. 2  XPS spectra of three different stainless steel mesh: pristine 
mesh, PDA mesh and DPS mesh

Table 1  Surface chemical composition of the pristine mesh and 
PDA mesh from XPS spectra

Sample C1s/% O1s/% N1s/% N/C O/C

Pristine mesh 50.3 42.0 3.5 0.069 0.835
PDA (theoretical value) 72.7 18.2 9.1 0.125 0.250
PDA mesh 72.9 18.4 9.0 0.123 0.252
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elements. After modified by PDA, the characteristic peak 
of the Fe element basically disappeared and was replaced 
by the appearance of N element at 399 eV from PDA. The 
N/C and O/C atomic ratios of pristine mesh were 0.069 
and 0.835, respectively, whereas the N/C ratio increased 
to 0.123 and the O/C ratio decreased to 0.252 in PDA mesh 
(Table 1). The ratios were in good agreement with the 
theoretical values of PDA which confirms that PDA was 
uniformly distributed on the mesh.

Moreover, the approximate thickness of dopamine@
polymer@SiO2 layer was estimated by Automatic Mercury 
Porosimeter. The pore diameter before and after the dip 
coating experiments were 36.12 and 35.48 μm, respec-
tively. The DPS layer was about 0.32 μm.

where  d1 is the pore diameter of pristine mesh and  d0 is 
the pore diameter of the DPS mesh.

To further demonstrate the effect of copolymers on 
pH-response, PDHH solutions with different concentra-
tions (0.25, 0.5, 1, 2, 3 wt%) were prepared and used to 
modify the meshes respectively. WCA (Table 2) and surface 
morphologies (Fig. 3) were characterized for comparison. 
After modification by PDHH solutions (0.25, 0.5, 1 wt%), 
a rougher state of surface could be clearly observed due 
to the uniform distribution of polymer and the surface 
roughness increased significantly with the rise of concen-
tration. When pH ≥ 7, the WCA increased to 145.6° with the 
increase of concentration, which was in agreement with 
the results of FESEM. However, as the concentration of 
 PD4H1H1 solution reached 2 and 3 wt%, solution would 
flow during the volatilization of THF, eventually formed 
continuous smooth surface and led to smaller WCA in neu-
tral/alkalic condition. Thus, the concentration of  PD4H1H1 
was optimized as 1 wt%.

The stability of functional coating surfaces is very 
important for their practical applications. However, the 
interaction between the functional coating and substrate 
is usually not strong enough for general special wetting 
materials [49]. The PDA layer was introduced to enhance 
the adhesion strength via the covalent bonds between 
hydroxyl- and amine-functionalized groups [50–52]. 
And a coated mesh without dopamine modification was 

d =
d
1
− d

0

2

Table 2  The WCA of stainless steel mesh modified by polymer solu-
tion of different concentration

Concentration (wt%) WCA (°)

pH = 1 pH = 7 pH = 13

0 0 0 0
0.25 0 137.8 139.0
0.5 0 141.5 142.0
1 0 146.9 145.6
2 0 116.0 120.5
3 0 121.0 131.5

Fig. 3  FESEM images of the (a) non-treated stainless steel mesh and different concentration polymer modified stainless steel mesh, (b) 
0.25 wt%, (c) 0.5 wt%, (d) 1 wt%, (e) 2 wt%, (f) 3 wt%



Vol.:(0123456789)

SN Applied Sciences (2020) 2:2138 | https://doi.org/10.1007/s42452-020-03915-4 Research Article

prepared as PS stainless steel mesh for comparison. As dis-
played in Fig. S5a, the PDHH copolymer and  SiO2 nano-
particles clumped together and piled up at the intersec-
tion of stainless steel wire of PS mesh, nearly blocking the 
mesh. After preprocessed by PDA, the surface of DPS mesh 
was covered by uniformly distributed copolymer and  SiO2 
nanoparticles (Fig. S5b). Moreover, the DPS mesh showed 
stable pH responsiveness under reversible cycles between 
pH = 1 and pH = 13 while the responsive performance of PS 
mesh decreased after two cycles (Fig. 4).

