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Abstract
Risk of sudden collapse of any industrial plant increases if small magnitude incipient faults are not detected at an early 
stage. The paper proposes an optimized Monte Carlo deep dropout neural network (MC-DDNN) to identify incipient 
faults of sensors installed in wastewater treatment plants using the historical dataset of the plant . Such faults usually 
remain invisible or are misinterpreted as noise signals due to their small magnitude but can be overcome by the proposed 
method. MC-DDNN easily identifies the incipient faults of sensors installed in a simulated wastewater treatment bench-
mark model as well as sensors installed in a real industrial plant. The tabulated results show the estimated probability of 
incipient fault in terms of percentage probability as detected by the MC-DDNN. The dissolved oxygen (DO) sensor incipi-
ent faults in benchmark simulation model (BSM2) are detected with probability ranging from 4.9% to 23.4% and DO, pH 
and mixed liquor suspended solids (MLSS) sensors of effluent treatment plant (ETP) are detected with probability ranging 
from 0.07% to 11.43%. This estimated probability of faults indicates the small magnitude of the faults and hence proves 
that the method is capable of identifying faults at an early stage to issue warnings for early maintenance of the plant.
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1  Introduction

Sensors are the key components of Industry 4.0 which are 
becoming mandatory for most of the industries. Industry 
4.0 or fourth industrial revolution started in 2011 and aims 
to make industrial processes much more operationally 
efficient, productive and automated [17, 22]. To achieve 
these objectives, the main component connecting the 
real world to the engineered system must give correct 
information. This key component connecting the real 
world and engineered system is known as a sensor whose 
fault may cause the system to compromise in operation 
and sometimes may cause the whole system to suddenly 
shut down even risking lives or resulting in irreparable 
damages [21]. In order to prevent such situations and to 
achieve increased reliability, timely sensor fault detection 

is required [3]. Specifically, if the fault is detected as soon 
as it starts to appear, preventive maintenance can be made 
well in advance so as to avoid the sudden collapse of the 
system. Faults that has just started are known as incipient 
faults and their occurrence shows gradually and slowly. 
Also, incipient faults are often confused to be noise sig-
nals or uncertain behaviour of the system. The detection, 
therefore, becomes more elusive than the traditional fault 
detection methods [19, 24].

Although incipient sensor faults occur commonly both 
in linear and nonlinear systems and have practical signifi-
cance, they have received less attention in the past and 
only from 2015 research focusing incipient sensor faults 
are seen [15, 30, 33]. Initially, sensor incipient fault detec-
tion was popular in aircraft fault detection and mainte-
nance [9, 29] but with increasing demand of effective 
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fault diagnosis in industries, sensor fault detection has 
become popular in rotating machinery [8, 34, 35], train air 
brake system [26, 31], industrial cyber-physical systems [6], 
nuclear power plants [10], simulated models of continuous 
stirred tank reactor and tennessee eastman process [27, 
32] and traction systems [12].

Fault detection and diagnosis (FDD) in general is classi-
fied into three categories: model based, signal based and 
data based [13]. The first and the second categories require 
system experts and at the same time is costly because of 
which these methods become inconvenient for complex 
systems. The third category, data-based FDD, does not 
require previous knowledge of the system and is easy to 
implement. They are in demand recently and is becom-
ing popular. The data-based techniques have also shown 
better performance in real-time operation of engineered 
systems and give minimum false alarm rate as compared 
to the traditional methods of the [18–20].

These data-based methods can be subclassified into 
two categories: statistical analysis based and machine 
learning based [23]. The available incipient fault detec-
tion and diagnosis works mostly use statistical analysis and 
observer-based methods to detect and diagnose sensor 
incipient faults [7, 18]. But the machine learning-based 
techniques remain unexplored for sensor incipient fault 
detection and diagnosis. This motivated the authors to 
explore the different machine learning data-based tech-
niques for sensor incipient fault detection.

