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Abstract
Irregular topography induces non-uniform excitation in the supports of large structures such as dams and bridges. The 
present study employs the 3-dimensional boundary element method to achieve the seismic response of Pacoima Dam’s 
valley and compares the numerical results with the real responses recorded during the 2001 Pacoima earthquake. The 
horizontal components recorded on the bottom of the valley are used as the input wave for the analysis. The time history 
of displacements and amplifications of different points are examined. The results revealed that the amplification factor 
enhanced from bottom to the top of the valley for the most frequencies. The displacement amplification ratio reached 
approximately 3 along the valley, suggesting the necessity for considering the non-uniform motions effects on huge 
structures.
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1 Introduction

The accelerograms of an earthquake recorded in different 
locations can be completely different due to many rea-
sons such as the passage effect, reflection, and refraction 
of seismic waves. Also, various soils beneath the supports 
of a structure and irregular topography of the ground can 
make different earthquake-induced motions. Therefore, 
considering non-uniform excitation for seismic analysis, 
particularly for structures with extensive ground contact 
areas can be very important to achieve real responses. 
However, the unavailability of earthquake records in dif-
ferent points of a support leads to numerous difficulties to 
perform non-uniform seismic analyses [1, 2]. The numeri-
cal investigations of topographic effects on the ground 
motion is a method to obtain non-uniform excitation and 
the results can be used instead of the recorded accel-
erograms. Most of the numerical studies have focused 

on 2 or 3 dimensional models with simple geometries. 
Among numerical methods, the boundary element 
method (BEM) is widely employed for the wave propa-
gation of linear media. It is a suitable method to utilize 
in the infinite domains since discretization is performed 
only in the boundaries and the calculation efforts are sig-
nificantly reduced. The present study adopted the three-
dimensional time-domain boundary element method 
(3D TDBEM) to solve seismic responses and the results are 
compared to the recorded non-uniform excitation in a real 
valley.

Freidman and Shaw [3] began to use the 3D TDBEM to 
solve wave propagation problems. Niwa et al. [4] employed 
the TDBEM for elastodynamic problems. Mansur [5], Antes 
[6], and Brebbia [7] proposed time-BEM algorithms for 
elastodynamic problems. Karabalis and Beskos [8] and 
Manolis et al. [9] proposed general three-dimensional 
boundary element algorithms to solve elastodynamic 
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problems based on simplified essential responses and 
Dirac delta essential responses, respectively. Zhao and 
Valliappan [10] studied the scattering of body earthquake 
waves due to collision with valley topography. Then, they 
transferred the responses in the frequency space to the 
time–space by the inverse transformation. Huang and Chiu 
[11] installed 6 accelerogram recorders in Feitsui Dam site 
(in Taiwan) and performed a numerical analysis to evalu-
ate topographic resonance. Using the integral equation 
method in a 2-dimensional valley model and selecting the 
recorded accelerogram on the bottom of the valley as the 
input, they demonstrated that the observed and simulated 
records were in good agreement in terms of displace-
ment and velocity values. Paolucci [12] studied topogra-
phy amplification by a different method. They obtained 
the basic homogenous vibration frequency using the 
Rayleigh method. Then, they calculated the three-dimen-
sional responses of some real features by spectral element 
approximation. Álvarez-Rubio et al. [13] solved the seismic 
responses of different features and suggested the capa-
bilities of the BEM for investigating the seismic behavior 
of 2-dimensional valleys with irregular topographies and 
sedimentary beds. Kamalian et al. [14] and Kamalian et al. 
[15] provided the time-domain formulation of boundary 
elements and combined them with finite elements. Then, 
they used it in the seismic analyses of 2-dimensional devel-
opment sites and the seismic responses of some topo-
graphic features subjected to in-plane seismic waves in 
homogenous and heterogeneous media. Tarinejad et al. 
[16] analyzed the effects of topographic amplification on 
valley sites using the 3-dimensional BEM. They studied the 
effects of some parameters on the earthquake-induced 
amplification, including the wave propagation frequency 
and angle, material properties (e.g., damping and Pois-
son’s ratio), and the valley shape. Isari et al. [17] proposed 
some useful equations to calculate the time delay and 
coherence function of triangular valleys using the 3D 
TDBEM. Taghavi-Ghalesari et al. [18] studied the seismic 
topographic behavior subjected to body waves using the 
BEM. Gatmiri et al. [19] and Gatmiri et al. [20] calculated 
specific site spectrums in homogenous and alluvial valleys 
by using a hybrid software program [14, 15]. They classified 
the spectral homogenous valley responses by the ratio of 
the valley area to the wall angle. Sohrabi-Bidar et al. [21] 
developed the BEM to solve 3-dimensional time-domain 
seismic problems. They parametrically studied the seis-
mic responses of three-dimensional arch-shaped valleys. 
Sohrabi-Bidar and Kamalian [22] investigated the seismic 