3.2  Oil/water separation performance of DPS 
meshes

The separation property of DPS mesh was investigated 
with sand core filter for different oil/water mixtures, as 
shown in Fig. 5a, n-hexane/acidic water mixture (1:1, v/v) 
was slowly poured into the funnel and was driven only by 
gravity. Acidic water immediately permeated through the 
DPS mesh and flowed into the flask underneath owing to 
the superhydrophilicity whereas n-hexane was blocked 
above the mesh (Video S1). In contrast, when poured the 
dichloromethane/alkaline water mixture (1:1, v/v) into 
(Fig. 5b), dichloromethane rapidly passed through the fun-
nel (Video S2). However, the alkaline water was obstructed 
because the PDMAEMA blocks collapsed in deprotonation 
process and exhibited high repellency to water in alkali 
environment. After filtration, oil and water phases were 
completely separated, and other phases were not pre-
sented in the filtrate.

During the separation, the filtering time and liquid 
weight (before and after separation) were recorded, 
respectively. Therefore, the SE and flux of the DPS mesh 
for different organic oil pollutants were calculated. As 
shown in Fig. 5c, d, the SE of the meshes were all above 
98% for various immiscible oil/water mixtures with only 
slight differences due to the density of oils. After each 
separation, the meshes were washed with ethanol and 
then dried for reuse. To evaluate the recyclability of the 
as-prepared meshes, the separation with the n-hexane/
acidic water and carbon tetrachloride/alkaline water mix-
ture were taken for examples (Fig. 5e, f ). After ten cycles 
of separation, the SE of the DPS meshes were above 97% 
and fluxes were more than 1 × 104 L m−2 h−1.

PS mesh was also tested with n-hexane/acidic water 
mixture for comparison. In the second cycle, the SE 
decreased from 97% to 92%. The oil phase and the water 
phase could not be separated completely and the flux 
increased apparently in the next cycle due to the weak 
adhesion between the coating and the mesh. As displayed 
in Fig. 6a, b, the micro-nano rough structures on the sur-
face of the DPS mesh still existed after ten cycles and 
showed little difference with the original DPS mesh. On the 
contrary, few  SiO2 nanoparticles remained on the surface 
of PS mesh after three cycles (see Fig. 6c, d). The layer of 
copolymer and  SiO2 nanoparticles was obviously peeled 
off, which reduced the surface roughness and changed 
pore size, causing the poor SE and increase of flux. These 
results well proved that the DPS mesh possesses favorable 
recyclable property.

3.3  Durability of DPS meshes in harsh 
environments

The durability of oil/water separating meshes in harsh 
environments, such as mechanical abrasion, acid/alkali 
immersion and UV irradiation, is required in practical appli-
cations. A simple abrasion (Fig. S6) test was performed 
with abrasive papers (500CW, 1000CW, 1500CW) to evalu-
ate the mechanical stability of DPS mesh. The relationship 
between pH-switchable behavior and sliding distance was 
displayed in Fig. 7.

The surface structures on the mesh were destroyed to 
various degree after repeated abrasion. The three dimen-
sional braided structure of the stainless steel mesh and 
the PDA layer protected hierarchical structures almost 
kept inside the DPS mesh (Fig. 8a) whereas the surface of 
PS mesh underwent a serious damage (Fig. 8b). The WCA 
under alkaline conditions gradually declined with the 
increase of the sandpaper roughness and the sliding dis-
tance, nevertheless, the DPS mesh was still pH-switchable 
and superhydrophobic with a WCA of 150 ± 0.5° even after 
40 cycles of abrasion test.

Fig. 4  WCA of DPS mesh and PS mesh for pH conversion cycles 
between pH = 1 and pH = 13
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To verify the durability of DPS meshes towards acidic 
and alkaline environments, we soaked the meshes into 
five various solvents (1 M HCl solution, 1 M NaOH solu-
tion, 1 M NaCl solution, hot water, ice water) for 12 h. After 
immersion, the WCAs were about 150 ± 1° and the SE were 
about 97 ± 0.5% (Fig. 9). These results proved that the DPS 
mesh showed good stability in harsh environments, the 
copolymer and  SiO2 coating didn’t peel off significantly 
due to the adhesion of the PDA.