The deep neural network is one of the machine learn-
ing techniques which is reliable and effective in indicat-
ing incipient faults [13]. It is a supervised learning method 
which requires labelled data for training. But labelled 
incipient fault data are practically not available in most 
of the cases. For such unseen faults, Monte Carlo dropout 
(MC dropout method) proves to be effective in both detec-
tion and diagnosis of incipient faults using uncertainty 
estimates [13].

Fault detection in sensors of the wastewater treatment 
plant (WTP) using deep neural network performs effec-
tively for timely and automatic WTP management. [18]. 
Now, because of the increasing environmental concern 
WTPs in all industries and municipalities are expected 
to be fully functional and also updated for automation. 
In such a situation, if fault detection is done as soon as it 
occurs, it will save time as well as money. Incipient fault 
detection is a possible direction to improve the automa-
tion of WTPs. In consideration of this, the authors have 
contributed the following: 

1.	 Propose an optimized MC deep-dropout neural net-
work method to improve the learning of the neural 
networks and at the same time detect and diagnose 
the incipient fault of sensors installed in WTPs.

2.	 The proposed method is applied to sensors in a waste-
water treatment benchmark simulated model using 
the self-generated historical dataset of the same plant.

3.	 The proposed method is validated in three sensors 
installed in a petrochemical industry ETP dataset to 
verify its applicability in a practically operating plant.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses the optimized MC deep dropout neural network 
method and the environments to which the proposed 
method is applied, and Sect. 3 discusses the circumstances 
in which the data are collected and how the incipient fault 
detection is achieved. This is followed by the conclusion 
in Sect. 4.

2 � Methodology

2.1 � Dataset description

The proposed incipient fault detection method is imple-
mented in a simulated and a real dataset listed below to 
verify its application in practical cases. 

1.	 Simulated wastewater treatment plant model known 
as benchmark simulation model 2 (BSM2).

2.	 Effluent treatment plant of Guwahati Oil Refinery.

2.1.1 � Benchmark simulation model 2

BSM2 proposed by COST action group 624 and IWA Task 
group is a popular wastewater treatment benchmark 
model [2].

The model considers the plant-wide set-up of the WTP 
as shown in Fig. 1. It includes primary, secondary and ter-
tiary treatment representations. Activated sludge reactors 
also known as biological reactors represent the secondary 
treatment of BSM2 and consist of two anoxic tanks fol-
lowed by three aerobic tanks. The sensors connected to 
this part of the plant are explored for experiments in this 
paperwork.

The sensors used in BSM2 are classified into six classes 
based on the response time. This response time is a combi-
nation of the delay time and rise/fall time as per ISO 2003 
norm. The dataset acquired for our experiment is from 
Class A sensors. Such sensors have 1 minute response time 
and are very close to ideal sensors. The different param-
eters obtained from the model after simulation give the 
value as sensed by ideal sensors. Specifically, the dataset 
is generated by introducing different severity level faults 
in terms of percentage fault in the ideal oxygen sensors of 
the activated sludge part of BSM2.
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2.1.2 � Guwahati Oil Refinery data

Guwahati Oil Refinery is IndianOil’s first Refinery and is 
operational since 1962. Since the waste treatment is cru-
cial in oil industries, treatment is done in a treatment plant 
known as effluent treatment plant (ETP). The treatment 
plant has a number of complex instruments connected 
together and is remotely controlled. Different sensors 
installed in the facility provide the raw data to the con-
trolling unit.

The control therefore depends on the readings from 
these sensors, and their fault detection becomes impor-
tant. The earlier we detect the fault the better. And the 
plant operators can perform timely maintenance to avoid 
any sudden failure of the whole set-up. Therefore, the 
proposed incipient fault detection is applied to the three 
sensors installed in the effluent treatment plant. The past 
sensor readings are collected for two years at a sampling 
rate of 1 day from IOCL Guwahati, and size of the acquired 
dataset is increased by linear interpolation. This modified 
dataset is used for incipient fault detection of the sensors 
in the present working condition.