responses of 3-dimensional Gaussian-shaped hills sub-
jected to vertical waves by using the BEM. The results indi-
cated the wave type, site shape (including the shape ratio 
and dimension ratio), and wavelength are key parameters 
affecting the seismic behavior of the 3-dimensional hills. 
Panji et al. [23] and Panji et al. [24] performed topographic 
seismic analyses by developing the full-plane boundary 
element method to a half-plane BEM. Considering that 
the full-plane BEM requires the discretization of the flat 
ground and cut boundaries in distances, they developed 
the formulation of the full-plane BEM to a half-plane 
boundary element method and showed that the pro-
posed method could be a suitable alternative to previous 
boundary element methods, particularly in engineering 
and geotechnical problems.

The present study investigates the seismic response 
of the Pacoima Dam site as a topographic effect-related 
site using the 3D TDBEM. For this purpose, a 3-dimen-
sional model of the Pacoima Dam site is developed and 
the recorded accelerogram at the bottom of the valley is 
employed for seismic loading. The main objectives of this 
work are:

1. To investigate the displacement patterns of different 
points of the valley.

2. To evaluate the topographic amplification pattern.
3. To compare the numerical results to the real recorded 

excitations.

2  The numerical method

The differential equation governing the dynamic equi-
librium of linear isotropic homogenous elastic media is 
defined as [16]:

where ui is the displacement, bi is the body force of the 
medium, and cL and cT are the velocities of the longitudinal 
and transverse waves, calculated as c2

L
= (� + 2�)∕� and 

c2
T
= �∕�, respectively. In which � and µ are lame constants, 

and � is the density of the medium. It should be noted that 
the Einstein summation convention was applied to the 
entire index relations of the present study. Applying the 
weighted-residual procedure to Eq. (1) gives the boundary 
integral equation governing linear isotropic homogenous 
elastic media as [16]:

(1)
(
c2
L
− c2

T

) �2uj

�xi�xj
+ c2

T

�2ui

�xj�xj
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}
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where U∗
ij
 and P∗

ij
 are the fundamental solutions of the dif-

ferential equation and denote the component j of the 
displacement and the traction of point x at time t respec-
tively, which were obtained by applying a delta dirac con-
centrated load parallel to the i-axis at point � and time � . 
Also U∗

ij
⊗ pj and P∗

ij
⊗ uj are the Riemann convolution inte-

grals and cij is the known discontinuity coefficient at the 
point � , which arises from the singularity of the basic solu-
tion P∗

ij
 . cij is only the function of the boundary geometry 

and has the same value under both static and dynamic 
loading. When the medium is subject to seismic waves, the 
boundary integral equation changes into [16]:

where uinc
i

 is the wave-induced displacement. In homog-
enous topographic problems, the ground surface is stress 
free. Thus, Eq. (3) is rewritten as:

for numerical solution of the problem, the boundary 
integral equation should be expressed such that a set of 
linear equations is obtained in which the boundary val-
ues are derived. To change the governing integral equa-
tion into a desirable form, first, it is separated in time and 
then in space. Finally, the obtained equations are shown 
in matrix forms as follows:

where FN−n+1
ij1

 and FN−n+1
ij2

 are the elastodynamic traction 
cores in the constant-location mode in a time step. Replac-
ing Eq. (5) into the integral boundary element equations 
gives:

The discretization of the variables gives the equation gov-
erning the boundary element problem as
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where Γq is the element area, Q is the total number of 
boundary elements, and J is the Jacobin.

value calculated as

where n is the normal vector of the element surface and 
Xi� is the coordinate of nodes. When Eq. (8) is written for 
the entire nodes, transferring the known and unknown 
values to the both sides of the equation and assembling 
the equation gives the matrix forms of the equations as

(8)Ji =
�xi

�n
=

���(�1, �2)

�n
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where  ZN is the dynamic history, the entire parameters of 
which are known as:

Fundamental Solutions are obtained by a particular 
case of the Helmholtz decomposition, which are presented 
in the followings. The free-field surface displacement in 
a k direction in the frequency domain when the load is 
applied in the l  direction is obtained as [16]:

where � and � are defined as:
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Hence, � = 4 ; subscript (,) refers to derivation with respect 
to that direction; �ij represents the Kronecker delta func-
tion; r is the distance to the load point; k1 =

i�

c1
 and k2 =

i�

c2
 

are compressional and shear wavenumbers, respectively.
It should be mentioned that the fundamental response 

of traction can be calculated based on an obtained funda-
mental solution for the displacement, using the relation-
ships between stress, strain, and displacement and hence 
the relationships between stress and traction (Stokes law). 
Accordingly, the k component of the traction on a surface 
with unit external normal of n under a unit load in the l  
direction can be described as [16]:

In which d�∕dr and d�∕dr are given by:

Finally, a square matrix with the dimensions of 3Q × 3Q 
is obtained. The unknown displacements on the bound-
ary are found using the standard matrix solving method. 
The singular integrals on the main diagonal are calculated 
using the indirect rigid body technique, which requires 
closed boundaries and thus, the use of virtual elements in 
the half-infinite media. Based on this technique, the diago-
nal elements of the matrix (which contain singular inte-
grals) are expressed with respect to off-diagonal elements 
(where there is no singularity). As the dynamic behavior 
of the traction kernel tend to be similar to the static one 
when the collocation and incident field nodes tend to each 
other, this technique can be extended to elastodynamic 
issues. In this study, the minimum distance between the 
original boundary and the new enclosing elements was set 
to the length of an element to ensure sufficient accuracy. 
The original geometry should be modeled correctly with-
out the contribution of enclosing elements in the system 
of equations. The applied geometry for virtual boundary 
can be either circular or rectangular in shape depending 
on the geometry of the original boundary, which basically 
have no significant effect on the obtained results. [16, 21, 
22, 25].
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3  Case study

The records of an earthquake across the site are required 
to investigate the effects of non-uniform excitation on 
the seismic response of a dam. Such data have rarely 
been recorded during earthquakes in the valleys of dams, 
and the single recorded data are not generally enough 
for non-uniform analyses. Furthermore, for the rare sites 
with two or three points recorded data, the polynomial 
interpolation of the recorded points is not a suitable 
approach to achieve the data of the points lying between 
them due to the complexity of seismic wave scattering 
from topographic irregularities. To obtain the responses 
of different points of a real site, the present study built 
a three-dimensional topographic model of the Pacoima 
Dam site and used the TDBEM to calculate the seismic 
response. Located in Saint Gabriel Mountains, California, 
Pacoima Dam is an arched concrete dam with a height of 
113 m and a crest length of 180 m. The body thickness of 

the dam varies from 3 m in the crest to 30 m at the bot-
tom. The body of the dam is composed of 11 cantilevers 
with a width of 15.3 m and vertical joints between which 
shear keys with a depth of 30 m are embedded. An array of 
accelerometers was employed to record 17 displacement 
components (Fig. 1). Accelerometers 1–8 were placed on 
the dam body to evaluate the response of the structure. 
Accelerometers 2–4 were placed in the center of the crest 
to record motion in different directions. Accelerometers 
1–5 were placed in the right-side one-third part and left-
side one-quarter part of the crest. Like Accelerometers 1, 
2, and 5, Accelerometers 6, 7, and 8 recorded the radial 
component at a height level of 80% of the dam.

Accelerometers 9–17 were placed near the foundation 
of the dam on the downstream face. Accelerometers 9–11 
were installed at a height of 3 m from the bottom on the 
downstream face, recording different ground motion com-
ponents on the bottom. Accelerometers 12–17 recorded 
different motion components in the joint of the dam and 
supports. Considering the almost north–south orienta-
tion of the dam axis, the radial and tangent horizontal 
components were in the east–west (along the stream 
direction) and north–south (perpendicular to the stream 
direction) directions, respectively. The high number of 
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accelerometers in different locations on the dam body 
and the high number of earthquake events recorded in the 
site along with the relatively homogenous site of the dam 
provided a proper opportunity to investigate topographic 
effects and the real response of the dam to non-uniform 
support excitation during an earthquake [2].