Oil/water separating materials are inevitably exposed to 
sunlight in outdoor use. As a part of sunlight, ultraviolet 
(UV) light may cause decrease in super-wettability and fur-
ther worsen the oil/water separation performance. Thus, 
WCAs and SE changes of DPS meshes were studied after 
treatment of UV irradiation for various time from 6 to 24 h. 
As shown in Fig. 10, only a slight decrease was observed 
in both WCA and SE after exposure to UV-irradiation. The 
WCAs were about 151 ± 1° and the SE were above 97% 

Fig. 5  Oil/water separation process of (a) n-hexane/acidic water 
mixture and (b) dichloromethane/alkaline water mixture. The oil 
used were dyed with Oil Red O. SE of different oil/solvents mixed 

with (c) acidic water or (d) alkaline water. SE of (e) n-hexane/acidic 
water mixture and (f) carbon tetrachloride/alkaline water mixture 
at different cycles
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even after 24 h exposure. Hence, DPS mesh proved to be 
durable under UV irradiation, making it potentially condu-
cive to long-term outdoor use.

Kapok fiber is a natural plant fiber with low density, 
good buoyancy, huge hollowness and good hydropho-
bicity. These characteristics endow kapok fiber higher oil 
sorption performance than common natural materials and 
commercial oil sorbent [53, 54]. Pristine kapok fiber assem-
bly is difficult to retain oils effectively due to its smooth 
wax-covered surface and pectin coatings (Fig. S4). To 
remove the coatings, the kapok fiber was pretreated with 
 NaClO2 solution. In this work, we designed an oil collector 
with kapok fibers and DPS meshes. The as-prepared oil col-
lector was placed on neutral water/Red O dyed n-hexane 
(Fig. 11a). n-Hexane passed through the mesh and was 
absorbed by the oil collector within a few seconds, leaving 

Fig. 6  FESEM imagines of 
DPS mesh after separating 
n-hexane/acidic water mixture 
for ten cycles: (a) magnified 
500 times, (b) magnified 5000 
times. PS mesh after separating 
n-hexane/acidic water mixture 
for three cycles: (c) magnified 
500 times, (d) magnified 5000 
times

Fig. 7  WCA of DPS mesh after each 50 cm sliding distance on dif-
ferent sandpapers

Fig. 8  FESEM imagines of (a) 
DPS mesh and (b) PS mesh 
after 500 cm sliding distance 
on 500CW sandpaper
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the clear water phase without any visible oil droplets. The 
superhydrophobicity of the DPS mesh and the oleophi-
licity of kapok fibers in neutral environment played the 
vital role. Besides, the oil collector can also absorb heavy 
oil in water (Fig. 11b). At first, the oil collector floated on 
water in a hydrophobic situation. Once the oil collector 
was pressed into water and contacted the oil, the oil was 
quickly absorbed. The collector showed excellent selective 
absorption performance for the oil phase in water.

Moreover, the collector filled with 0.05  g of fiber 
assembly was used to evaluate the absorption capaci-
ties for twelve types of common oil pollutants in daily life 
and industry. As shown in Fig. 12, the absorption capaci-
ties of the oil collector for these oils were in the range of 
39.67–79.56 g/g, much higher than some other oil-absorb-
ing materials such as a biomimetic polypropylene foam 
(9.4 g/g) [55], electrospinning carbon nanofibrous mem-
brane (44.9 g/g) [56] and [ADT-(CF3)2] modified polyure-
thane sponge (35.0–77.2 g/g) [57].

4  Conclusion

In summary, a durable DPS stainless steel mesh has been 
successfully fabricated by dip-coating of mesh into PDA 
solution and random copolymer suspension containing 
 SiO2 nanoparticles. The DPS mesh is pH-switchable wet-
tability between superhydrophilicity-superoleophobicity 
and superhydrophobicity-superoleophilicity. The resulted 
mesh exhibited remarkable oil/water SE ≥ 98%) and desir-
able recyclability. The WCA of DPS mesh was about 150 ± 1° 
and the SE remained above 96% after abrasion test, acidic/
alkali solution immersion and UV irradiation, exhibiting 
good durability in harsh environments compared with PS 
mesh due to the strong adhesion of PDA. Furthermore, 
an oil collector with excellent oil absorption capacity 
(39.67–79.56 g/g) was developed by as-prepared mesh 

Fig. 9  The WCA and SE of DPS mesh after immersion into different 
solutions

Fig. 10  The WCA and SE of DPS mesh after treatment of UV irradia-
tion for various time from 6 to 24 h

Fig. 11  Optical images of the process of DPS mesh selectively 
absorb (a) light oil (n-hexane) and (b) heavy oil (dichloromethane)

Fig. 12  Absorption capacity of oil collector to oil/solvent
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and kapok fiber. The facile fabrication, switchable wetta-
bility, together with excellent durable stability, made the 
DPS mesh promising in large-scale oil/water separation.
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