Training data for incipient fault are generated by intro-
ducing faults in the dataset because the available sensor 
data are from an errorless functional sensor installed in the 
plant. For the experiments, the available data are normal-
ized and considered as the reference.

2.2 � Proposed approach

The proposed method is summarized in Fig. 2. The MC-
DDNN is applied to a single sensor error data from BSM2 
to find the network training epoch and dropout for the 
assumed dataset. The learning rate (�) is the measure of 
change of weight per time and is assumed to be 0.01 so 
that the output easily converges to the desired prediction 
[16]. The optimized parameters of the network are then 
used to predict the incipient fault of multiple sensors in 
the BSM2 and a petrochemical industry ETP.

Dropout is a regularization technique used in deep 
neural networks to increase the generalization capacity of 
deep neural networks and improve the overfitting problem. 
Nodes in each layer of the deep neural network are dropped 
randomly during training to induce randomization in the 

Fig. 1   Plant layout of benchmark simulation model 2
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network and increase the number of neural networks [1, 13, 
28].

Figure 3 shows the structure of a dropout implementa-
tion to the deep neural network after dropping out some of 
the nodes from two hidden layers. The nodes marked with a 
cross are dropped out of the network. Also, the connections 
with the dropped node are deactivated during this dropout. 
Therefore, the contribution of these dropout nodes with-
draws temporally for both forward and backward pass dur-
ing the training of the deep neural network.

Using the probabilistic approach, a random output vari-
able after passing through the pre-activation of a node has 
an output [14]

where �i and �b are the gating variables which decide the 
exclusion of the node from that particular training ses-
sion. � here is assumed to be Bernoulli random variable. It 
deletes the node inputs and its connecting weights with 
probability P(�i = 0) = qi and selects the remaining nodes 

(1)v =

n
∑

i=1

wi ∗ �i ∗ xi + b ∗ �b

with probability P(�i = 1) = pi . � in dropout calculations is 
assumed to be independent of each other, the connect-
ing weights and the activity of the nodes. w and b are the 
learning parameters [5].

This random output after passing through the activation 
function f (⋅) becomes

Therefore, the deep dropout neural network in Fig. 3 has 
the following outputs at the hidden layer 1.

Similarly, the outputs at hidden layer 2 are

(2)y =f (v) = f

(

n
∑

i=1

wi ∗ �i ∗ xi + b ∗ �b

)

(3)⟹ y =f (v) = f (W ∗ �i ∗ x + b ∗ �b)

(4)v1 =W1 ∗ �1 ∗ x + b1 = W1 ∗ h0 + b1 ∗ �b1

(5)h1 =g(v1) = g(W1 ∗ �1 ∗ h0 + b1 ∗ �b1)

(6)v2 =W2 ∗ �2 ∗ h1 + b2 ∗ �b2

Fig. 2   Schematic of the proposed method
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Estimated output after passing through the deep dropout 
neural network is obtained at the output layer which is the 
third layer in this case. The output is given by

The output vector ŷi is a function of xi similar to the deep 
neural network without dropout. Inclusion of dropout in 
the network gives the generalized output as

where x ∈ Rn,Wi ∈ Rn∗n, �i ∈ Rn and bi ∈ Rn

In this technique, randomly dropping of nodes from 
the network during training will force the other activated 
nodes to learn the information about the input–output 
relation of the feed in data. This happens again and 
again, and the network generalizes in a better way with-
out memorizing the pattern. And each training dataset 
experiences independent randomization.