The seismic responses of the valley under horizontal 
records on the bottom of the valley during the 2001 earth-
quake were investigated. The 2001 earthquake occurred at 
a distance of 6 km south of the Pacoima Dam and a depth 
of 9 km with a magnitude of 4.3 Richter. The storage level 
of the dam was reported to be 41 m below the crest during 
the earthquake. Also, the maximum acceleration, velocity, 
and displacement of the foundation were recorded to be 
0.02 g, 0.9 cm/s, and 0.07 cm for the tangent components, 
respectively [26]. Therefore, the motion amplitude was too 
small to assume linear behavior during the analysis. Fig-
ure 2 shows the time-history of the recorded horizontal 

accelerogram in the foundation. The records of channel 
9 in the length direction (i.e., x-direction) and those of 
channel 11 in the width direction (i.e., y-direction) were 
employed to study the behavior. In both cases, vertical 
shear wave propagation was considered. The Seismo Sig-
nal software was employed to produce excitation waves. 
Frequencies of above 21 Hz were excluded using a fourth-
order Butterworth filter while modifying the baseline.

The BEMSA computer code [21, 22], which is based 
on the 3D TDBEM, was used to investigate the seismic 
response. The available topographic maps (i.e., the digital 
elevation model) were employed for the 3-dimensional 
modeling of the Pacoima Dam site. For this purpose, a 
three-dimensional model of the site was built like a semi-
sphere with a radius of 5000 m from the centerpoint and 
1218 eight-node elements. The shear wave velocity, den-
sity, and Poisson’s ratio were considered to be 2000 m/s, 
2.64 tons/m3, and 0.25, respectively [2]. The element size of 

Fig. 1  a The cross-section of the dam and the accelerometer array locations and b the 3-dimensional model of the Pacoima Dam site

Fig. 2  The accelerogram records of the valley in channels 9 and 11 during the 2001 Pacoima Dam earthquake
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the central part was about 25 m which gradually increases 
as moving to the sides. The observation of the displace-
ment–time responses of different points is an interesting 
aspect of time-domain methods. Figure  3 depicts the 
selected points across the valley, which their responses are 
investigated. The height of the points A, B, C, and D from 
the bottom of the valley (BC) are 37, 66, 93, and 144 m, 
respectively. The Points of RCC and LCC have the same 
elevation as the installed accelerometers on the right and 
left side of the valley.

4  Evaluating the numerical results

The records of channels 9 and 11 consist of the radial 
and tangential components of shear waves in the x- and 
y-directions, respectively, were modeled in this section. 
Figure 4 demonstrates the time histories of displacement 
of 3 locations on the bottom, right and left-side of the 
valley, namely BC, RCC, and LCC, respectively, at a height 
of 80% of the dam’s elevation. The results of shear wave 
analysis included both x- and y-directions. Figure 4 also 
compares the numerical seismic responses to the cor-
responding recorded ones. The BC records were used as 
the input motion. As can be seen, there was significant 
general consistency between the records and numeri-
cal results, with complete similarity in the displacement 
pattern. However, differences can be seen in the details 
and displacement amplitudes, which could be due to the 
simplified numerical model, while the experimental situ-
ation was considerably complicated. It is noteworthy that 
the analysis merely included the topography of the val-
ley, while recorded accelerograms involved the interaction 
between the valley, Dam, and reservoir too.

Fig. 3  The cross section of the Pacoima Dam valley and the 
selected points on the left and right side

Fig. 4  The numerical displacement results of locations on the walls of the valley along with the accelerogram records of the 2001 earth-
quake
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4.1  The shear wave seismic response 
in the x‑direction

Figure 5 shows time histories of displacements for points 
with different heights subjected to shear waves in the 
x-direction on the both sides of the Pacoima Dam’s val-
ley. The vibration direction is along the valley, and the 
propagation of the shear waves was considered to be 
perpendicular to the dam plane. As can be seen, the dis-
placement patterns were similar and did not considerably 
change as the height increased. An increase in the height 
unexpectedly reduced the amplitude. This could be due to 
the high complication of analyses under real accelerations, 
even though the side supports showed good consistency 
with the records. Moreover, the comparison of the left- 
and right-side locations indicate that the displacement 
time-histories of the same height points are different in 
the both sides due to the asymmetry of the valley. In gen-
eral, the displacement amplitude was larger on the left 
side, particularly at upper heights. This could be due to the 

geometrical difference between the left and right walls. 
Table 1 provides the maximum displacement amplitudes 
at different heights for both sides of the valley. The maxi-
mum displacement amplitude ratio is obtained about 1.5.