The estimation during test time is, however, deter-
ministic. All the nodes are present along with the con-
nections, and the weights are adjusted according to the 
dropout ratio as W ∗ �i . A dataset is represented by a 

(7)h2 =g(v2) = g(W2 ∗ �2 ∗ h1 + b2 ∗ �b2)

(8)v3 =W3 ∗ h2 + b3

(9)hL =O(v3) = O(W3 ∗ h2 + b3) = ŷi

(10)
ŷi = f (xi) = O(W3 ∗ g(W2 ∗ 𝛿2 ∗ g(W1 ∗ 𝛿1 ∗ x

+b1 ∗ 𝛿b1) + b2 ∗ 𝛿b2) + b3)

constant input vector, and the expectation of all the 
available nodes is considered for the output which is 
given by

So, one set of test data will give the same output label 
each time it is passed through the trained deep neural net-
work. The output is the average of an ensemble of deep 
neural networks. Therefore, the network gives better accu-
racy using this ensemble concept.

Monte Carlo dropout technique introduces the same 
concept of inducing randomness in the test time in addi-
tion to the training time [11, 13]. In this method, one 
set of test data will give different outputs each time it 
is passed through the trained network based on the 
selected nodes. So the random or the estimated outputs 
are considered as probabilistic distribution and inter-
preted as Bayesian interpretation. This is represented as 
a percent probability of the estimates.

The proposed approach optimized MC deep-drop-
out neural network (optimized MC-DDNN) detects and 
diagnoses the sensor incipient fault efficiently with two 
methods augmented to the deep neural network: cross-
entropy and dropout. The cross-entropy function opti-
mizes the network’s learning capability and the dropout 
to handle the overfitting of the network.

(11)
E(h3) = ŷi = O(W3 ∗ g(W2 ∗ p2 ∗ g(W1 ∗ p1 ∗ x

+b1 ∗ pb1) + b2 ∗ pb2) + b3)

Fig. 3   Dropout representation
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Table 1   Number of nodes in each layer of the optimized MC-DDNN

Layer Number of nodes (sin-
gle sensor fault)

Number of nodes 
(multiple sensor 
faults)

Input layer 35,040 105,120
Hidden layer 1 1400 1400
Hidden layer 2 1400 1400
Hidden layer 3 1400 1400
Output layer 3 4

Algorithm 1 and flowchart in Fig. 4 summarize the 
proposed optimized MC-DDNN. The network consists 
of one input layer, three hidden layers and one output 
layer. The number of nodes in each layer is given in 
Table 1. A number of nodes in the input and output lay-
ers are selected based on the number of input features 
and output classes, respectively. A number of hidden 
layers are selected randomly to improve the learning 
rule of the deep neural network. Sigmoid activation 
function is used in all the input, hidden and output 
nodes of the network.

The proposed network is initially trained and tested 
with the same dataset. After that unseen incipient faults 
are tested to check the network’s efficiency if an unseen 
fault is applied as input. This is a supervised learning 
method where the weights are adjusted and updated 
as per the input–output characteristic of the data. In 
the process of updating the weights, the network tries 
to minimize the cross-entropy function to optimize 
the learning of the network. Cross-entropy function is, 
therefore, the cost function and depends on the actual 
output and the estimated output. It is given by

where n is the number of output nodes, y is the actual out-
put from the training data, and ŷ is the estimated output 
at the output nodes of the network.

During training and testing, p% of the nodes in 
each hidden layer is randomly assigned zero value or 

(12)J = f (y, ŷ) =

n
∑

i=1

{−yln(ŷ) − (1 − y)ln(1 − ŷ)}

dropped out. This dropout generalizes the data in a bet-
ter way.

3 � Experimental results and discussion

3.1 � Case A

A wastewater treatment simulation case study using 
BSM2 is used for our first experiment. It is performed in 
two stages as explained below: 

1.	 dataset generation by introducing faults in sensors in 
the simulation model for two conditions: first single 
sensor fault condition and second multiple sensors 
fault condition

2.	 detecting and diagnosing incipient faults using the 
optimized MC-DDNN for both the single and multiple 
sensor fault conditions.
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First, the BSM2 model is simulated in MATLAB by intro-
ducing two different types of fault: incipient fault and 
abrupt high magnitude fault in the DO sensors inside 
the model. For incipient fault, we have introduced 5% , 
10% , 15% and 20% fault in the DO sensor connected to 
the fourth tank of the biological reactors. The DO sensor 
data are stored for the different conditions at 15 min-
utes sampling time. Similarly, for high magnitude faults, 
we have introduced 80% , 85% , 90% and 95% faults in the 
same DO sensor and simulated the model to generate 
the DO sensor data. The DO sensor considered here is a 
Class A sensor as defined in the BSM2 description. Thus, 

8 training and validation datasets having 35, 040 obser-
vations are generated.

Next to identify the incipient fault, a deep neural 
network with one input layer, three hidden layers and 
one output layers are used. The deep neural network is 
trained for 100 times with � = 0.01, and dropout rate var-
ied from 0.1 to 0.3. Here, dropout rates 0.1, 0.2 and 0.3 

Fig. 4   Flowchart of the proposed method

Table 2   Estimated value of single sensor incipient faults in BSM2 
using optimized MC-DDNN at different dropout rates for 100 train-
ings (in % probability)

Actual data Estimated with 
0.1 dropout

Estimated with 
0.2 dropout

Estimated 
with 0.3 
dropout

100 epochs
Ref 96.26 53.19 54.18
I05 99.9 44.17 42.28
I10 95.64 58.00 44.21
I15 100 45.11 48.21
I20 99.99 27.99 41.82
HM80 100 20.26 54.76
HM85 100 42.84 59.39
HM90 100 29.92 52.04
HM95 100 45.46 53.74

Table 3   Estimated value of single sensor incipient faults in BSM2 
using optimized MC-DDNN at different dropout rates for 1000 and 
10,000 trainings (in % probability)

Actual data Estimated with 
0.1 dropout

Estimated with 
0.2 dropout

Estimated 
with 0.3 
dropout

1000 epochs
Ref 100 79.73 100
I05 100 0 0.02
I10 100 0.03 0.06
I15 100 0.14 0.04
I20 100 0 99.98
HM80 100 100 99.97
HM85 100 100 99.98
HM90 100 99.73 99.91
HM95 99.92 99.99 0
10,000 epochs
Ref 16.40 1.0000 100
I05 64.81 0.0001 0.08
I10 38.54 0.0001 0.01
I15 65.89 0.0001 0.04
I20 59.40 0.0001 0.15
HM80 99.06 0.9999 99.96
HM85 79.84 1.0000 99.97
HM90 89.53 1.0000 99.98
HM95 81.03 1.0000 99.94
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represent 10%, 20% and 30% dropout, respectively. This 
is done to obtain the best possible training to identify 
the incipient faults.

The data of the reference and all the eight fault con-
ditions are normalized and squared before applying to 
the network. The training data have three output classes: 
no fault, incipient fault and high magnitude fault. After 
training, the learning parameters are fixed which along 
with the deep neural network estimates the classes of 
the validation data.

The network has estimated faults as in Table 2. Esti-
mated fault is expressed in percentage probability. The 
optimized MC-DDNN network with dropout 0.1, 0.2 and 
0.3 predicts the incipient and abrupt fault correctly with 
varying probability. For 0.1 dropout, the faults are pre-
dicted with high probability, but with 0.2 and 0.3 dropout, 
the probability percentage is less. The training is therefore 
increased to 1000 and 10, 000 epochs to teach the learn-
ing parameters more specifically. The prediction results in 
Table 3 show that for 0.1 dropout, the faults are predicted 
correctly with recall 61.53% for both epochs. But with 0.2 
dropout, two cases of incipient faults confuse with the no 
fault condition giving recall of 23.07% and 61.53% and for 
0.3 dropout, one high magnitude fault is falsely predicted 
as no fault condition with recall of 0% and 61.53% . This 
dropout can be interpreted as an inversely proportional 
relation to fault information while training the model.