4.2  The shear wave seismic response 
in the y‑direction

Figure 6 illustrates the displacement time-histories of loca-
tions on 2 sides of the valley at different heights subjected 
to shear waves along the y-direction. The wave vibration 
direction is perpendicular to the valley line. Shear wave 
propagation was considered to occur on the plane. The 
displacement amplitude reduced with an increase in the 
height. The amplitude reduction is much larger in the 
y-direction than in the x-direction. Furthermore, compar-
ing the points on two sides of the valley indicates that the 
displacement time-histories of points on the two sides 
with the same height were rather different due to the 
asymmetry of the valley, particularly at greater heights. In 
general, the displacement amplitude was larger on the left 
side of the valley, particularly at upper heights. Also, the 
differences between points at the same heights were con-
siderably larger in the y-direction, suggesting the effects 
of the wave type and direction of wave vibration. Table 2 
provides the maximum displacement values on the two 
sides of the valley at different heights. The maximum dis-
placement amplitude ratio is obtained about 3.

4.3  Amplification

Figure  7 depicts the amplification diagrams obtained 
from the boundary element method for the left and right 
walls of the valley. The figure also shows the amplifica-
tion curves of shear waves in both x- and y-directions. The 
amplification curves were plotted by calculating the ratio 
of the Fourier spectrum of the displacement of the points 
located on the right and left sides to the Fourier spectrum 
of the point located at the bottom (BC).

Relatively, similar amplification patterns for the shear 
waves in the x-direction are obtained for the both sides 
points with the same height. Large amplification factors 
were mostly observed around frequencies 3 and 6–8 Hz. 
The amplification seems to increase on both sides of the 
valley as the height increases, particularly at frequencies 
6–8  Hz. However, the amplifications of points located 

Fig. 5  The time histories of displacements for shear waves in the 
x-direction

Table 1  The amplitudes of 
displacements corresponding 
to the specified points in the 
x-direction

Location Base A B C D

Height from the bottom in the x-direction (m) 0 37 66 93 144
Displacement amplitudes of left-side locations (mm) 1.1 1.2 1 0.96 1
Displacement amplitudes of right-side locations (mm) 1.1 1.1 0.99 0.936 0.754
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on the left side were larger than those of correspond-
ing points with the same heights on the right side. For 
the shear waves in the y-direction, amplifications with a 
relatively identical pattern can be observed, except that 
the amplification peaks are seen at approximately 4.5 and 
6–8 Hz. In this case, the amplification amplitude increased 
as the height increased. Compared to the shear waves in 
the x-direction, the amplification amplitudes were larger 
at lower frequencies for the shear waves in the y-direc-
tion. Like the previous case, the locations on the left side 
showed larger amplification than those on the right side.

Figure 8 demonstrates horizontal amplification dia-
grams for the 2001 Pacoima Dam earthquake records of 
2 locations on the both sides from the excitation on the 
bottom in the radial and tangential directions. Good con-
sistency is observed between the numerical results and 
the real records, particularly for the main amplification 
frequencies. The maximum amplification values observed 
at frequency ranges 3–5 and 6–8 Hz. The amplification of 
recorded responses is much larger than that of numerical 
analysis. However, considering the difference between the 
numerical analysis and real conditions, this inconsistency 
is reasonable. Also the amplification of recorded response 
showed new peaks at higher frequencies, which could be 
due to the complexity and the presence of the dam in the 
real condition.

5  Conclusions

This study employed the 3-dimensional boundary ele-
ment method to solve the seismic response of the Pacoima 
Dam site. The comparison of the numerical and recorded 
responses of the dam site generally indicated good con-
sistency, despite some inconsistency. It is indicated that 
the amplification increased at high frequencies. The 
results of the present study emphasized the effects of 
non-uniform excitation of supports in the presence of 
irregular topography. The results demonstrated the effi-
ciency of the proposed method to generate non-uniform 
support motions using only one recorded accelerogram. 
The displacement amplitudes varied by approximately 
1.5 and 3 times for shear waves in the x- and y-directions, 
respectively.

Due to the capability of BEM in combination with other 
numerical methods, a combined method of 3D BEM and 
FEM can be used to study the effects of structures such as 
dam on the seismic analysis results.

Fig. 6  The time histories of displacements in the y-direction

Table 2  The amplitudes of 
displacements corresponding 
to the specified points in the 
y-direction

Location Base A B C D

Height from the bottom in the x-direction (m) 0 37 66 93 144
Displacement amplitudes of left-side locations (mm) − 1.8 − 1.5 − 1.3 − 1.1 − 0.86
Displacement amplitudes of right-side locations (mm) − 1.8 − 1.4 − 0.99 − 0.95 − 0.68
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Fig. 7  The numerical amplification results
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