Therefore, the learning parameters of the 0.1 drop-
out network trained for 100 and 1000 epochs are used to 
estimate the unseen faults of the same plant. The results 
in Table 4 show that the optimized MC-DDNN soft sensor 
estimates the unseen incipient faults correctly even if such 
small magnitude faults are not available in the training data.

Now since in real plants multiple sensors are involved, 
we have assumed a situation of multiple sensor fault of the 
same system. Here, the optimized MC-DDNN soft sensor 
is used to predict the incipient fault and at the same time 
identify the faulty sensor.

The dataset is obtained from BSM2 considering 3 DO 
sensors connected to the third, fourth and fifth aerobic 
tanks of the biological treatment process and consists 
of 4 training and validation datasets having 35,  040 

observations. Similar process as above is used to acquire 
the data for no fault, four sets of incipient faults ( 5% , 10% , 
15% , and 20% fault) and four sets of high magnitude faults 
( 80% , 85% , 90% and 95% faults). Faults are introduced in all 
the three DO sensors separately.

The network is trained for 100 and 1000 epochs 
with dropout rate 0.1, and the learning parameters are 
obtained. The number of training epochs and dropout 
rates is selected based on the performance in the first part 
of this experiment.

This trained network then identifies the unseen faults of 
very small magnitude as in Table 5. It is observed that 100 
epochs trained MC-DDNN estimates the incipient fault with 
random probability for all the three sensor faults. But 1000 
epochs trained MC-DDNN estimates and identifies the incipi-
ent faults in all the three sensors with probability ranging 
from 4.9% to 23.4% which can be interpreted as the percent-
age probability of fault occurrence in the respective sensors.

This indicates that fault has occurred in very small mag-
nitude and will alert the plant operators. The proposed 
MC-DDNN therefore detects and identifies the location of 
occurrence of incipient fault if multiple sensor fault occurs 
in the plant.

3.2 � Case B

The second dataset is from the effluent treatment plant 
of Guwahati Oil Refinery. The experiment is performed in 
three stages: 

1.	 dataset collection from the industry and applying lin-
ear interpolation data augmentation to increase the 
data size

2.	 introducing multiple sensor faults in the data to gener-
ate the training dataset for the network

Table 4   Estimated value of unseen single sensor incipient faults 
using MC-DNN soft sensor in BSM2 (in % probability)

Actual data Estimated with 0.1 drop-
out (100epochs)

Estimated with 
0.1 dropout (1000 
epochs)

I02 0.50 0.03
I04 98.95 100
I06 100 99.94
I08 99.85 99.99

Table 5   Estimated values of unseen multi-sensor incipient fault 
using MC-DDNN for three DO sensors connected to BSM2 with 0.1 
dropout(in % probability)

Actual data Estimated fault 
in DO Sensor 1

Estimated fault 
in DO Sensor 2

Estimated fault 
in DO Sensor 3

100epochs
I02 9.83 13.81 59.91
I04 0.03 1.98 78.80
I06 0.03 9.01 70.60
I08 0.00 0.09 59.51
1000epochs
I02 11.75 4.90 12.98
I04 11.08 11.50 23.04
I06 11.08 11.51 23.04
I08 11.08 11.51 23.04
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3.	 detecting and diagnosing incipient faults using the opti-
mized MC-DDNN for multiple sensor fault condition.

Three important sensors installed in the plant read the 
parameters dissolved oxygen (DO), pH and MLSS and are 
considered for the experiment. Dissolved oxygen and 
MLSS sensor installed at the aeration tank and pH sensor 
installed at the output display the value which is remotely 
stored at sampling rate 1 sample/day.

Two years recorded data of these three sensors are used 
for verifying the applicability of the proposed optimized MC-
DDNN to practically operating industries. The 3 training and 
validation datasets having 732 observations are increased by 
linear interpolation and then normalized for developing an 
optimized and trained MC-DDNN model to detect incipient 
fault in the DO, pH and MLSS sensors of the plant.

The no fault values of DO, pH and MLSS sensors are 
shown in Table 6. Faults in DO, pH and MLSS sensors con-
nected to a treatment plant mostly occur due to fouling. 
Fouling causes drift and bias faults in the sensors [25]. To 
get a more practical insight of the sensor faults, bias is 
introduced in the no fault dataset as [4]

where Xf  is the faulty sensor data, X is the data acquired 
from the sensor in no fault condition, � is a constant offset 
value. � is a linear function of the correct sensor data.

(13)Xf = X + � + noise

The optimized MC-DLSS network is trained using this 
faulty sensor data for 100 epochs and 1000 epochs and 
dropout 0.1. The trained network is then used to estimate 
and identify the unseen sensor incipient fault. The incipi-
ent faults of 2% , 4% , 6% and 8% are validated here. It is 
observed that the probability percentage of estimated 
fault in DO sensor and pH sensor is very small, but it can 
still be interpreted as an faulty condition and hence alert 
the plant operators that there is a probability of incipi-
ent fault in the specified sensor. The MLSS sensor fault 
is indicated with a probability of 5.03% to 8.80% which 
correctly indicates the very small magnitude of the sen-
sor fault. Table 7 shows the predicted probability of the 
detected faults in terms of percentage which overcome 
the challenge of detecting very small magnitude fault. The 
small magnitude incipient fault is sometimes detected as 
fault and sometimes detected as noise, but since the MC-
DDNN network works as an ensemble of models, this is 
combined to detect such faults with less percentage prob-
ability instead of misinterpreting as noise. Therefore, the 
proposed method detects and identifies the sensor incipi-
ent faults in industrial sensors too.

4 � Conclusions

The optimized MC-DDNN detects and identifies sensor 
incipient faults in a BSM2 simulation set-up considering 
both single sensor fault and multi-sensor fault scenarios. In 
the unseen single sensor fault condition, both 100 epochs 
and 1000 epochs trained networks with 0.1 dropout detect 
and identify the sensor incipient faults satisfactory. But in 
the unseen multi-sensor fault condition, the 1000 epochs 
trained networks with 0.1 dropout give better detection 
results. The fault magnitude can be interpreted by the 
estimated probability percentage in this case. The opti-
mized MC-DDNN is also applied to a real-time industrial 
ETP dataset of Guwahati Oil Refinery where monitoring 
is very important. The unseen multi-sensor fault condi-
tion is detected and identified using both 100epochs 
1000epochs trained networks with 0.1 dropout and fault 
magnitude can be interpreted by the estimated prob-
ability percentage. Because of the very small magnitude 
of the incipient faults and the small size of training data, 
the incipient fault estimated probability is also small. This 
can be improved by decreasing the sampling time of the 
sensors or increasing the training data size so that the 
MC-DDNN can have better training. Hence, the proposed 
optimized MC-DDNN proves its worth in the automation 
of real industrial plants and can be applied to nonlinear 
industries for fault detection and diagnosis.

Table 6   Reference values for 
DO, pH and MLSS sensors in 
ETP

Evaluation 
parameter

Value at normal 
operating condi-
tion

DO 0–2 mg/l
pH 6–8.5
MLSS 3000 mg/l

Table 7   Estimated values of unseen multi-sensor incipient faults 
using MC-DDNN for DO, pH and MLSS sensors used in ETP (in % 
probability)

Actual data Estimated fault 
in DO Sensor

Estimated fault 
in pH Sensor

Estimated fault 
in MLSS Sensor

100epochs
I02 1.04 14.71 1.87
I04 0.71 0.54 0.04
I06 0.71 0.54 0.05
I08 0.71 0.54 0.05
1000epochs
I02 11.43 0.07 5.03
I04 1.24 0.09 8.79
I06 1.25 0.09 8.79
I08 1.25 0.09 8.80
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